1
|
Spencer PS, Berntsson SG, Buguet A, Butterfield P, Calne DB, Calne SM, Giménez-Roldán S, Hugon J, Kahlon S, Kisby GE, Lagrange E, Landtblom AME, Ludolph AC, Nunn PB, Palmer VS, Reis J, Román GC, Sipilä JOT, Spencer SS, Angues RV, Vernoux JP, Yabushita M. Brain health: Pathway to primary prevention of neurodegenerative disorders of environmental origin. J Neurol Sci 2025; 468:123340. [PMID: 39667295 DOI: 10.1016/j.jns.2024.123340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
While rising global rates of neurodegenerative disease encourage early diagnosis and therapeutic intervention to block clinical expression (secondary prevention), a more powerful approach is to identify and remove environmental factors that trigger long-latencybrain disease (primary prevention) by acting on a susceptible genotype or acting alone. The latter is illustrated by the post-World War II decline and disappearance of Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC), a prototypical often-familial neurodegenerative disease formerly present in very high incidence on the island of Guam. Lessons learned from 75 years of investigation on the etiology of ALS/PDC include: the importance of focusing field research on the disease epicenter and patients with early-onset disease; soliciting exposure history from patients, family, and community to guide multidisciplinary biomedical investigation; recognition that disease phenotype may vary with exposure history, and that familial brain disease may have a primarily environmental origin. Furthermore, removal from exposure to the environmental trigger effects primary disease prevention.
Collapse
Affiliation(s)
- Peter S Spencer
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | - Patricia Butterfield
- Elson S. Floyd College of Medicine, Washington State University (retired), Washington, USA
| | - Donald B Calne
- University of British Columbia (retired), Vancouver, Canada
| | - Susan M Calne
- University of British Columbia (retired), Vancouver, Canada
| | - Santiago Giménez-Roldán
- Neurology, Hospital General Universitario "Gregorio Marañón" Doctor Esquerdo (retired), Madrid, Spain
| | - Jacques Hugon
- Department of Cognitive Neurology, Lariboisière FW Hospital University of Paris, France
| | - Sahiba Kahlon
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Glen E Kisby
- Biomedical Sciences, College of Osteopathic Medicine of Pacific Northwest, Western University of Health Sciences (retired), Lebanon, Oregon, USA
| | - Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - Anne-Marie E Landtblom
- Department of Medical Sciences, Uppsala University (retired), Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Albert C Ludolph
- Department of Neurology, University of Ulm (retired), Ulm, Germany
| | - Peter B Nunn
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Valerie S Palmer
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jacques Reis
- Association RISE, 67205 Oberhausbergen, France; Department of Neurology, University of Strasbourg (retired), Strasbourg, France
| | - Gustavo C Román
- Department of Neurology, Houston Methodist Hospital, University of Houston, TX, USA
| | - Jussi O T Sipilä
- Department of Neurology, North Karelia Central Hospital, Joensuu, Finland; Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | | | - Raquel Valdes Angues
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jean-Paul Vernoux
- Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, Normandie University (retired), UNICAEN, Caen, France
| | - Momoko Yabushita
- Graduate School of International Development, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Dirks AC, Methven AS, Miller AN, Orozco-Quime M, Maurice S, Bonito G, Van Wyk J, Ahrendt S, Kuo A, Andreopoulos W, Riley R, Lipzen A, Chovatia M, Savage E, Barry K, Grigoriev IV, Bradshaw AJ, Martin FM, Elizabeth Arnold A, James TY. Phylogenomic insights into the taxonomy, ecology, and mating systems of the lorchel family Discinaceae (Pezizales, Ascomycota). Mol Phylogenet Evol 2025:108286. [PMID: 39788220 DOI: 10.1016/j.ympev.2025.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/21/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Lorchels, also known as false morels (Gyromitra sensu lato), are iconic due to their brain-shaped mushrooms and production of gyromitrin, a deadly mycotoxin. Molecular phylogenetic studies have hitherto failed to resolve deep-branching relationships in the lorchel family, Discinaceae, hampering our ability to settle longstanding taxonomic debates and to reconstruct the evolution of toxin production. We generated 75 draft genomes from cultures and ascomata (some collected as early as 1960), conducted phylogenomic analyses using 1542 single-copy orthologs to infer the early evolutionary history of lorchels, and identified genomic signatures of trophic mode and mating-type loci to better understand lorchel ecology and reproductive biology. Our phylogenomic tree was supported by high gene tree concordance, facilitating taxonomic revisions in Discinaceae. We recognized 10 genera across two tribes: tribe Discineae (Discina, Maublancomyces, Neogyromitra, Piscidiscina, and Pseudodiscina) and tribe Gyromitreae (Gyromitra, Hydnotrya, Paragyromitra, Pseudorhizina, and Pseudoverpa); Piscidiscina was newly erected and 26 new combinations were formalized. Paradiscina melaleuca and Marcelleina donadinii formed their own family-level clade sister to Morchellaceae, which merits further taxonomic study. Genome size and CAZyme content were consistent with a mycorrhizal lifestyle for the truffle species (Hydnotrya spp.), whereas the other Discinaceae genera possessed genomic properties of a saprotrophic habit. Lorchels were found to be predominantly heterothallic-either MAT1-1 or MAT1-2-but a single occurrence of colocalized mating-type idiomorphs indicative of homothallism was observed in Gyromitra esculenta strain CBS101906 and requires additional confirmation and follow-up study. Lastly, we confirmed that gyromitrin has a phylogenetically discontinuous distribution, having been detected exclusively in two distantly related genera (Gyromitra and Piscidiscina) belonging to separate tribes. Our genomic dataset will facilitate further investigations into the gyromitrin biosynthesis genes and their evolutionary history. With additional sampling of Geomoriaceae and Helvellaceae-two closely related families with no publicly available genomes-these data will enable comprehensive studies on the independent evolution of truffles and ecological diversification in an economically important group of pezizalean fungi.
