1
|
Esmaeilnejad M, Rasaei N, Goudarzi K, Behrouz Dehkordi Z, Dolatshahi S, Salehi Omran H, Amirani N, Ashtary-Larky D, Shimi G, Asbaghi O. The effects of conjugated linoleic acid supplementation on cardiovascular risk factors in patients at risk of cardiovascular disease: A GRADE-assessed systematic review and dose-response meta-analysis. Br J Nutr 2024:1-16. [PMID: 39439191 DOI: 10.1017/s0007114524001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The present systematic review and meta-analysis sought to evaluate the effects of conjugated linoleic acid (CLA) supplementation on cardiovascular risk factors in patients at risk of CVD. Relevant studies were obtained by searching the PubMed, SCOPUS and Web of Science databases (from inception to January 2023). Weighted mean differences (WMD) and 95% CI were pooled using a random-effects model. Heterogeneity, sensitivity analysis and publication bias were reported using standard methods. A pooled analysis of 14 randomised controlled trials (RCT) with 17 effect sizes revealed that CLA supplementation led to significant reductions in body weight (WMD: -0·72 kg, 95% CI: -1·11, -0·33, P < 0·001), BMI (WMD: -0·22 kg/m2, 95% CI: -0·44, -0·00, P = 0·037) and body fat percentage (BFP) (WMD: -1·32 %, 95% CI: -2·24, -0·40, P = 0·005). However, there was no effect on lipid profile and blood pressure in comparison with the control group. In conclusion, CLA supplementation may yield a small but significant beneficial effect on anthropometric indices in patients at risk of CVD. Moreover, CLA seems not to have adverse effects on lipid profiles and blood pressure in patients at risk of CVD. It should be noted that the favourable effects of CLA supplementation on anthropometric variables were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Maryam Esmaeilnejad
- Faculty of Nutritional Sciences, Justus Liebig University, 35392Giessen, Germany
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kian Goudarzi
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Zahra Behrouz Dehkordi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Dolatshahi
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Faculty of medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Fuerniss HF, Gifford CL, Mortensen EG, Belk KE, Engle TE, Woerner DR. Nutrient Analysis of Raw United States Beef Offal Items. Nutrients 2024; 16:3104. [PMID: 39339704 PMCID: PMC11435426 DOI: 10.3390/nu16183104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Nutrient composition of beef offal was evaluated to expand availability of nutrient data for the following beef items: beef heart, liver, kidney, tongue, honeycomb tripe, oxtail, marrow bones, testicles, and blood. These items are consumed both domestically and internationally, with significant regional variations that can be contributed to unique cultural meals and dietary patterns. Standardized procedures were used to dissect and homogenize beef offal samples. Nutrient analysis occurred at United States Department of Agriculture Agricultural Research Service-approved laboratories using validated methods and standards. Each of the offal items in the study qualified for at least one "Good Source" or "Excellent Source" nutrient labeling claim as defined by the United States Food and Drug Administration, based on composition of the separable lean component. This study provides analytically derived nutrient information for U.S. beef offal items. The results reflect that these products could be beneficial in providing essential nutrients as a component of a healthy diet.
Collapse
Affiliation(s)
- Hannah F. Fuerniss
- Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.E.B.); (T.E.E.)
| | - Cody L. Gifford
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Emma G. Mortensen
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, TX 79409, USA; (E.G.M.); (D.R.W.)
| | - Keith E. Belk
- Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.E.B.); (T.E.E.)
| | - Terry E. Engle
- Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.E.B.); (T.E.E.)
| | - Dale R. Woerner
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, TX 79409, USA; (E.G.M.); (D.R.W.)
| |
Collapse
|
3
|
Demey LM, Sinha R, DiRita VJ. An essential host dietary fatty acid promotes TcpH inhibition of TcpP proteolysis promoting virulence gene expression in Vibrio cholerae. mBio 2024; 15:e0072124. [PMID: 38958446 PMCID: PMC11323476 DOI: 10.1128/mbio.00721-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Vibrio cholerae is a Gram-negative gastrointestinal pathogen responsible for the diarrheal disease cholera. Expression of key virulence factors, cholera toxin and toxin-coregulated pilus, is regulated directly by ToxT and indirectly by two transmembrane transcription regulators (TTRs), ToxR and TcpP, that promote the expression of toxT. TcpP abundance and activity are controlled by TcpH, a single-pass transmembrane protein, which protects TcpP from a two-step proteolytic process known as regulated intramembrane proteolysis (RIP). The mechanism of TcpH-mediated protection of TcpP represents a major gap in our understanding of V. cholerae pathogenesis. The absence of tcpH leads to unimpeded degradation of TcpP in vitro and a colonization defect in a neonate mouse model of V. cholerae colonization. Here, we show that TcpH protects TcpP from RIP via direct interaction. We also demonstrate that α-linolenic acid, a dietary fatty acid, promotes TcpH-dependent inhibition of RIP via co-association of TcpP and TcpH molecules within detergent-resistant membranes (DRMs) in a mechanism requiring the TcpH transmembrane domain. Taken together, our data support a model where V. cholerae cells use exogenous α-linolenic acid to remodel the phospholipid bilayer in vivo, leading to co-association of TcpP and TcpH within DRMs where RIP of TcpP is inhibited by TcpH, thereby promoting V. cholerae pathogenicity. IMPORTANCE Vibrio cholerae continues to pose a significant global burden on health and an alternative therapeutic approach is needed, due to evolving multidrug resistance strains. Transcription of toxT, stimulated by TcpP and ToxR, is essential for V. cholerae pathogenesis. Our results show that TcpP, one of the major regulators of toxT gene expression, is protected from proteolysis by TcpH, via direct interaction. Furthermore, we identified a gut metabolite, α-linolenic acid, that stimulates the co-association of TcpP and TcpH within detergent-resistant membranes (also known as lipid-ordered membrane domains), thereby supporting TcpH-dependent antagonism of TcpP proteolysis. Data presented here extend our knowledge of RIP, virulence gene regulation in V. cholerae, and, to the best of our knowledge, provides the first evidence that lipid-ordered membranes exist within V. cholerae. The model presented here also suggests that TTRs, common among bacteria and archaea, and co-component signal transduction systems present in Enterobacteria, could also be influenced similarly.
Collapse
Affiliation(s)
- Lucas M. Demey
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ritam Sinha
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Victor J. DiRita
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Ávila G, Ceciliani F, Viala D, Dejean S, Sala G, Lecchi C, Bonnet M. Conjugated linoleic acid (CLA) modulates bovine peripheral blood mononuclear cells (PBMC) proteome in vitro. J Proteomics 2024; 304:105232. [PMID: 38909954 DOI: 10.1016/j.jprot.2024.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Conjugated linoleic acid (CLA) is a group of natural isomers of the n-6 polyunsaturated fatty acid (PUFA) linoleic acid, exerting biological effects on cow physiology. This study assessed the impact of the mixture 50:50 (vol:vol) of CLA isomers (cis-9, trans-11 and trans-10, cis-12) on bovine peripheral blood mononuclear cells (PBMC) proteome, identifying 1608 quantifiable proteins. A supervised multivariate statistical analysis, sparse variant partial least squares - discriminant analysis (sPLS-DA) for paired data identified 407 discriminant proteins (DP), allowing the clustering between the CLA and controls. The ProteINSIDE workflow found that DP with higher abundance in the CLA group included proteins related to innate immune defenses (PLIN2, CD36, C3, C4, and AGP), with antiapoptotic (SERPINF2 and ITIH4) and antioxidant effects (HMOX1). These results demonstrated that CLA modulates the bovine PBMC proteome, supports the antiapoptotic and immunomodulatory effects observed in previous in vitro studies on bovine PBMC, and suggests a cytoprotective role against oxidative stress. SIGNIFICANCE: In this study, we report for the first time that the mixture 50:50 (vol:vol) of cis-9, trans-11, and trans-10, cis-12-CLA isomers modulates the bovine PBMC proteome. Our results support the immunomodulatory and antiapoptotic effects observed in bovine PBMC in vitro. In addition, the present study proposes a cytoprotective role of CLA mixture against oxidative stress. We suggest a molecular signature of CLA treatment based on combining a multivariate sparse discriminant analysis and a clustering method. This demonstrates the great value of sPLS-DA as an alternative option to identify discriminant proteins with relevant biological significance.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - F Ceciliani
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy.
| | - D Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France; INRAE, Metabolomic and Proteomic Exploration Facility (PFEM), F-63122 Saint-Genès-Champanelle, France
| | - S Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, UMR 5219, 31062 Toulouse, France
| | - G Sala
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - C Lecchi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - M Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
5
|
Kazimierska K, Szabłowska-Gadomska I, Rudziński S, Kośla K, Płuciennik E, Bobak Ł, Zambrowicz A, Kalinowska-Lis U. Biologically Active Sheep Colostrum for Topical Treatment and Skin Care. Int J Mol Sci 2024; 25:8091. [PMID: 39125660 PMCID: PMC11311297 DOI: 10.3390/ijms25158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colostrum is gaining popularity in cosmetic products. The present study compared the composition and selected biological properties of colostrum from Polish sheep (colostrum 1) and Swiss sheep (colostrum 2), particularly those that can affect healthy or diseased skin. The antioxidant activity of the colostrums was measured using ABTS and DPPH assays. The effect on the proliferation of human skin fibroblasts, neonatal epidermal keratinocytes, and human diabetic fibroblast (dHF) cells isolated from diabetic foot ulcers was also assayed in vitro by MTT and Presto Blue tests, respectively. The colostrum simulated dHF cell proliferation by up to 115.4%. The highest used concentration of colostrum 1 stimulated normal fibroblast proliferation by 191.2% (24 h) and 222.2% (48 h). Both colostrums inhibited epidermal keratinocyte viability. The influence of the colostrums on the expression of genes related to proliferation (Ki67) and immune response (IL-6, PTGS-2, TSG-6) in dHF cells were compared. Colostrum 1 increased the rate of wound closure (scar test). Analysis of total fat, protein and fatty acid content found the Polish colostrum to be a richer source of fat than the Swiss colostrum, which contained a larger amount of protein. Both colostrums exhibit properties that suggest they could be effective components in cosmetic or medicinal formulations for skin care, especially supporting its regeneration, rejuvenation, and wound healing.