Collapse
Affiliation(s)
- Alden C Dirks
- Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Michelle Orozco-Quime
- Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sundy Maurice
- Department of Biosciences, University of Oslo, Blindernveien 31 0316, Oslo, Norway
| | - Gregory Bonito
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Judson Van Wyk
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexander J Bradshaw
- Natural History Museum of Utah and School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst-Nancy, Champenoux, France
| | - A Elizabeth Arnold
- Department of Ecology and Evolutionary Biology, Bio5 Institute, and Gilbertson Mycological Herbarium, University of Arizona, Tucson, AZ 85719, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology and University of Michigan Herbarium, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Bayram OF, Marah S, Turkekul I, Ozen T. Phytochemical profile, bioactivity, and molecular docking studies of natural edible mushrooms grown in Tokat and Sivas provinces of Turkey. J Food Sci 2024; 89:5928-5950. [PMID: 39138636 DOI: 10.1111/1750-3841.17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Mushrooms have been essential to the human diet because they contain balanced chemical components and some biologically active substances. In this work, we investigated the phenolics, essential oils, metal contents, antioxidant, antibacterial, DNA protective, and enzyme inhibition activities for Clitocybe geotropa, Ramaria aurea, Rhizopogon luteolus (RL), Russula delica (RD), Verpa bohemica, and Marasmius oreades mushrooms. Results exhibited a higher content for citric and succinic acids in all tested kinds. Further, we detected a high content of cis-9-oleic acid, linoleate, and cis-11-eicosanoate. All mushroom species contain a significant percentage of both Cu and Zn. Moreover, RL and RD recorded the highest phenolic and flavonoid contents. Furthermore, all samples showed standard to good antioxidant activity, and the same is true for the antibacterial and DNA protective activities. Enzyme inhibition activity was generally high and significantly higher against the urease than the thiourea. We applied molecular docking between the highest phenolic molecules with the urease to determine the mushroom extracts' high inhibition mechanism. In conclusion, all mushroom species revealed a variety in chemical content that is probably related to their multi-bioactivity.
Collapse
Affiliation(s)
- Onur Furkan Bayram
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Sarmed Marah
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Ibrahim Turkekul
- Department of Biology, Faculty of Arts and Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
4
|
Vohra V, Dirks A, Bonito G, James T, Carroll DK. A 19-year longitudinal assessment of gyromitrin-containing (Gyromitra spp.) mushroom poisonings in Michigan. Toxicon 2024; 247:107825. [PMID: 38908526 DOI: 10.1016/j.toxicon.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Mushroom poisonings are common in the United States. Gyromitrin (acetaldehyde N-methyl-N-formylhydrazone) is a clinically significant mycotoxin primarily associated with the lorchel (i.e. the false morel) Gyromitra esculenta. Resemblance between 'true and false morels' has resulted in misidentification of Gyromitra spp. as edible and sought after Morchella spp., resulting in toxicity. Despite literature evidence outlining toxic sequalae, Gyromitra spp. mushrooms are commonly consumed and prepared for culinary purposes. Classic clinical teachings emphasize significant neurotoxicity, including seizures, associated with ingestion of gyromitrin-containing mushrooms, stemming from gyromitrin's terminal metabolite monomethylhydrazine. We performed a longitudinal descriptive review of the clinical toxicity associated with ingestion of mushroom species known or suspected to contain gyromitrin in cases reported to the Michigan Poison & Drug Information Center between January 1, 2002, to December 31, 2020. Our 19-year descriptive case series of gyromitrin-containing mushroom ingestions reported to our Center demonstrated a preponderance of gastrointestinal signs and symptoms, including hepatotoxicity. Of 118 identified cases, 108 (91.5%) of the reported ingestions involved Gyromitra esculenta. The most frequent clinical findings associated with symptomatic ingestions (n = 83) were the aforementioned gastrointestinal symptoms (n = 62; 74.7%). Neurological symptoms were less frequent (n = 22, 26.5%) while hepatotoxicity occurred in fewer patients (n = 14; 16.9%). Of symptomatic patients, most were treated with symptomatic and supportive care (n = 58; 70%). Pyridoxine was used in a total of seven patients (n = 7; 8.4%) with either hepatotoxicity or neurotoxicity. Medical outcomes ranged from minor to major, with no reported deaths. Patient presentations (i.e. GI vs. neurotoxic symptoms) following ingestion of gyromitrin-containing mushrooms may be highly variable and multifactorial, owing to differences in dose ingested, geographical distribution, genetic variability of both patient and mushroom species, and species-specific differences in toxin composition. Future research warrants species-level identification of ingested gyromitrin-containing mushrooms and investigating the contribution of genetic polymorphisms to differences in clinical toxidromes.
Collapse
Affiliation(s)
- V Vohra
- Michigan Poison & Drug Information Center, Department of Emergency Medicine, Wayne State University School of Medicine, 550 East Canfield St., Detroit, MI, USA.
| | - A Dirks
- University of Michigan, Ecology and Evolutionary Biology, 4038 Biological Sciences Building, Ann Arbor, MI, USA.
| | - G Bonito
- Michigan State University, College of Agriculture & Natural Resources, Department of Plant, Soil, and Microbial Sciences, 1066 Bogue Street, East Lansing, MI, USA.
| | - T James
- University of Michigan, Ecology and Evolutionary Biology, 4038 Biological Sciences Building, Ann Arbor, MI, USA.
| | - D K Carroll
- Detroit Medical Center, Department of Emergency Medicine, 4201 St. Antoine St., Detroit, MI, USA.
| |
Collapse
|
5
|
Lagrange E, Loriot MA, Chaudhary NK, Schultz P, Dirks AC, Guissart C, James TY, Vernoux JP, Camu W, Tripathi A, Spencer PS. Corrected speciation and gyromitrin content of false morels linked to ALS patients with mostly slow-acetylator phenotypes. eNeurologicalSci 2024; 35:100502. [PMID: 38770222 PMCID: PMC11103407 DOI: 10.1016/j.ensci.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
A case-control study of sporadic amyotrophic lateral sclerosis (ALS) in a mountainous village in the French Alps discovered an association of cases with a history of eating wild fungi (false morels) collected locally and initially identified and erroneously reported as Gyromitra gigas. Specialist re-examination of dried specimens of the ALS-associated fungi demonstrated they were members of the G. esculenta group, namely G. venenata and G. esculenta, species that have been reported to contain substantially higher concentrations of gyromitrin than present in G. gigas. Gyromitrin is metabolized to monomethylhydrazine, which is responsible not only for the acute oral toxic and neurotoxic properties of false morels but also has genotoxic potential with proposed mechanistic relevance to the etiology of neurodegenerative disease. Most ALS patients had a slow- or intermediate-acetylator phenotype predicted by N-acetyltransferase-2 (NAT2) genotyping, which would increase the risk for neurotoxic and genotoxic effects of gyromitrin metabolites.
Collapse
Affiliation(s)
- Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, European Georges-Pompidou hospital, Assistance Publique–Hôpitaux de Paris, University Paris Cité, INSERM UMR-S1138, Centre de Recherches des Cordeliers, 75908 Paris Cedex 15, France
| | - Nirmal K. Chaudhary
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pam Schultz
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alden C. Dirks
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claire Guissart
- Laboratoire de Biochimie et Biologie Moleculaire, CHU Nimes, Nimes, Motoneuron Disease: Pathophysiology and Therapy, INM, Univ. Montpellier, Montpellier, France
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean Paul Vernoux
- Unité de Recherche Aliments Bioprocédés Toxicologie Environnements (ABTE) EA 4651, Normandie University, UNICAEN, 14000 Caen, France
| | - William Camu
- NM, Université Montpellier, INSERM, CNRS, Montpellier, France
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, 48109, USA
| | | |
Collapse
|
6
|
Goutman SA, Boss J, Jang DG, Piecuch C, Farid H, Batra M, Mukherjee B, Feldman EL, Batterman SA. Avocational exposure associations with ALS risk, survival, and phenotype: A Michigan-based case-control study. J Neurol Sci 2024; 457:122899. [PMID: 38278093 PMCID: PMC11060628 DOI: 10.1016/j.jns.2024.122899] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Environmental exposures strongly influence ALS risk and identification is needed to reduce ALS burden. Participation in hobbies and exercise may alter ALS risk and phenotype, warranting an assessment to understand their contribution to the ALS exposome. METHODS Participants with ALS and healthy controls were recruited from University of Michigan and self-completed a survey to ascertain hobbies, exercise, and avocational exposures. Exposure variables were associated with ALS risk, survival, onset segment, and onset age. RESULTS ALS (n = 400) and control (n = 287) participants self-reported avocational activities. Cases were slightly older (median age 63.0 vs. 61.1 years, p = 0.019) and had a lower educational attainment (p < 0.001) compared to controls; otherwise, demographics were well balanced. Risks associating with ALS after multiple comparison correction included golfing (odds ratio (OR) 3.48, padjusted = 0.004), recreational dancing (OR 2.00, padjusted = 0.040), performing gardening or yard work (OR 1.71, padjusted = 0.040) five years prior to ALS and personal (OR 1.76, padjusted = 0.047) or family (OR 2.21, padjusted = 0.040) participation in woodworking, and personal participation in hunting and shooting (OR 1.89, padjusted = 0.040). No exposures associated with ALS survival and onset. Those reporting swimming (3.86 years, padjusted = 0.016) and weightlifting (3.83 years, padjusted = 0.020) exercise 5 years prior to ALS onset had an earlier onset age. DISCUSSION The identified exposures in this study may represent important modifiable ALS factors that influence ALS phenotype. Thus, exposures related to hobbies and exercise should be captured in studies examining the ALS exposome.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America.