Collapse
Affiliation(s)
- Kinga Kazimierska
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Ilona Szabłowska-Gadomska
- Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.)
| | - Stefan Rudziński
- Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.)
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland; (Ł.B.); (A.Z.)
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland; (Ł.B.); (A.Z.)
| | - Urszula Kalinowska-Lis
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
6
|
Du M, Gong M, Wu G, Jin J, Wang X, Jin Q. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5503-5525. [PMID: 38442367 DOI: 10.1021/acs.jafc.3c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.
Collapse
Affiliation(s)
- Meijun Du
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengyue Gong
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
7
|
Akhgarjand C, Tavakoli A, Samavat S, Bagheri A, Anoushirvani A, Mirzababaei A, Amini MR, Ghorbi MD, Valisoltani N, Mansour A, Sajjadi-Jazi SM, Ansar H, Rezvani H. The effect of conjugated linoleic acid supplementation in comparison with omega-6 and omega-9 on lipid profile: a graded, dose-response systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1336889. [PMID: 38567248 PMCID: PMC10985181 DOI: 10.3389/fnut.2024.1336889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Conjugated linoleic acid (CLA) is a geometrical isomer of linoleic acid, which has anti-inflammatory, anti-diabetic, anti-cancer, and anti-obesity properties. However, the studies reported inconstant results about the CLA-related effects on lipid profiles. As a result, meta-analysis and systematic review were performed to survey the CLA supplementation-related effect on lipid profile including high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG). To identify the relevant research, a systematic comprehensive search was initiated on the medical databases such as Scopus and PubMed/Medline until December 2022. The overall effect size was estimated by weighted mean difference (WMD) and 95% confidence interval (CI) in a random effect meta-analysis. In the final quantitative analysis, the meta-analysis considered 35 randomized controlled trials (RCTs) with 1,476 participants (707 controls and 769 cases). The pooled results demonstrated that CLA supplementation, compared with olive oil, significantly increased serum TG levels (WMD: 0.05 mmol/L; 95% CI: 0.01 to 0.1; p = 0.04; I2 = 0.0%, p = 0.91). With regard to TC level, CLA supplementation compared with placebo significantly reduced TC concentrations (WMD: -0.08 mmol/L; 95% CI: -0.14 to -0.02; p < 0.001; I2 = 82.4%). Moreover, the non-linear dose-response analysis indicated a decreasing trend of TC serum level from the 15th week of CLA supplementation compared with olive oil (Pnon-linearity = 0.01). The present meta-analysis and systematic review of 35 RCTs showed that the CLA intervention was able to raise the level of TG in comparison to olive oil; however, it can decrease TC level compared with placebo and olive oil.
Collapse
Affiliation(s)
- Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Tavakoli
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Samavat
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Bagheri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliarash Anoushirvani
- Hemato-Oncology Ward, Firoozgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Dehghani Ghorbi
- Hemato-Oncology Ward, Imam Hossein Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Neda Valisoltani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hastimansooreh Ansar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Rezvani
- Hemato-Oncology Ward, Taleghani Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Szustak M, Korkus E, Madaj R, Chworos A, Dąbrowski G, Czaplicki S, Tabandeh E, Maciejewska G, Koziołkiewicz M, Konopka I, Gliszczyńska A, Gendaszewska-Darmach E. Lysophosphatidylcholines Enriched with cis and trans Palmitoleic Acid Regulate Insulin Secretion via GPR119 Receptor. ACS Med Chem Lett 2024; 15:197-204. [PMID: 38352825 PMCID: PMC10860191 DOI: 10.1021/acsmedchemlett.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Among lipids, lysophosphatidylcholines (LPCs) with various fatty acyl chains have been identified as potential agonists of G protein-coupled receptors (GPCRs). Recently, targeting GPCRs has been switched to diabetes and obesity. Concomitantly, our last findings indicate the insulin secretagogue properties of cis and trans palmitoleic acid (16:1, n-7) resulting from GPCR activation, however, associated with different signaling pathways. We here report the synthesis of LPCs bearing two geometrical isomers of palmitoleic acids and investigation of their impact on human pancreatic β cells viability, insulin secretion, and activation of four GPCRs previously demonstrated to be targeted by free fatty acids and LPCs. Moreover, molecular modeling was exploited to investigate the probable binding sites of tested ligands and calculate their affinity toward GPR40, GPR55, GPR119, and GPR120 receptors.
Collapse
Affiliation(s)
- Marcin Szustak
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Eliza Korkus
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Rafal Madaj
- Division
of Bioorganic Chemistry Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute
of Evolutionary Biology, Faculty of Biology, Biological and Chemical
Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Arkadiusz Chworos
- Division
of Bioorganic Chemistry Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Grzegorz Dąbrowski
- Faculty
of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Sylwester Czaplicki
- Faculty
of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Erfan Tabandeh
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Gabriela Maciejewska
- Central
Laboatory of the Instrumental Analysis, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
| | - Maria Koziołkiewicz
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Iwona Konopka
- Faculty
of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Anna Gliszczyńska
- Department
of Food Chemistry and Biocatalysis, Wroclaw
University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| |
Collapse
|
9
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
10
|
Kataria D, Singh G. Health benefits of ghee: Review of Ayurveda and modern science perspectives. J Ayurveda Integr Med 2024; 15:100819. [PMID: 38181707 PMCID: PMC10789628 DOI: 10.1016/j.jaim.2023.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/07/2024] Open
Abstract
The scientific view on dairy fats is undergoing a change. While at one time they were associated with negative health effects, recent scientific research has provided new insights into the functional benefits of dairy fats and their fatty acids. This changing scientific view on dairy fats is also resulting in a scientific interest in Ghee, the clarified butter obtained from milk. Ghee, besides being a traditional milk product of cultural importance in India and finding extensive use in its cuisines, is also one of the most important ingredients of the materia medica of Ayurveda, the traditional system of medicine that originated in India. While modern scientific literature has limited studies on functional benefits of ghee, Ayurveda literature extensively catalogues the therapeutic potential of ghee and details different types of ghee based on source of milk, manufacturing method, maturation and physical phase. This work reviewed the Ayurveda literature on health benefits of ghee and examined the complementarity and gaps between Ayurveda literature and modern scientific literature to identify research questions and hypotheses for further exploring the therapeutic potential of ghee. The Ayurveda literature review involved curation of references to ghee in eleven important Ayurvedic texts spanning over 3000 years. 4000 references to milk and milk products were curated from these texts, of which 2913 mentions were in the context of therapeutic benefits of milk products. Of these, ghee had 774 mentions, the highest amongst milk-based products. These mentions were grouped into 15 benefit clusters. A review of ghee in modern literature published between 1990 and 2023 was also conducted. A comparison of this with the Ayurveda literature showed that there were major differences in the focus areas of health between the two. While recent research primarily focused on ghee's connection with cardiovascular health, wound healing and skin health, Ayurveda prioritized cognitive benefits, gastrointestinal health, and nourishing. These later areas are of growing importance to human health as global population ages, and chronic and brain related diseases start dominating public health concerns. As scientists search for solutions to these, ghee, its usage and formulations in Ayurveda and the detailed associations between ghee's animal source, processing, maturation, phases and health benefits, may have scientific insights to offer that can guide future research.
Collapse
Affiliation(s)
- Deepshikha Kataria
- Department of Food & Nutrition and Food Technology, Institute of Home Economics, University of Delhi, Delhi, 110016, India; Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, Karnataka, 560064, India
| | - Gurmeet Singh
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, Karnataka, 560064, India.
| |
Collapse
|
11
|
Fungfuang W, Srisuksai K, Santativongchai P, Charoenlappanit S, Phaonakrop N, Roytrakul S, Tulayakul P, Parunyakul K. Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats. Exp Anim 2023; 72:425-438. [PMID: 37032112 PMCID: PMC10658085 DOI: 10.1538/expanim.23-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023] Open
Abstract
The liver is a key organ governing body energy metabolism. Dietary fats influence energy metabolism and mitochondrial functioning. Crocodile oil (CO) is rich in mono- and polyunsaturated fatty acids that contain natural anti-inflammatory and healing properties. Our study examined how CO affects the expressions of liver proteins involved in energy metabolism in rats. Twenty-one male Sprague Dawley rats were divided into three groups and underwent oral gavage with 3 ml/kg of sterile water (N group), CO (CO group), or palm oil (PO group) for 7 weeks. Body weight, energy intake, liver weight, liver indexes, blood lipid profiles, and liver-energy intermediates were measured. The liver proteome was analyzed using shotgun proteomics, and the functions and network interactions of several candidate proteins were predicted using the STITCH v.5.0 software. Body weights, energy intake, liver contents, and lipid profiles did not differ between the groups. However, hepatic oxaloacetate and malate levels were significantly higher in the CO group than in the PO group. Targeted proteomics reveals that 22 out of 1,790 unique proteins in the CO group were involved in energy-generating pathways, including the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS), and were correlated with the AMP-activated protein kinase signaling pathway. Cluster analysis of 59 differentially expressed proteins showed that OXPHOS-associated proteins were upregulated in the CO group and that three glycolytic metabolism-related proteins were downregulated in the CO group. CO may enhance hepatic energy metabolism by regulating the expressions of energy expenditure-related proteins.