| | - Dae Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Caroline Piecuch
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Hasan Farid
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Madeleine Batra
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America.
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Stuart A Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
7
|
Yuan Y, Bailey JM, Rivera-Lopez GM, Atchison WD. Preferential potentiation of AMPA-mediated currents in brainstem hypoglossal motoneurons by subchronic exposure of mice expressing the human superoxide dismutase 1 G93A gene mutation to neurotoxicant methylmercury in vivo. Neurotoxicology 2024; 100:72-84. [PMID: 38065418 PMCID: PMC10877233 DOI: 10.1016/j.neuro.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA.
| | - Jordan M Bailey
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - Gretchen M Rivera-Lopez
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| |
Collapse
|
8
|
Reis J, Buguet A, Román GC, Spencer PS. Environmental neurology: Concepts and short history of an interdisciplinary approach to etiology, treatment and prevention. J Neurol Sci 2023; 454:120861. [PMID: 37924592 DOI: 10.1016/j.jns.2023.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Environmental Neurology (EN), a sub-discipline of Neurology and Neurological Sciences, favors an interdisciplinary collaboration allowing a holistic approach to understanding the impact of environmental factors on the nervous system and their relationship with neurological diseases. Several examples of diseases and conditions show the large scope of subjects addressed by EN. The EN sub-discipline focuses on both individual and population issues thus joining patient care and public health, respectively. Neuropathogenesis is addressed by several major questions: How do the environment and nervous system interact? Which exogenous factors can trigger neurological disease? When, where and how do they act? What are the therapeutic implications, and how can these disorders be controlled or prevented. To answer such questions, we address the incentive for, philosophy of and methods developed by EN, which seeks to safeguard Brain Health and, thus, the quality of life.
Collapse
Affiliation(s)
- Jacques Reis
- Department of Neurology, Centre Hospitalier Universitaire, 1 Avenue Molière, 67200 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France
| | - Gustavo C Román
- Department of Neurology, Neurological Institute, Houston Methodist Hospital, 6560 Fannin Street, Suite 802, Houston, TX 77030, USA
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
9
|
Vasta R, Callegaro S, Sgambetterra S, Cabras S, Di Pede F, De Mattei F, Matteoni E, Grassano M, Bombaci A, De Marco G, Fuda G, Marchese G, Palumbo F, Canosa A, Mazzini L, De Marchi F, Moglia C, Manera U, Chiò A, Calvo A. Presymptomatic geographical distribution of ALS patients suggests the involvement of environmental factors in the disease pathogenesis. J Neurol 2023; 270:5475-5482. [PMID: 37491680 PMCID: PMC10576667 DOI: 10.1007/s00415-023-11888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Given that the pathogenetic process of ALS begins many years prior to its clinical onset, examining patients' residential histories may offer insights on the disease risk factors. Here, we analyzed the spatial distribution of a large ALS cohort in the 50 years preceding the disease onset. METHODS Data from the PARALS register were used. A spatial cluster analysis was performed at the time of disease onset and at 1-year intervals up to 50 years prior to that. RESULTS A total of 1124 patients were included. The analysis revealed a higher-incidence cluster in a large area (435,000 inhabitants) west of Turin. From 9 to 2 years before their onset, 105 cases were expected and 150 were observed, resulting in a relative risk of 1.49 (P = 0.04). We also found a surprising high number of patients pairs (51) and trios (3) who lived in the same dwelling while not being related. Noticeably, these occurrences were not observed in large dwellings as we would have expected. The probability of this occurring in smaller buildings only by chance was very low (P = 0.01 and P = 0.04 for pairs and trios, respectively). CONCLUSIONS We identified a higher-incidence ALS cluster in the years preceding the disease onset. The cluster area being densely populated, many exposures could have contributed to the high incidence ALS cluster, while we could not find a shared exposure among the dwellings where multiple patients had lived. However, these findings support that exogenous factors are likely involved in the ALS pathogenesis.
Collapse
Affiliation(s)
- Rosario Vasta
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.
| | - S Callegaro
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - S Sgambetterra
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - S Cabras
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
- International School of Advanced Studies, University of Camerino, Camerino, Italy
| | - F Di Pede
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - F De Mattei
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - E Matteoni
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - M Grassano
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - A Bombaci
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - G De Marco
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - G Fuda
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - G Marchese
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - F Palumbo
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - A Canosa
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - L Mazzini
- ALS Center, Department of Neurology, Azienda Ospedaliero Universitaria Maggiore della Carità, and University of Piemonte Orientale, Novara, Italy
| | - F De Marchi
- ALS Center, Department of Neurology, Azienda Ospedaliero Universitaria Maggiore della Carità, and University of Piemonte Orientale, Novara, Italy
| | - C Moglia
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - U Manera
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - A Chiò
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - A Calvo
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
10
|
Goutman SA, Savelieff MG, Jang DG, Hur J, Feldman EL. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 2023; 19:617-634. [PMID: 37709948 PMCID: PMC11027963 DOI: 10.1038/s41582-023-00867-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Menšíková K, Steele JC, Rosales R, Colosimo C, Spencer P, Lannuzel A, Ugawa Y, Sasaki R, Giménez-Roldán S, Matej R, Tuckova L, Hrabos D, Kolarikova K, Vodicka R, Vrtel R, Strnad M, Hlustik P, Otruba P, Prochazka M, Bares M, Boluda S, Buee L, Ransmayr G, Kaňovský P. Endemic parkinsonism: clusters, biology and clinical features. Nat Rev Neurol 2023; 19:599-616. [PMID: 37684518 DOI: 10.1038/s41582-023-00866-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The term 'endemic parkinsonism' refers to diseases that manifest with a dominant parkinsonian syndrome, which can be typical or atypical, and are present only in a particular geographically defined location or population. Ten phenotypes of endemic parkinsonism are currently known: three in the Western Pacific region; two in the Asian-Oceanic region; one in the Caribbean islands of Guadeloupe and Martinique; and four in Europe. Some of these disease entities seem to be disappearing over time and therefore are probably triggered by unique environmental factors. By contrast, other types persist because they are exclusively genetically determined. Given the geographical clustering and potential overlap in biological and clinical features of these exceptionally interesting diseases, this Review provides a historical reference text and offers current perspectives on each of the 10 phenotypes of endemic parkinsonism. Knowledge obtained from the study of these disease entities supports the hypothesis that both genetic and environmental factors contribute to the development of neurodegenerative diseases, not only in endemic parkinsonism but also in general. At the same time, this understanding suggests useful directions for further research in this area.
Collapse
Affiliation(s)
- Katerina Menšíková
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | | | - Raymond Rosales
- Research Center for Health Sciences, Faculty of Medicine and Surgery, University of Santo Tomás, Manila, The Philippines
- St Luke's Institute of Neuroscience, Metro, Manila, The Philippines
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Annie Lannuzel
- Départment de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-á-Pitre, France
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Ryogen Sasaki
- Department of Neurology, Kuwana City Medical Center, Kuwana, Japan
| | | | - Radoslav Matej
- Department of Pathology, 3rd Medical Faculty, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Medical Faculty, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Lucie Tuckova
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Dominik Hrabos
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kristyna Kolarikova
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Vodicka
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Vrtel
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Hlustik
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | - Martin Prochazka
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Bares
- First Department of Neurology, Masaryk University Medical School, Brno, Czech Republic
- St Anne University Hospital, Brno, Czech Republic
| | - Susana Boluda
- Département de Neuropathologie, Hôpital La Pitié - Salpêtrière, Paris, France
| | - Luc Buee
- Lille Neuroscience & Cognition Research Centre, INSERM U1172, Lille, France
| | - Gerhard Ransmayr
- Department of Neurology, Faculty of Medicine, Johannes Kepler University, Linz, Austria
| | - Petr Kaňovský
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- University Hospital, Olomouc, Czech Republic.
| |
Collapse
|
12
|
Spencer PS, Palmer VS, Kisby GE, Lagrange E, Horowitz BZ, Valdes Angues R, Reis J, Vernoux JP, Raoul C, Camu W. Early-onset, conjugal, twin-discordant, and clusters of sporadic ALS: Pathway to discovery of etiology via lifetime exposome research. Front Neurosci 2023; 17:1005096. [PMID: 36860617 PMCID: PMC9969898 DOI: 10.3389/fnins.2023.1005096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
The identity and role of environmental factors in the etiology of sporadic amyotrophic lateral sclerosis (sALS) is poorly understood outside of three former high-incidence foci of Western Pacific ALS and a hotspot of sALS in the French Alps. In both instances, there is a strong association with exposure to DNA-damaging (genotoxic) chemicals years or decades prior to clinical onset of motor neuron disease. In light of this recent understanding, we discuss published geographic clusters of ALS, conjugal cases, single-affected twins, and young-onset cases in relation to their demographic, geographic and environmental associations but also whether, in theory, there was the possibility of exposure to genotoxic chemicals of natural or synthetic origin. Special opportunities to test for such exposures in sALS exist in southeast France, northwest Italy, Finland, the U.S. East North Central States, and in the U.S. Air Force and Space Force. Given the degree and timing of exposure to an environmental trigger of ALS may be related to the age at which the disease is expressed, research should focus on the lifetime exposome (from conception to clinical onset) of young sALS cases. Multidisciplinary research of this type may lead to the identification of ALS causation, mechanism, and primary prevention, as well as to early detection of impending ALS and pre-clinical treatment to slow development of this fatal neurological disease.