Collapse
Affiliation(s)
- Wirasak Fungfuang
- Kasetsart University Research and Development Institute, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Krittika Srisuksai
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Pitchaya Santativongchai
- Bio-Veterinary Science (International Program), Faculty of Veterinary Medicine, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Malaiman Road, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Kongphop Parunyakul
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Khan I, Hussain M, Jiang B, Zheng L, Pan Y, Hu J, Khan A, Ashraf A, Zou X. Omega-3 long-chain polyunsaturated fatty acids: Metabolism and health implications. Prog Lipid Res 2023; 92:101255. [PMID: 37838255 DOI: 10.1016/j.plipres.2023.101255] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Recently, omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have gained substantial interest due to their specific structure and biological functions. Humans cannot naturally produce these fatty acids (FAs), making it crucial to obtain them from our diet. This comprehensive review details n-3 LC-PUFAs and their role in promoting and maintaining optimal health. The article thoroughly analyses several sources of n-3 LC-PUFAs and their respective bioavailability, covering marine, microbial and plant-based sources. Furthermore, we provide an in-depth analysis of the biological impacts of n-3 LC-PUFAs on health conditions, with particular emphasis on cardiovascular disease (CVD), gastrointestinal (GI) cancer, diabetes, depression, arthritis, and cognition. In addition, we highlight the significance of fortification and supplementation of n-3 LC-PUFAs in both functional foods and dietary supplements. Additionally, we conducted a detailed analysis of the several kinds of n-3 LC-PUFAs supplements currently available in the market, including an assessment of their recommended intake, safety, and effectiveness. The dietary guidelines associated with n-3 LC-PUFAs are also highlighted, focusing on the significance of maintaining a well-balanced intake of n-3 PUFAs to enhance health benefits. Lastly, we highlight future directions for further research in this area and their potential implications for public health.
Collapse
Affiliation(s)
- Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Azqa Ashraf
- School of Food Science and Engineering, Ocean University of China, Qingdao 2666100, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
13
|
Putera HD, Doewes RI, Shalaby MN, Ramírez-Coronel AA, Clayton ZS, Abdelbasset WK, Murtazaev SS, Jalil AT, Rahimi P, Nattagh-Eshtivani E, Malekahmadi M, Pahlavani N. The effect of conjugated linoleic acids on inflammation, oxidative stress, body composition and physical performance: a comprehensive review of putative molecular mechanisms. Nutr Metab (Lond) 2023; 20:35. [PMID: 37644566 PMCID: PMC10466845 DOI: 10.1186/s12986-023-00758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Conjugated linoleic acids (CLAs) are polyunsaturated fatty acids primarily found in dairy products and ruminant animal products such as beef, lamb, and butter. Supplementation of CLAs has recently become popular among athletes due to the variety of health-promoting effects, including improvements in physical performance. Preclinical and some clinical studies have shown that CLAs can reduce inflammation and oxidative stress and favorably modulate body composition and physical performance; however, the results of previously published clinical trials are mixed. Here, we performed a comprehensive review of previously published clinical trials that assessed the role of CLAs in modulating inflammation, oxidative stress, body composition, and select indices of physical performance, emphasizing the molecular mechanisms governing these changes. The findings of our review demonstrate that the effect of supplementation with CLAs on inflammation and oxidative stress is controversial, but this supplement can decrease body fat mass and increase physical performance. Future well-designed randomized clinical trials are warranted to determine the effectiveness of (1) specific doses of CLAs; (2) different dosing durations of CLAs; (3) various CLA isomers, and the exact molecular mechanisms by which CLAs positively influence oxidative stress, inflammation, body composition, and physical performance.
Collapse
Affiliation(s)
- Husna Dharma Putera
- Department of Surgery, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Jl. Ir. Sutami, 36A, Kentingan, Surakarta, Indonesia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Azogues, Ecuador
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saidmurodkhon S Murtazaev
- Department of Therapeutic Pediatric Dentistry, Dean of the Faculty of International Education, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific Affairs, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elyas Nattagh-Eshtivani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahsa Malekahmadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran.
| |
Collapse
|
14
|
Zhu L, Jiao H, Gao W, Huang L, Shi C, Zhang F, Wu J, Luo J. Fatty Acid Desaturation Is Suppressed in Mir-26a/b Knockout Goat Mammary Epithelial Cells by Upregulating INSIG1. Int J Mol Sci 2023; 24:10028. [PMID: 37373175 DOI: 10.3390/ijms241210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNA-26 (miR-26a and miR-26b) plays a critical role in lipid metabolism, but its endogenous regulatory mechanism in fatty acid metabolism is not clear in goat mammary epithelial cells (GMECs). GMECs with the simultaneous knockout of miR-26a and miR-26b were obtained using the CRISPR/Cas9 system with four sgRNAs. In knockout GMECs, the contents of triglyceride, cholesterol, lipid droplets, and unsaturated fatty acid (UFA) were significantly reduced, and the expression of genes related to fatty acid metabolism was decreased, but the expression level of miR-26 target insulin-induced gene 1 (INSIG1) was significantly increased. Interestingly, the content of UFA in miR-26a and miR-26b simultaneous knockout GMECs was significantly lower than that in wild-type GMECs and miR-26a- and miR-26b-alone knockout cells. After decreasing INSIG1 expression in knockout cells, the contents of triglycerides, cholesterol, lipid droplets, and UFAs were restored, respectively. Our studies demonstrate that the knockout of miR-26a/b suppressed fatty acid desaturation by upregulating the target INSIG1. This provides reference methods and data for studying the functions of miRNA families and using miRNAs to regulate mammary fatty acid synthesis.
Collapse
Affiliation(s)
- Lu Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Hongyun Jiao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chenbo Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
15
|
Cavaliere G, Cimmino F, Trinchese G, Catapano A, Petrella L, D'Angelo M, Lucchin L, Mollica MP. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants (Basel) 2023; 12:1172. [PMID: 37371902 DOI: 10.3390/antiox12061172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a major risk factor for several metabolic diseases, including type 2 diabetes, hyperlipidemia, cardiovascular diseases, and brain disorders. Growing evidence suggests the importance of inter-organ metabolic communication for the progression of obesity and the subsequent onset of related disorders. This review provides a broad overview of the pathophysiological processes that from adipose tissue dysfunction leading to altered multi-tissue crosstalk relevant to regulating energy homeostasis and the etiology of obesity. First, a comprehensive description of the role of adipose tissue was reported. Then, attention was turned toward the unhealthy expansion of adipose tissue, low-grade inflammatory state, metabolic inflexibility, and mitochondrial dysfunction as root causes of systemic metabolic alterations. In addition, a short spot was devoted to iron deficiency in obese conditions and the role of the hepcidin-ferroportin relationship in the management of this issue. Finally, different classes of bioactive food components were described with a perspective to enhance their potential preventive and therapeutic use against obesity-related diseases.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita D'Angelo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, 39100 Bolzano, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
16
|
Karahaliloglu Z, Ercan B, Hazer B. Impregnation of polyethylene terephthalate (PET) grafts with BMP-2 loaded functional nanoparticles for reconstruction of anterior cruciate ligament. J Microencapsul 2023; 40:197-215. [PMID: 36881484 DOI: 10.1080/02652048.2023.2188940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Current artificial ligaments based on polyethylene terephthalate (PET) are associated with some disadvantages due to their hydrophobicity and low biocompatibility. In this study, we aimed to modify the surface of PET using polyethylene glycol (PEG)-terminated polystyrene (PS)-linoleic nanoparticles (PLinaS-g-PEG-NPs). We accomplished that BMP-2 in two different concentrations encapsulated in nanoparticles with an efficiency of 99.71 ± 1.5 and 99.95 ± 2.8%. While the dynamic contact angle of plain PET surface reduced from 116° to 115° after a measurement periods of 10 s, that of PLinaS-g-PEG-NPs modified PET from 80° to 17.5° within 0.35 s. According to in vitro BMP2 release study, BMP-2 was released 13.12 ± 1.76% and 45.47 ± 1.78% from 0.05 and 0.1BMP2-PLinaS-g-PEG-NPs modified PET at the end of 20 days, respectively. Findings from this study revealed that BMP2-PLinaS-g-PEG-NPs has a great potential to improve the artificial PET ligaments, and could be effectively applied for ACL reconstruction.