Collapse
Affiliation(s)
- Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Valerie S. Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Glen E. Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, United States
| | - Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - B. Zane Horowitz
- Department of Emergency Medicine, Oregon-Alaska Poison Center, Oregon Health and Science University, Portland, OR, United States
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Jacques Reis
- University of Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Jean-Paul Vernoux
- Normandie Université, UNICAEN, Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, Caen, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
13
|
Viader F. La sclérose latérale amyotrophique : une maladie neurodégénérative emblématique. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Dirks AC, Mohamed OG, Schultz PJ, Miller AN, Tripathi A, James TY. Not all bad: Gyromitrin has a limited distribution in the false morels as determined by a new ultra high-performance liquid chromatography method. Mycologia 2023; 115:1-15. [PMID: 36541902 DOI: 10.1080/00275514.2022.2146473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gyromitrin (acetaldehyde N-methyl-N-formylhydrazone) and its homologs are deadly mycotoxins produced most infamously by the lorchel (also known as false morel) Gyromitra esculenta, which is paradoxically consumed as a delicacy in some parts of the world. There is much speculation about the presence of gyromitrin in other species of the lorchel family (Discinaceae), but no studies have broadly assessed its distribution. Given the history of poisonings associated with the consumption of G. esculenta and G. ambigua, we hypothesized that gyromitrin evolved in the last common ancestor of these taxa and would be present in their descendants with adaptive loss of function in the nested truffle clade, Hydnotrya. To test this hypothesis, we developed a sensitive analytical derivatization method for the detection of gyromitrin using 2,4-dinitrobenzaldehyde as the derivatization reagent. In total, we analyzed 66 specimens for the presence of gyromitrin over 105 tests. Moreover, we sequenced the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) and nuc 28S rDNA to assist in species identification and to infer a supporting phylogenetic tree. We detected gyromitrin in all tested specimens from the G. esculenta group as well as G. leucoxantha. This distribution is consistent with a model of rapid evolution coupled with horizontal transfer, which is typical for secondary metabolites. We clarified that gyromitrin production in Discinaceae is both discontinuous and more limited than previously thought. Further research is required to elucidate the gyromitrin biosynthesis gene cluster and its evolutionary history in lorchels.
Collapse
Affiliation(s)
- Alden C Dirks
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| | - Osama G Mohamed
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Pamela J Schultz
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103
| | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48103
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| |
Collapse
|
15
|
Kulick D, Moon E, Riffe RM, Teicher G, Van Deursen S, Berson A, He W, Aaron G, Downes GB, Devoto S, O'Neil A. Amyotrophic Lateral Sclerosis-Associated Persistent Organic Pollutant cis-Chlordane Causes GABA A-Independent Toxicity to Motor Neurons, Providing Evidence toward an Environmental Component of Sporadic Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:3567-3577. [PMID: 36511510 DOI: 10.1021/acschemneuro.2c00452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the death of upper and lower motor neurons. While causative genes have been identified, 90% of ALS cases are not inherited and are hypothesized to result from the accumulation of genetic and environmental risk factors. While no specific causative environmental toxin has been identified, previous work has indicated that the presence of the organochlorine pesticide cis-chlordane in the blood is highly correlated with ALS incidence. Never before tested on the motor system, here, we show that cis-chlordane is especially toxic to motor neurons in vitro- and in vivo-independent of its known antagonism of the GABAA receptor. We find that human stem-cell-derived motor neurons are more sensitive to cis-chlordane than other cell types and their action potential dynamics are altered. Utilizing zebrafish larvae, we show that cis-chlordane induces motor neuron and neuromuscular junction degeneration and subsequent motor deficits in a touch-evoked escape response. Together, our work points to cis-chlordane as a potential sporadic ALS exacerbating environmental pollutant.