Collapse
Affiliation(s)
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, Ankara, Turkey
- Biomedical Engineering Program, Middle East Technical University, Çankaya, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Çankaya, Ankara, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Ürgüp, Nevsehir, Turkey
- Department of Chemistry, Bulent Ecevit University, Zonguldak, Turkey
- Department of Nanotechnology Engineering, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
17
|
Liang CW, Cheng HY, Lee YH, Liou TH, Liao CD, Huang SW. Effects of conjugated linoleic acid and exercise on body composition and obesity: a systematic review and meta-analysis. Nutr Rev 2023; 81:397-415. [PMID: 36048508 DOI: 10.1093/nutrit/nuac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT Conjugated linoleic acid (CLA) has been reported to have anti-obesity and antidiabetic effects. However, the benefits of CLA combined with exercise remain unclear, and studies report conflicting results. OBJECTIVE A systematic review and meta-analysis were performed to investigate the synergistic effect of CLA and exercise on body composition, exercise-related indices, insulin resistance, and lipid profiles; and of the safety of CLA supplements. DATA SOURCES In October 2021, the PubMed, Embase, and Cochrane Library databases were searched for reports on clinical trials of the combined intervention of CLA and exercise. DATA EXTRACTION A total of 18 randomized controlled trials and 2 crossover trials were included. The methodological quality assessment was performed using the revised Cochrane risk-of-bias tool. Pooled effect sizes were reported as standardized mean difference (SMD) for continuous data and risk ratio for dichotomous data with their corresponding 95% confidence intervals (CIs). Heterogeneity was tested using the I2 statistic. DATA ANALYSIS The combination of CLA and exercise resulted in significantly decreased body fat (SMD, -0.42 [95%CI, -0.70, -0.14]; P = 0.003; I2 = 65) and insulin resistance (SMD, -0.25 [95%CI, -0.44, -0.06]; P = 0.01; I2 = 0) than did exercise alone. In subgroup analysis, the following factors were associated with significant outcomes: (1) body mass index ≥25 kg/m2; (2) female sex; (3) follow-up time >4 weeks; and (4) intervention duration >4 weeks. Nevertheless, supplementation with CLA during exercise programs was not effective for body-weight control, exercise performance enhancement, or lipid-profile improvement. CLA in combination with exercise did not result in a higher risk of adverse events (risk ratio, 1.32 [95%CI, 0.94-1.84]; P > 0.05; I2 = 0). CONCLUSION CLA combined with exercise is generally safe and can lower body fat and insulin resistance but does not reduce body weight, enhance exercise performance, or improve lipid profiles.
Collapse
Affiliation(s)
- Chun-Wei Liang
- are with the School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Yi Cheng
- are with the School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hao Lee
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Hon Liou
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-De Liao
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,is with the Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Shih-Wei Huang
- are with the Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,are with the Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Camargo LSA, Saraiva NZ, Oliveira CS, Carmickle A, Lemos DR, Siqueira LGB, Denicol AC. Perspectives of gene editing for cattle farming in tropical and subtropical regions. Anim Reprod 2023; 19:e20220108. [PMID: 36819485 PMCID: PMC9924776 DOI: 10.1590/1984-3143-ar2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Cattle productivity in tropical and subtropical regions can be severely affected by the environment. Reproductive performance, milk and meat production are compromised by the heat stress imposed by the elevated temperature and humidity. The resulting low productivity contributes to reduce the farmer's income and to increase the methane emissions per unit of animal protein produced and the pressure on land usage. The introduction of highly productive European cattle breeds as well as crossbreeding with local breeds have been adopted as strategies to increase productivity but the positive effects have been limited by the low adaptation of European animals to hot climates and by the reduction of the heterosis effect in the following generations. Gene editing tools allow precise modifications in the animal genome and can be an ally to the cattle industry in tropical and subtropical regions. Alleles associated with production or heat tolerance can be shifted between breeds without the need of crossbreeding. Alongside assisted reproductive biotechnologies and genome selection, gene editing can accelerate the genetic gain of indigenous breeds such as zebu cattle. This review focuses on some of the potential applications of gene editing for cattle farming in tropical and subtropical regions, bringing aspects related to heat stress, milk yield, bull reproduction and methane emissions.
Collapse
Affiliation(s)
| | | | | | - Allie Carmickle
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | | | | | | |
Collapse
|
19
|
The Effect of Supplementation Using a Mixture of Fish Oil and Linseed on the Level of Immunomodulatory Components in Bovine Colostrum. Molecules 2023; 28:molecules28052154. [PMID: 36903401 PMCID: PMC10004384 DOI: 10.3390/molecules28052154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The aim of this study was to determine the effect of supplementing rations, with a mixture of fish oil and linseed, on the level of immunomodulatory components in colostrum. Twenty multiparous cows, that were three weeks before scheduled calving, had a body condition of 3-3.5, and had not been diagnosed with multiple pregnancies, were qualified for the experiment. The cows were divided into two groups: experimental (FOL) (n = 10) and control (CTL) (n = 10). The CTL group were individually given the standard food ration for dry cows for about 21 days before calving, while the FOL group received food rations that were enriched with 150 g of fish oil and 250 g of linseed (golden variety). Colostrum samples for testing were taken twice a day on the first and second days of lactation, and then once a day from the third to the fifth day of lactation. The experiment showed that the applied supplementation had an impact, in the form of increasing the fat, protein, IgG, IgA, IgM, vitamin A, C22:6 n-3 (DHA), and C18:2 cis9 trans11 (CLA) contents in colostrum; however, the C18: 2 n-6 (LA) and C20:4 n-6 (AA) contents decreased. Due to the lower quality of colostrum found in high-yield cows, and therefore in the Holstein-Friesian breed, it is possible to improve the quality by, among other things, introducing nutritional modifications during the second stage of the dry period.
Collapse
|
20
|
Umoh SD, Bojase G, Masesane IB, Majinda RT, Sichilongo KF. Untargeted GC-MS metabolomics to identify and classify bioactive compounds in Combretum platypetalum subsp. oatesii (Rolfe) Exell (Combretaceae). PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:127-138. [PMID: 36377224 DOI: 10.1002/pca.3184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Combretum platypetalum is used in traditional African healing practices against different infections. Unfortunately, no scientific knowledge of its phytochemical composition exists, except for the isolation of two compounds from the leaves. Scientific study has been limited to the leaves only, despite the applications of stems and roots in traditional medicine practice and natural product drug discovery programs. OBJECTIVE Omics was applied to identify and classify different volatile and semivolatile bioactive compounds in the leaf, stem, and root parts of C. platypetalum. The thermal stability of the plant constituents at 60-65°C extraction temperature by Soxhlet and maceration at room temperature on the type, class, and concentration of compounds in the leaf was further investigated. METHOD A GC-MS untargeted metabolomics approach, automated deconvolution by the Automated Mass Spectral Deconvolution and Identification System (AMDIS) for GC-MS data, preprocessing by Metab R, and multivariate statistical data analysis were employed in this study. RESULTS A total of 97 phytoconstituents, including 17 bioactive compounds belonging to the terpenoids, flavonoids, long-chain fatty acids, and other unclassified structural arrangements distributed across C. platypetalum, were identified for the first time. A correlation (r = 0.782; P = 0.000) between Soxhlet and maceration extraction methods relative to resolved chromatographic peak areas of metabolites was established. CONCLUSION Findings corroborate the reported bio-investigation of its leaf extracts, its traditional uses, and previous findings from the Combretum genus. The results substantiate the possible applications of C. platypetalum in natural product drug discovery and provide a guide for future investigations.
Collapse
Affiliation(s)
- Sampson D Umoh
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
- Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, formerly known as University of Agriculture, Makurdi Nigeria PMB, Makurdi, Nigeria
| | - Gomotsang Bojase
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Ishmael B Masesane
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Runner T Majinda
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Kwenga F Sichilongo
- Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| |
Collapse
|
21
|
Cheese and Butter as a Source of Health-Promoting Fatty Acids in the Human Diet. Animals (Basel) 2022; 12:ani12233424. [PMID: 36496944 PMCID: PMC9741069 DOI: 10.3390/ani12233424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of fatty acid composition, including the content of conjugated linoleic acid cis9trans11 C18:2 (CLA) and trans C18:1 and C18:2 isomers in fat extracted from selected high-fat dairy products commonly available to consumers in retail sale on the Polish market, and a comparison of their indicators as to the quality of lipids was the aim of the study. The experimental materials were hard cheeses, white-mold cheeses, blue-veined cheeses, and butters. The conducted study demonstrated that various contents of groups of fatty acids and the values of lipid quality indices were found in the tested products. Butters turned out to be richer sources of short-chain, branched-chain, and odd-chain fatty acids. The fat extracted from butters and white-mold cheeses had a significantly higher (p < 0.05) content of n-3 fatty acids. Lower values of the n-6/n-3 ratio were determined in the fat extracted from butters and white-mold cheeses. The highest values of the thrombogenicity index (TI) were found in fat extracted from hard cheeses. Significantly lower values (p < 0.05) of the atherogenicity index (AI) and values of the H/H ratio were found in fat from mold cheeses. Fat from butters and white-mold cheeses had a significantly higher (p < 0.05) content of CLA and total content of trans C18:1.
Collapse
|
22
|
Arain SW, Talpur FN, Unar A, Afridi HI, Balouch A, Ali Z, Khaskheli AA, Chanihoon GQ. Bioproduction of Conjugated Linolenic Acid by L. plantarum Using Linolenic Acid as a Substrate. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Vardanega R, Fuentes FS, Palma J, Bugueño-Muñoz W, Cerezal-Mezquita P, Ruiz-Domínguez MC. Valorization of granadilla waste (Passiflora ligularis, Juss.) by sequential green extraction processes based on pressurized fluids to obtain bioactive compounds. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Chen J, You R, Lv Y, Liu H, Yang G. Conjugated linoleic acid regulates adipocyte fatty acid binding protein expression via peroxisome proliferator-activated receptor α signaling pathway and increases intramuscular fat content. Front Nutr 2022; 9:1029864. [PMID: 36523338 PMCID: PMC9745092 DOI: 10.3389/fnut.2022.1029864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/19/2022] [Indexed: 06/22/2024] Open
Abstract
Intramuscular fat (IMF) is correlated positively with meat tenderness, juiciness and taste that affected sensory meat quality. Conjugated linoleic acid (CLA) has been extensively researched to increase IMF content in animals, however, the regulatory mechanism remains unclear. Adipocyte fatty acid binding protein (A-FABP) gene has been proposed as candidates for IMF accretion. The purpose of this study is to explore the molecular regulatory pathways of CLA on intramuscular fat deposition. Here, our results by cell lines indicated that CLA treatment promoted the expression of A-FABP through activated the transcription factor of peroxisome proliferator-activated receptor α (PPARα). Moreover, in an animal model, we discovered that dietary supplemental with CLA significantly enhanced IMF deposition by up-regulating the mRNA and protein expression of PPARα and A-FABP in the muscle tissues of mice. In addition, our current study also demonstrated that dietary CLA increased mRNA expression of genes and enzymes involved in fatty acid synthesis and lipid metabolism the muscle tissues of mice. These findings suggest that CLA mainly increases the expression of A-FABP through PPARα signaling pathway and regulates the expression of genes and enzymes related to IMF deposition, thus increasing IMF content. These results contribute to better understanding the molecular mechanism of IMF accretion in animals for the improvement of meat quality.