Collapse
Affiliation(s)
- Daniel Kulick
- Biology Department, Neuroscience and Behavior Program, Wesleyan University, Middletown, Connecticut06459, United States
| | - Emily Moon
- Biology Department, Neuroscience and Behavior Program, Wesleyan University, Middletown, Connecticut06459, United States
| | - R Madison Riffe
- Neuroscience and Behavior Graduate Program, Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Gregory Teicher
- Molecular and Cellular Biology Graduate Program, Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Simon Van Deursen
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut06459, United States
| | - Aaron Berson
- Biology Department, Wesleyan University, Middletown, Connecticut06459, United States
| | - Wu He
- University of Connecticut Flow Cytometry Core, University of Connecticut, Storrs, Connecticut06269, United States
| | - Gloster Aaron
- Biology Department, Neuroscience and Behavior Program, Wesleyan University, Middletown, Connecticut06459, United States
| | - Gerald B Downes
- Neuroscience and Behavior Graduate Program, Molecular and Cellular Biology Graduate Program, Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Stephen Devoto
- Biology Department, Wesleyan University, Middletown, Connecticut06459, United States
| | - Alison O'Neil
- Chemistry Department, Neuroscience and Behavior Program, Wesleyan University, Middletown, Connecticut06459, United States
| |
Collapse
|
16
|
The Role of Mitophagy in Various Neurological Diseases as a Therapeutic Approach. Cell Mol Neurobiol 2022:10.1007/s10571-022-01302-8. [DOI: 10.1007/s10571-022-01302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
17
|
Boumédiene F, Marin B, Luna J, Bonneterre V, Camu W, Lagrange E, Besson G, Esselin F, De La Cruz E, Lautrette G, Preux PM, Couratier P. Spatio-temporal clustering of amyotrophic lateral sclerosis in France: A population-based study. Eur J Epidemiol 2022; 37:1181-1193. [PMID: 36098945 DOI: 10.1007/s10654-022-00904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess spatial aggregates of amyotrophic lateral sclerosis (ALS) incident cases, using a solid geo-epidemiological statistical method, in France. METHODS This population-based study (2003-2011) investigated 47.1 million person-years of follow-up (PYFU). Case ascertainment of incident ALS cases was based on multiple sources (ALS referral centers, hospital centres and health insurance data). Neurologists confirmed all ALS diagnoses. Exhaustiveness was estimated through capture-recapture. Aggregates were investigated in four steps: (a) geographical modelling (standardized incidence ratio (SIR) calculation), (b) analysis of the spatial distribution of incidence (Phothoff-Winttinghill's test, Global Moran's Index, Kulldorf's spatial scan statistic, Local Moran's Index), (c) classification of the level of certainty of spatial aggregates (i.e. definite cluster; probable over-incidence area; possible over-incidence area) and (d) evaluation of the robustness of the results. RESULTS The standardized incidence of ALS was 2.46/100,000 PYFU (95% CI 2.31-2.63, European population as reference) based on 1199 incident cases. We identified 13 areas of spatial aggregates: one cluster (stable in robustness analysis), five probable over-incidence areas (2 stable in robustness analysis) and seven possible over-incidence areas (including 4 stable areas in robustness analysis). A cluster was identified in the Rhône-Alpes region: 100 observed vs 54.07 expected cases for 2,411,514 PYFU, SIR: 1.85 (95% CI 1.50-2.25). CONCLUSION We report here one of the largest investigations of incidence and spatial aggregation of ALS ever performed in a western country. Using a solid methodology framework for case ascertainment and cluster analysis, we identified 13 areas that warrant further investigation.
Collapse
Affiliation(s)
- Farid Boumédiene
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Benoît Marin
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Jaime Luna
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.,Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France
| | - Vincent Bonneterre
- University Grenoble Alpes, CNRS, Grenoble INP, TIMC, 38000, Grenoble, France
| | - William Camu
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Emmeline Lagrange
- Department of Neurology, CHU Grenoble-Alpes (Grenoble Teaching Hospital), Grenoble, France
| | - Gérard Besson
- Department of Neurology, CHU Grenoble-Alpes (Grenoble Teaching Hospital), Grenoble, France
| | - Florence Esselin
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Elisa De La Cruz
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Géraldine Lautrette
- Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France
| | - Pierre Marie Preux
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.,CEBIMER, Centre d'Epidémiologie, de Biostatistique et de Méthodologie de la Recherche, CHU Limoges, Limoges, France
| | - Philippe Couratier
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France. .,Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France.
| | | |
Collapse
|
18
|
Amyotrophic lateral sclerosis from genotoxins alone? Lancet Neurol 2022; 21:771-772. [DOI: 10.1016/s1474-4422(22)00305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
|
19
|
Courtier A, Potheret D, Giannoni P. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk. Life Sci 2022; 304:120689. [DOI: 10.1016/j.lfs.2022.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
20
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
21
|
Couic-Marinier F. Le pharmacien, le référent dans l’identification des champignons. ACTUALITES PHARMACEUTIQUES 2022. [DOI: 10.1016/j.actpha.2021.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Kisby GE, Spencer PS. Genotoxic Damage During Brain Development Presages Prototypical Neurodegenerative Disease. Front Neurosci 2021; 15:752153. [PMID: 34924930 PMCID: PMC8675606 DOI: 10.3389/fnins.2021.752153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023] Open
Abstract
Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol (MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent brain and, depending on the timing of systemic administration, induces persistent developmental abnormalities of the cortex, hippocampus, cerebellum, and retina. Whereas administration of MAM prenatally or postnatally can produce animal models of epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect on brain structure or function. The neurotoxic effects of MAM administered to rats during cortical brain development (specifically, gestation day 17) are used to model the histological, neurophysiological and behavioral deficits of human schizophrenia, a condition that may precede or follow clinical onset of motor neuron disease in subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from communities impacted by ALS/PDC indicate the degenerative brain disorder may be acquired in juvenile and adult life, a proportion of indigenous cases shows neurodevelopmental aberrations in the cerebellum and retina consistent with MAM exposure in utero. MAM induces specific patterns of DNA damage and repair that associate with increased tau expression in primary rat neuronal cultures and with brain transcriptional changes that parallel those associated with human ALS and Alzheimer's disease. We examine MAM in relation to neurodevelopment, epigenetic modification, DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry and cellular senescence. Since the majority of neurodegenerative disease lacks a solely inherited genetic basis, research is needed to explore the hypothesis that early-life exposure to genotoxic agents may trigger or promote molecular events that culminate in neurodegeneration.