Collapse
Affiliation(s)
| | | | | | | | - Guoqing Yang
- Laboratory of Animal Gene Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
25
|
Zhao W, Liu M, Qin Y, Bing H, Zhang F, Zhao G. Characterization and functional of four mutants of hydroxy fatty acid dehydrogenase from Lactobacillus plantarum p-8. FEMS Microbiol Lett 2022; 369:6633657. [PMID: 35798009 DOI: 10.1093/femsle/fnac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/25/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
In this study, the hydroxy fatty acid dehydrogenase CLA-DH from Lactobacillus plantarum p-8 and its four mutant variants were expressed in Escherichia coli Rosetta (DE3). UV spectrophotometry was employed to verify the catalytic power of the purified CLA-DH to convert ricinoleic acid into 12-oxo-cis-9-octadecenoic acid in the presence of oxidized nicotinamide adenine dinucleotide (NAD+). The optimum reaction temperature for CLA-DH was 45°C, with a maintained stability between 20°C and 40°C. The optimal pH for CLA-DH catalytic activity was 6.0-7.0, with a maintained stability at a pH range of 6.0-8.0. In addition, Fe3+ promoted enzyme activity, whereas Cu2+, Zn2+, and Fe2+ inhibited enzyme activity (P < 0.05). The Km, Vmax, Kcat, and Kcat/Km of CLA-DH were determined as 2.19 ± 0.34 μM, 2.06 ± 0.28 μM min-1, 2.00 ± 0.27 min-1, and 0.92 ± 0.02 min-1μM-1, respectively. Site-directed mutagenesis and molecular dynamics simulations demonstrated that both Tyr156 and Ser143 residues play significant roles in the catalysis of CLA-DH, and its solubility is affected by Lys160 and Asp63. Moreover, Gas chromatography determined that recombinant CLA-DH could be successfully applied to Conjugated linoleic acids production.
Collapse
Affiliation(s)
- Wei Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China.,College of Food Science, Shanxi Normal University, 339 Taiyu Road, Taiyuan 030031, China
| | - Meiqi Liu
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Yali Qin
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Han Bing
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Feng Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Guofen Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| |
Collapse
|
26
|
Lee SJ, Kim JE, Choi YJ, Jin YJ, Roh YJ, Seol AY, Song HJ, Park SH, Uddin MS, Lee SW, Hwang DY. Antioxidative Role of Hygrophila erecta (Brum. F.) Hochr. on UV-Induced Photoaging of Dermal Fibroblasts and Melanoma Cells. Antioxidants (Basel) 2022; 11:antiox11071317. [PMID: 35883808 PMCID: PMC9311957 DOI: 10.3390/antiox11071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Antioxidants are an important strategy for treating photoaging because excessive reactive oxygen species (ROS) are produced during UV irradiation. The therapeutic effects of methanol extracts of Hygrophila erecta (Brum. F.) Hochr. (MEH) against UV-induced photoaging were examined by monitoring the changes in the antioxidant defense system, apoptosis, extracellular matrix (ECM) modulation, inflammatory response, and melanin synthesis in normal human dermal fibroblast (NHDF) cells and melanoma B16F1 cells. Four bioactive compounds, including 4-methoxycinnamic acid, 4-methoxybenzoic acid, methyl linoleate, and asterriquinone C-1, were detected in MEH, while the DPPH free radical scavenging activity was IC50 = 7.6769 µg/mL. UV-induced an increase in the intracellular ROS generation, NO concentration, SOD activity and expression, and Nrf2 expression were prevented with the MEH treatment. Significant decreases in the number of apoptotic cells, the ratio of Bax/Bcl-2, and cleaved Cas-3/Cas-3 were observed in MEH-treated NHDF cells. The MEH treatment induced the significant prevention of ECM disruption and suppressed the COX-2-induced iNOS mediated pathway, expression of inflammatory cytokines, and inflammasome activation. Finally, the expression of the melanin synthesis-involved genes and tyrosinase activity decreased significantly in the α-melanocyte-stimulating hormone (MSH)-stimulated B16F1 cells after the MEH treatment. MEH may have an antioxidative role against UV-induced photoaging by suppressing ROS-induced cellular damage.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - A Yun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - So Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
| | - Md. Salah Uddin
- Ethnobotanical Database of Bangladesh, Tejgaon, Dhaka 1208, Bangladesh;
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (Y.J.J.); (Y.J.R.); (A.Y.S.); (H.J.S.); (S.H.P.)
- Longevity & Wellbeing Research Center and Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea
- Correspondence: ; Tel.: +82-10-7227-9769
| |
Collapse
|
27
|
Chemical Composition in Kernels of Ten Grafted Pecan (Carya illinoensis) Varieties in Southeastern China. SCI 2022. [DOI: 10.3390/sci4020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As woody oil crop, pecan [Carya illinoinensis (Wangenh.) K. Koch] may be a solution to the shortage of edible oil in the future. In this study, fruit traits, kernel nutrition and fatty acid composition of 10 pecan varieties were determined to assess the potential of pecans for exploitation as edible oil, as well as to further screen varieties that could be used as edible oil resources and to understand their development prospects for cultivation in mountainous hills. The study showed that all the fruit trait indicators measured, including green-fruit weight (mean 28.47 g), nut weight (10.33 g), kernel weight (5.25 g), nut percentage (36.83%) and kernel percentage (50.50%), showed highly significant differences among the 10 varieties. Among the main nutritional indicators of the kernels, the crude fat content was stable (mean 70.01%) with non-significant differences, while protein (67.50 mg·g−1), soluble sugar (10.7 mg·g−1) and tannin (6.07 mg·g−1) showed highly significant differences between varieties. The oil percentage of nuts (kernel percentage * crude fat) averaged 35.36%, with highly significant differences between varieties. The fatty acid composition was dominated by unsaturated fatty acids (mean 91.82%), with unsaturated fatty acids being 11.24 times more abundant than saturated fatty acids. Among the monounsaturated fatty acids, oleic acid was the highest (mean 70.02%), with highly significant differences between varieties, followed by cis-11-eicosanoic acid (0.25%), with non-significant differences between varieties; among the polyunsaturated fatty acids, linoleic acid was the highest (19.58%), followed by linolenic acid (0.97%), both of which showed highly significant differences between varieties; monounsaturated fatty acids were 2.42 times more abundant than polyunsaturated fatty acids. Compared to other oilseed crops, pecan has the potential to produce “nutritious, healthy and stable” edible oil, while its wide habitat and good productivity benefits offer broad prospects for development in the hills and mountains of subtropical China.
Collapse
|
28
|
Fennel and Ginger Improved Nutrient Digestibility and Milk Yield and Quality in Early Lactating Egyptian Buffaloes. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
The supplementation with herbal and medicinal plants to animals showed positive effects on feed digestion, performance and animal’s health. Fifteen multiparous Egyptian buffaloes (537 ± 18.1 kg body weight), 7 days after parturition, were randomly assigned to 3 treatments in a quintupled 3 × 3 Latin square design in a 63-day experiment. Each experimental period lasted 21 days (15 days of adaptation + 7 days for measurements and samples collection). Buffaloes were assigned according to their previous milk production, weight and parity to study the effect of fennel (Foeniculum vulgare) or ginger (Zingiber officinale) supplementation on feed utilization and lactational performance. Buffaloes were fed a basal diet of concentrates, berseem clover and rice straw in a ratio of 60:30:10 dry matter (DM) basis. The first group was fed the basal diet with no additive as the control treatment, while other buffaloes were fed on the basal diet supplemented with 75 g fennel or ginger/buffalo daily. Additives supplementation did not affect feed intake; however, fennel followed by ginger improved (P<0.05) dry matter, organic matter, crude protein and neutral detergent fiber digestibilities compared to the control. Without affecting blood chemistry, fennel and ginger supplementation improved (P<0.05) production of milk and energy corrected milk, fat concentration and milk energy content and output. Fennel followed by ginger decreased the somatic cell count (P=0.035) compared with the control. Fennel and ginger improved feed efficiency (P<0.05) compared with the control. Fennel increased the proportion of milk trans-10, cis-12 C18:2 (P=0.028), total conjugated linoleic acid without affecting other fatty acids. It is concluded that fennel or ginger at 75 g/buffalo/d improved nutrient digestibility and milk production of lactating buffaloes. Fennel improved milk nutritive value more than ginger.
Collapse
|
29
|
Saini R, Sharma N, Oladeji OS, Sourirajan A, Dev K, Zengin G, El-Shazly M, Kumar V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114570. [PMID: 34480995 DOI: 10.1016/j.jep.2021.114570] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Phyllanthus emblica Linn or Emblica officinalis Gaertn (Phyllanthaceae), (FPE) commonly known as Indian gooseberry or Amla, gained immense importance in indigenous traditional medicinal systems, including Ayurveda, for its medicinal and nutritional benefits. It is used to cure several diseases such as common cold, fever, cough, asthma, bronchitis, diabetes, cephalalgia, ophthalmopathy, dyspepsia, colic, flatulence, hyperacidity, peptic ulcer, erysipelas, skin diseases, leprosy, hematogenesis, inflammation, anemia, emaciation, hepatopathy, jaundice, diarrhea, dysentery, hemorrhages, leucorrhea, menorrhagia, cardiac disorders, and premature greying of hair. AIM OF THE STUDY In the present review, we presented a comprehensive analysis of the ethnopharmacology, bioactive composition, and toxicity of P. emblica to identify the gap between research and the current applications and to help explore the trends and perspectives for future studies. MATERIALS AND METHODS We collected the literature published before April 2021 on the phytochemistry, pharmacology, and toxicity of FPE. Literature in English from scientific databases such as PubMed, ScienceDirect, Wiley, Springer, and Google Scholar, books. These reports were analyzed and summarized to prepare this review. The plant taxonomy was verified by "The Plant List" database (http://www.theplantlist.org). RESULTS AND CONCLUSION s: FPE have been used as a rich source of vitamin C, minerals, and amino acids. Several bioactive molecules were isolated and identified from FPE such as tannins, flavonoids, saponins, terpenoids, alkaloids, ascorbic acid etc. The in vitro and in vivo pharmacological studies on FPE revealed its antimicrobial, antioxidant, anti-inflammatory, anti-diabetic, anticancer, radioprotective, hepatoprotective, immunomodulatory, hypolipidemic, anti-venom, wound healing, HIV-reverse transcriptase effect. Toxicological studies on fruits indicated the absence of any adverse effect even at a high dose after oral administration. CONCLUSIONS Although FPE showed remarkable therapeutic activities against several diseases such as diabetes, cancer, inflammation, hepatitis B virus, and malaria, there were several drawbacks in some previous reports including the lack of information on the drug dose, standards, controls, and mechanism of action of the extract. Further in-depth studies are required to explain the mechanism of action of the extracts to reveal the role of the bioactive compounds in the reported activities.
Collapse
Affiliation(s)
- Rakshandha Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Post Box No. 9, Head Post Office, Solan, H.P., India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Oluwole Solomon Oladeji
- Department of Physical Sciences, Faculty of Pure and Applied Sciences, Landmark University, PMB 1001, Km 4, Ipetu Road, Omu-Aran, Kwara State, Nigeria
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Post Box No. 9, Head Post Office, Solan, H.P., India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Post Box No. 9, Head Post Office, Solan, H.P., India
| | - Gökhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Konya, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Vikas Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Post Box No. 9, Head Post Office, Solan, H.P., India.
| |
Collapse
|
30
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
31
|
Effect of Dams and Suckling Lamb Feeding Systems on the Fatty Acid Composition of Suckling Lamb Meat. Animals (Basel) 2021; 11:ani11113142. [PMID: 34827874 PMCID: PMC8614422 DOI: 10.3390/ani11113142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023] Open
Abstract
The effects of the dams and suckling lamb feeding systems on the fatty acid (FA) profile of lamb meat are reviewed in this article. The suckling lamb can be considered a functional monogastric, and therefore, its meat FA composition is strongly influenced by the FA composition of maternal milk. The major source of variation for ewe milk FA composition is represented by pasture amount and type. In the traditional sheep breeding system of the Mediterranean area, the main lambing period occurs in late autumn-early winter, and ewes are able to exploit the seasonal availability of the natural pastures at their best. Therefore, lambs start suckling when maternal milk concentrations of vaccenic, rumenic, and n-3 long-chain polyunsaturated FA in maternal milk are the highest. When maternal diet is mainly based on hay and concentrates, the use of vegetable oils can be considered a good strategy to improve the meat FA profile of suckling lambs.
Collapse
|
32
|
Liu HY, Gu H, Li Y, Hu P, Yang Y, Li K, Li H, Zhang K, Zhou B, Wu H, Bao W, Cai D. Dietary Conjugated Linoleic Acid Modulates the Hepatic Circadian Clock Program via PPARα/REV-ERBα-Mediated Chromatin Modification in Mice. Front Nutr 2021; 8:711398. [PMID: 34722605 PMCID: PMC8553932 DOI: 10.3389/fnut.2021.711398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Scope: Disruptions of circadian rhythm cause metabolic disorders and are closely related to dietary factors. In this study, we investigated the interplays between the dietary conjugated linoleic acid (CLA)-induced hepatic steatosis and the circadian clock regulation, in association with lipid homeostasis. Methods and Results: Exposure of mice to 1.5% dietary CLA for 28 days caused insulin resistance, enlarged livers, caused hepatic steatosis, and increased triglyceride levels. Transcriptional profiling showed that hepatic circadian clock genes were significantly downregulated with increased expression of the negative transcription factor, REV-ERBα. We uncovered that the nuclear receptor (NR) PPARα, as a major target of dietary CLA, drives REV-ERBα expression via its binding to key genes of the circadian clock, including Cry1 and Clock, and the recruitment of histone marks and cofactors. The PPARα or REV-ERBα inhibition blocked the physical connection of this NR pair, reduced the cobinding of PPARα and REV-ERBα to the genomic DNA response element, and abolished histone modifications in the CLA-hepatocytes. In addition, we demonstrated that CLA promotes PPARα driving REV-ERBα transcriptional activity by directly binding to the PPAR response element (PPRE) at the Nr1d1 gene. Conclusions: Our results add a layer to the understanding of the peripheral clock feedback loop, which involves the PPARα-REV-ERBα, and provide guidance for nutrients optimization in circadian physiology.
Collapse
Affiliation(s)
- Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanwei Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kexin Zhang
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bo Zhou
- Institute of Digestive Disease, Zhengzhou University, Zhengzhou, China
| | - Huaxing Wu
- Baijiu Science and Research Center, Sichuan Swellfun Co., Ltd., Chengdu, China
| | - Wenbin Bao
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Derakhshandeh-Rishehri SM, Ghobadi S, Akhlaghi M, Faghih S. No adverse effects of dairy products on lipid profile: A systematic review and meta-analysis of randomized controlled clinical trials. Diabetes Metab Syndr 2021; 15:102279. [PMID: 34562868 DOI: 10.1016/j.dsx.2021.102279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS The current study aimed to review the effects of dairy foods on lipid profile in randomized controlled clinical trials (RCTs). METHODS We searched PubMed, Scopus, Embase, and Central. RCTs that assess the effects of dairy foods on lipid profile were included. RESULTS The overall effects of dairy foods on lipid profile were non-significant. Dairy foods were associated with a non-significant reduction in triacylglycerol level, and a non-significant increase in total cholesterol, low density lipoprotein cholesterol, and high-density lipoprotein cholesterol level. CONCLUSION We conclude that dairy foods doesn't have any unfavorable effects on lipids.
Collapse
Affiliation(s)
| | - Saeed Ghobadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Alves SP, Vahmani P, Mapiye C, McAllister TA, Bessa RJB, Dugan MER. Trans-10 18:1 in ruminant meats: A review. Lipids 2021; 56:539-562. [PMID: 34608647 DOI: 10.1002/lipd.12324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/21/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022]
Abstract
Trans (t) fatty acids (TFA) from partially hydrogenated vegetable oils (i.e., industrial trans) have been phased out of foods in many countries due to their promotion of cardiovascular disease. This leaves ruminant-derived foods as the main source of TFA. Unlike industrial TFA where catalytic hydrogenation yields a broad distribution of isomers, ruminant TFA are enzymatically derived and can result in enrichment of specific isomers. Comparisons between industrial and ruminant TFA have often exonerated ruminant TFA due to their lack or at times positive effects on health. At extremes, however, ruminant-sourced foods can have either high levels of t10- or t11-18:1, and when considering enriched sources, t10-18:1 has properties similar to industrial TFA, whereas t11-18:1 can be converted to an isomer of conjugated linoleic acid (cis(c)9,t11-conjugated linoleic acid), both of which have potential positive health effects. Increased t10-18:1 in meat-producing ruminants has not been associated with negative effects on live animal production or meat quality. As such, reducing t10-18:1 has not been of immediate concern to ruminant meat producers, as there have been no economic consequences for its enrichment; nevertheless at high levels, it can compromise the nutritional quality of beef and lamb. In anticipation that regulations regarding TFA may focus more on t10-18:1 in beef and lamb, the present review will cover its production, analysis, biological effects, strategies for manipulation, and regulatory policy.