Collapse
Affiliation(s)
- Glen E. Kisby
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Lebanon, OR, United States
| | - Peter S. Spencer
- School of Medicine (Neurology), Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
23
|
Lagrange E, de la Cruz E, Esselin F, Vernoux JP, Pageot N, Taieb G, Camu W. Reversible sub-acute motor neuron syndrome after mushroom intoxication masquerading as amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:496-499. [PMID: 34823410 DOI: 10.1080/21678421.2021.2008453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A 56-year-old man presented with rapidly evolving/sub-acute upper and lower motor neuron syndrome in 2015 with significant weakness in the four limbs and the bulbar region. Amyotrophic lateral sclerosis functional rating scale-revised (ALSFRS-r) was rated 34/48. On electromyography, there was a diffuse and active denervation in the four limbs and the tongue. A diagnosis of definite ALS according to international criteria was made. Six months later the patient stopped worsening. In the following years he progressively recovered. ALSFRS-r score improved to reach 48/48 in 2021. His neurological examination is normal and electromyography shows no denervation. Inquiry revealed that he presented a few months and, again a few days before onset, a mushroom poisoning. He was used to eating false morels either crude or undercooked and developed muscles cramps, nausea and vertigo. The relationships between this reversible sub-acute motor neuron syndrome and mushroom intoxication are discussed in the light of the recently described cluster in the Alps with a high incidence of ALS cases. Epidemiological investigations showed that all patients, but not their spouses, used to eat crude or undercooked false morels. Such a mushroom contains hydrazines, a known neurotoxic agent. We are not aware of another case of ALS reversal in that cluster area. We propose that a potential mushroom poisoning be thoroughly searched for when facing with a patient with sub-acute or rapidly worsening ALS syndrome.
Collapse
Affiliation(s)
| | - Elisa de la Cruz
- Explorations Neurologiques et Centre SLA, CHU and Univ Montpellier, INM, INSERM, Montpellier, France
| | - Florence Esselin
- Explorations Neurologiques et Centre SLA, CHU and Univ Montpellier, INM, INSERM, Montpellier, France
| | | | - Nicolas Pageot
- Explorations Neurologiques et Centre SLA, CHU and Univ Montpellier, INM, INSERM, Montpellier, France
| | - Guillaume Taieb
- Explorations Neurologiques et Centre SLA, CHU and Univ Montpellier, INM, INSERM, Montpellier, France
| | - William Camu
- Explorations Neurologiques et Centre SLA, CHU and Univ Montpellier, INM, INSERM, Montpellier, France
| |
Collapse
|
24
|
Spencer PS. Parkinsonism and motor neuron disorders: Lessons from Western Pacific ALS/PDC. J Neurol Sci 2021; 433:120021. [PMID: 34635325 DOI: 10.1016/j.jns.2021.120021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 01/16/2023]
Abstract
Recognized worldwide as an unusual "overlap" syndrome, Parkinsonism and motor neuron disease, with or without dementia, is best exemplified by the former high-incidence clusters of Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) in Guam, USA, in the Kii Peninsula of Honshu Island, Japan, and in Papua, Indonesia, on the western side of New Guinea. Western Pacific ALS/PDC is a disappearing neurodegenerative disorder with multiple and sometime overlapping phenotypes (ALS, atypical parkinsonism, dementia) that appear to constitute a single disease of environmental origin, in particular from exposure to genotoxins/neurotoxins in seed of cycad plants (Cycas spp.) formerly used as a traditional source of food (Guam) and/or medicine (Guam, Kii-Japan, Papua-Indonesia). Seed compounds include the principal cycad toxin cycasin, its active metabolite methylazoxymethanol (MAM) and a non-protein amino acid β-N-methylamino-L-alanine (L-BMAA); each reproduces components of ALS/PDC neuropathology when individually administered to laboratory species in single doses perinatally (MAM, L-BMAA) or repeatedly for prolonged periods to young adult animals (L-BMAA). Human exposure to MAM, a potent DNA-alkylating mutagen, also has potential relevance to the high incidence of diverse mutations found among Guamanians with/without ALS/PDC. In sum, seven decades of intensive study of ALS/PDC has revealed field and laboratory approaches leading to discovery of disease etiology that are now being applied to sporadic neurodegenerative disorders such as ALS beyond the Western Pacific region. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
25
|
Spencer PS, Kisby GE. Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chem Res Toxicol 2021; 34:1953-1969. [PMID: 34379394 DOI: 10.1021/acs.chemrestox.1c00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Glen E Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|