Collapse
Affiliation(s)
- Susana P Alves
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Payam Vahmani
- Department of Animal Science, University of California-Davis, Davis, California, USA
| | - Cletos Mapiye
- Department of Animal Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tim A McAllister
- Agricuture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Rui J B Bessa
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Michael E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| |
Collapse
|
35
|
Borkens Y. Toxoplasma gondii in Australian macropods ( Macropodidae) and its implication to meat consumption. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:153-162. [PMID: 34567970 PMCID: PMC8449172 DOI: 10.1016/j.ijppaw.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii is a worldwide occurring apicomplexan parasite. Due to its high seroprevalence in livestock as well as in game animals, T. gondii is an important food-borne pathogen and can have significant health implications for humans as well as for pets. This article describes the prevalence of T. gondii in free-ranging macropods hunted for consumption. All hunted macropod species (commercial as well as non-commercial hunt) show a positive seroprevalence for T. gondii. This seroprevalence is influenced by various factors, such as sex or habitat. Furthermore, the parasite shows a high level of genetic variability in macropods. Genetically variable strains have already caused outbreaks of toxoplasmosis in the past (Canada and the US). These were attributed to undercooked game meat like venison. Despite this risk, neither Australia nor New Zealand currently have food safety checks against foodborne pathogens. These conditions scan pose a significant health risk to the population. Especially, since cases of toxoplasmosis have already been successfully traced back to insufficiently cooked kangaroo meat in the past. The kangaroo hunt is an important industry in Australia. 7 species of kangaroos and wallabies are hunted for commercial purpose (for human and pet consumption). Food security checks against foodborne pathogens (including T. gondii) are not a requirement of the Australia New Zealand Food Standard Code. The databases Medline, Web of Science, SCOPUS and Informit were used. 6 scientific publications were reviewed in this publication.
Collapse
|
36
|
Zhang Y, Zhang L, Sun H, Liu Y, Xu J, Huang H, Fu J, Zhang D, Tian T, Zhao Y, Wang G. Inhibitory immune checkpoints PDCD-1 and LAG-3 hypermethylation may reduce the risk of colorectal cancer. Mol Med 2021; 27:114. [PMID: 34544358 PMCID: PMC8454079 DOI: 10.1186/s10020-021-00373-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Changes in DNA methylation of immunosuppressive checkpoints may impact express and consequently affect antigen processing and presentation by tumor cells and facilitates evasion of immunosurveillance and lead to colorectal cancer (CRC). This study is to investigate the effect of PDCD-1, LAG-3 methylation statuses in peripheral blood leukocytes on CRC risk. Methods GSE51032 dataset from Gene Expression Omnibus comprised of 166 CRC patients and 424 normal samples was used to identify significantly differentially methylated CpG sites of the two genes. A case–control study with 390 CRC patients and 397 cancer-free controls was carried out to validate the relationship between the methylation levels of the two genes and CRC susceptibility and then estimated their interactions with environmental factors on CRC risk. Results In the GSE51032 dataset, cg06291111 (PDCD-1) and cg10191002 (LAG-3) were screened as the candidate CpG sites for the following study. There were significant associations between hypermethylation of PDCD-1 and LAG-3 and lower risk of CRC (ORadj = 0.322, 95% CI 0.197–0.528; ORadj = 0.666, 95% CI 0.446–0.5996, respectively). Moreover, the results in case–control study showed similar trend, that hypermethylation of PDCD-1 and LAG-3 were associated with lower CRC risk (ORadj = 0.448, 95% CI 0.322–0.622; ORadj = 0.417, 95% CI 0.301–0.578, respectively). A synergistic interaction between LAG-3 hypermethylation and intake of eggs on CRC risk was observed. There were combination effects between hypermethylation of PDCD-1 and LAG-3 and environmental factors on CRC risk. Conclusions PDCD-1 and LAG-3 may potentially serve as blood-based predictive biomarkers for CRC risk. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00373-5.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Ying Liu
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jinming Fu
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Ding Zhang
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tian Tian
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College of Harbin Medical University, 157 Baojian Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
37
|
Woodcock SR, Salvatore SR, Freeman BA, Schopfer FJ. Synthesis of 9- and 12-nitro conjugated linoleic acid: Regiospecific isomers of naturally occurring conjugated nitrodienes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Hata S, Kano K, Kikuchi K, Kinoshita S, Sobu Y, Saito H, Saito T, Saido TC, Sano Y, Taru H, Aoki J, Komano H, Tomita T, Natori S, Suzuki T. Suppression of amyloid-β secretion from neurons by cis-9, trans-11-octadecadienoic acid, an isomer of conjugated linoleic acid. J Neurochem 2021; 159:603-617. [PMID: 34379812 DOI: 10.1111/jnc.15490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
Two common conjugated linoleic acids (LAs), cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA (t10,c12 CLA), exert various biological activities. However, the effect of CLA on the generation of neurotoxic amyloid-β (Aβ) protein remains unclear. We found that c9,t11 CLA significantly suppressed the generation of Aβ in mouse neurons. CLA treatment did not affect the level of β-site APP-cleaving enzyme 1 (BACE1), a component of active γ-secretase complex presenilin 1 amino-terminal fragment, or Aβ protein precursor (APP) in cultured neurons. BACE1 and γ-secretase activities were not directly affected by c9,t11 CLA. Localization of BACE1 and APP in early endosomes increased in neurons treated with c9,t11 CLA; concomitantly, the localization of both proteins was reduced in late endosomes, the predominant site of APP cleavage by BACE1. The level of CLA-containing phosphatidylcholine (CLA-PC) increased dramatically in neurons incubated with CLA. Incorporation of phospholipids containing c9,t11 CLA, but not t10,c12 CLA, into the membrane may affect the localization of some membrane-associated proteins in intracellular membrane compartments. Thus, in neurons treated with c9,t11 CLA, reduced colocalization of APP with BACE1 in late endosomes may decrease APP cleavage by BACE1 and subsequent Aβ generation. Our findings suggest that accumulation of c9,t11 CLA-PC/LPC in neuronal membranes suppresses production of neurotoxic Aβ in neurons.
Collapse
Affiliation(s)
- Saori Hata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.,Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kuniyuki Kano
- Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kazunori Kikuchi
- Department of Neuropathology and Neurosciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shoichi Kinoshita
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Haruka Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, 278-8510, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Junken Aoki
- Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hiroto Komano
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Division of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba-cho, 028-3694, Japan
| | - Taisuke Tomita
- Department of Neuropathology and Neurosciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shunji Natori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
39
|
Giller K, Sinz S, Messadene-Chelali J, Marquardt S. Maternal and direct dietary polyphenol supplementation affect growth, carcass and meat quality of sheep and goats. Animal 2021; 15:100333. [PMID: 34371471 DOI: 10.1016/j.animal.2021.100333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
The beneficial effects of polyphenol intake such as improved nitrogen retention make them interesting feed supplements for ruminants. In contrast, dietary polyphenols may have adverse effects on the bioavailability of nutrients and palatability of the feed which might impair growth performance. The beneficial and adverse effects might differ between different ruminant species as well as between direct intake and intake of polyphenol metabolites via suckling when supplemented to lactating dams. This study investigated the effects of maternal and direct polyphenol supplementation via grape seed extract in sheep and goats on growth, slaughter performance, meat quality and fatty acid profile. The diet of lactating East Friesian Dairy sheep (n = 11) and Saanen goats (n = 9) and of their lambs (n = 16) and kids (n = 13), respectively, was supplemented either with grape seed extract (dams: 7.4% and offspring: 5.6%, P) or without (C). This resulted in four groups per species, namely maternalC/offspringC, maternalC/offspringP, maternalP/offspringC, and maternalP/offspringP. In lambs but not in goats, maternalP increased average daily gain and improved slaughter performance whereas offspringP had no effect. Maternal and offspring diet did not affect physicochemical meat quality in lambs, but direct intake of grape seed extract increased rancid aroma of burger patties. In goat kids, both maternal and offspring diets slightly affected meat colour. While groups of meat fatty acids (FAs) were not affected by diet in both species, maternalP in lambs as well as maternalP and offspringP in goat kids increased the meat n-6 to n-3 FA ratio compared to the respective control groups. In goat kid but not in lamb meat, direct intake of polyphenols affected the proportions of several rumen biohydrogenation intermediates. In conclusion, grape seed extract can be applied in both the maternal and offspring diets in sheep and goats while maintaining or even improving offspring growth performance and carcass quality. Only few species-specific effects of grape seed extract supplementation were observed, and additive effects were scarce. Larger studies are required to confirm the observed species-specific growth response to maternalP during lactation. The underlying reasons for this differential response need to be further evaluated.
Collapse
Affiliation(s)
- K Giller
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland.
| | - S Sinz
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | | | - S Marquardt
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
40
|
Domagała D, Leszczyńska T, Koronowicz A, Domagała B, Drozdowska M, Piasna-Słupecka E. Mechanisms of Anticancer Activity of a Fatty Acid Mixture Extracted from Hen Egg Yolks Enriched in Conjugated Linoleic Acid Diene (CLA) against WM793 Melanoma Cells. Nutrients 2021; 13:nu13072348. [PMID: 34371857 PMCID: PMC8308778 DOI: 10.3390/nu13072348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
The conjugated linoleic acid (CLA) diene is a biologically active compound with proven health-promoting effects. In terms of anticancer properties, it has been shown that CLA reduces the proliferation of cancer cells. In this study, it has been demonstrated that a mixture of fatty acids, isolated from chicken egg yolk enriched in CLA isomers by biofortification, reduces (by 30.5%) the proliferation of human melanoma cancer cells line WM793 to a greater extent than a mixture of fatty acids not containing these isomers. At the same time, the tested fatty acid mixtures show no effect on human normal BJ fibroblast cells. For the first time, the genes with increased expression have been identified and the proteins have been activated by the fatty acid mixture of CLA-enriched egg yolk, mainly responsible for mitochondrial pathway-dependent apoptosis.
Collapse
Affiliation(s)
- Dominik Domagała
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland; (T.L.); (A.K.); (M.D.); (E.P.-S.)
- Correspondence:
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland; (T.L.); (A.K.); (M.D.); (E.P.-S.)
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland; (T.L.); (A.K.); (M.D.); (E.P.-S.)
| | - Barbara Domagała
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland;
| | - Mariola Drozdowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland; (T.L.); (A.K.); (M.D.); (E.P.-S.)
| | - Ewelina Piasna-Słupecka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland; (T.L.); (A.K.); (M.D.); (E.P.-S.)
| |
Collapse
|
41
|
Gerstner C, Saín J, Lavandera J, González M, Bernal C. Functional milk fat enriched in conjugated linoleic acid prevented liver lipid accumulation induced by a high-fat diet in male rats. Food Funct 2021; 12:5051-5065. [PMID: 33960342 DOI: 10.1039/d0fo03296d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim was to investigate the potential effect of functional milk fat (FMF), naturally enriched in conjugated linoleic acid, on the prevention of liver lipid accumulation and some biochemical mechanisms involved in the liver triacylglycerol (TAG) regulation in high-fat (HF) fed rats. Male Wistar rats were fed (60 days) with S7 (soybean oil, 7%) or HF diets: S30 (soybean oil, 30%), MF30 (soybean oil, 3% + milk fat -MF-, 27%) or FMF30 (soybean oil, 3% + FMF, 27%). Nutritional parameters, hepatic fatty acid (FA) composition, liver and serum TAG levels, hepatic TAG secretion rate (TAG-SR), lipoprotein lipase (LPL) activity in adipose tissue and muscle, activities and/or mRNA levels of lipogenic and β-oxidative enzymes, and mRNA levels of transcription factors and FA transport proteins were assessed. The hepatic lipid accumulation induced by the S30 diet was associated with increased mRNA levels of FA transporters; and it was prevented by FMF through an increase in the hepatic TAG-SR, carnitine palmitoyltransferase-1a activity and peroxisome proliferator-activated receptor alpha mRNA levels, as well as by a reduction of the mRNA levels of FA transporters. The hypotriacylglyceridaemia observed in S30 was related with an increased LPL activity in adipose tissue and it was reverted by FMF through the increased hepatic TAG-SR. In brief, FMF prevented the liver lipid accumulation induced by HF diets by increasing the hepatic TAG-SR and β-oxidation, and reducing the hepatic FA uptake. The increased hepatic TAG-SR induced by FMF could be responsible for the attenuation of serum TAG alterations.
Collapse
Affiliation(s)
- Carolina Gerstner
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Juliana Saín
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jimena Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marcela González
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Claudio Bernal
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
42
|
Oddi S, Carluccio A, Ciaramellano F, Mascini M, Bucci R, Maccarrone M, Robbe D, Dainese E. Cryotolerance of equine spermatozoa correlates with specific fatty acid pattern: A pilot study. Theriogenology 2021; 172:88-94. [PMID: 34146973 DOI: 10.1016/j.theriogenology.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Sperm cryopreservation represents a powerful tool for horse breeding. To improve the efficiency of artificial insemination in the horse using cryopreserved spermatozoa, an adequate understanding of the underlying biophysical properties that affect sperm cryosurvival needs to be reached yet. In this pilot study, we described isolation and analysis of the main fatty acids from sperms of stallions classified as good and poor freezers (7 GF and 5 PF, according to sperm motility and viability, before and after cryopreservation). Fatty acid profiles were only assessed in pre-thaw sperms. Eight main fatty acids were identified, using gas chromatography, and their contents were expressed as percentage of the total lipid content. We found that lauric, myristic and oleic acid (C12:0, C14:0 and C18:1n9c) turned out to be about 2-fold more abundant in the sperm cells of the GFs compared with PFs. Moreover, we described for the first time the presence of a very high amount of a trans geometrical isomer of linoleic acid, linolelaidic acid (C18:2n6t), in pre-thaw PF spermatozoa. Notably, we found in fresh sperms of PF stallions a ratio of unsaturated fatty acids to saturated fatty acids which was twice that of those of GF group, suggesting a positive effect of a high saturated-to-unsaturated fatty acid ratio for the "freezability" of equine spermatozoa. Finally, principal component analysis (PCA) confirmed the relationships between specific fatty acids and cryotolerance of equine spermatozoa, also providing a graphical classification and additional information about the dominant variables governing the classification process.
Collapse
Affiliation(s)
- Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, Rome, 00143, Italy.
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy
| | | | - Marcello Mascini
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Bucci
- Faculty of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy
| | - Mauro Maccarrone
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy.
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| |
Collapse
|
43
|
Wei M, Zhou RL, Luo T, Deng ZY, Li J. Trans triacylglycerols from dairy products and industrial hydrogenated oil exhibit different effects on the function of human umbilical vein endothelial cells via modulating phospholipase A2/arachidonic acid metabolism pathways. J Dairy Sci 2021; 104:6399-6414. [PMID: 33773784 DOI: 10.3168/jds.2020-19715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Dairy fat intake has been considered as a risk factor for cardiovascular disease. Rodent models show that trans fatty acids in industrial hydrogenated oil and ruminant milk have different effects on cardiovascular diseases. One of the main reasons is that the distributions of trans fatty acids in triacylglycerols from dairy products and from industrial hydrogenated oil are different, which affects lipid absorption and metabolism. This study investigated the effects of 1,3-olein-2-elaidin (OEO, representing industrial hydrogenated oil triacylglycerols) and 1-vaccenic-2,3-olein (OOV, representing ruminant triacylglycerols in dairy products) on the function of human umbilical vein endothelial cells (HUVEC), including cell viability, lactate dehydrogenase (LDH) exudation rate, and nitric oxide secretory and nitric oxide synthase relative activity. We found that the detrimental effect of OEO on HUVEC was significantly greater than that of OOV. The results also showed that the absorption rate of OEO in HUVEC (78.25%) was significantly greater than that of OOV (63.32%). Mechanistically, based on phospholipidomics analysis, we found that calcium-independent phospholipase A2 (iPLA2) played a key role with regard to the OOV-mediated arachidonic acid (ARA)/COX-2/PG pathway, whereas secretory phospholipase A2 (sPLA2) and cytoplasmic phospholipase A2 (cPLA2) are responsible for the OEO-mediated ARA/COX-2/PG pathway. Moreover, OEO had a greater effect on the protein expression of COX-2 and PG secretion than OOV. In addition, iPLA2, sPLA2, and cPLA2 could mediate the ARA/CYP4A11 pathway in OOV-treated HUVEC, but only iPLA2 could mediate this pathway in HUVEC treated with OEO. We also found that sPLA2 could mediate the ARA/5-LOX pathway in HUVEC treated with OOV, but none of these 3 forms of PLA2 could mediate this pathway in HUVEC treated with OEO. On the other hand, after OOV treatment, trans-11 C18:1 was converted to beneficial forms of fatty acids in HUVEC, including conjugated linoleic acid (CLA) and trans-9 C16:1. In conclusion, we elucidated the potential mechanisms that might account for the diverse effects of triacylglycerols from industrial hydrogenated oil and ruminant milk on the function of HUVEC.
Collapse
Affiliation(s)
- Meng Wei
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ruo-Lin Zhou
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
44
|
Abstract
Conjugated linoleic acids (CLA) are distinctive polyunsaturated fatty acids. They are present in food produced by ruminant animals and they are accumulated in seeds of certain plants. These naturally occurring substances have demonstrated to have anti-carcinogenic activity. Their potential effect to inhibit cancer has been shown in vivo and in vitro studies. In this review, we present the multiple effects of CLA isomers on cancer development such as anti-tumor efficiency, anti-mutagenic and anti-oxidant activity. Although the majority of the studies in vivo and in vitro summarized in this review have demonstrated beneficial effects of CLA on the proliferation and apoptosis of tumor cells, further experimental work is needed to estimate the true value of CLA as a real anti-cancer agent.
Collapse
|
45
|
Manca C, Carta G, Murru E, Abolghasemi A, Ansar H, Errigo A, Cani PD, Banni S, Pes GM. Circulating fatty acids and endocannabinoidome-related mediator profiles associated to human longevity. GeroScience 2021; 43:1783-1798. [PMID: 33650014 PMCID: PMC8492808 DOI: 10.1007/s11357-021-00342-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
To evaluate whether a peculiar plasma profile of fatty acids and endocannabinoidome (eCBome)-related mediators may be associated to longevity, we assessed them in octogenarians (Old; n=42) living in the east-central mountain area of Sardinia, a High-Longevity Zone (HLZ), compared to sexagenarian (Young; n=21) subjects from the same area, and to Olds (n=22) from the Northern Sardinia indicated as Lower-Longevity Zone (LLZ). We found significant increases in conjugated linoleic acid (CLA) and heptadecanoic acid (17:0) levels in Old-HLZ with respect to younger subjects and Old-LLZ subjects. Young-HLZ subjects exhibited higher circulating levels of pentadecanoic acid (15:0) and retinol. Palmitoleic acid (POA) was elevated in both Young and Old subjects from the HLZ. eCBome profile showed a significantly increased plasma level of the two endocannabinoids, N-arachidonoyl-ethanolamine (AEA) and 2-arachidonoyl-glycerol (2-AG) in Old-HLZ subjects compared to Young-HLZ and Old-LLZ respectively. In addition, we found increased N-oleoyl-ethanolamine (OEA), 2-linoleoyl-glycerol (2-LG) and 2-oleoyl-glycerol (2-OG) levels in Old-HLZ group with respect to Young-HLZ (as for OEA an d 2-LG) and both the Old-LLZ and Young-HLZ for 2-OG. The endogenous metabolite of docosahexaenoic acid (DHA), N-docosahexaenoyl-ethanolamine (DHEA) was significantly increased in Old-HLZ subjects. In conclusion, our results suggest that in the HLZ area, Young and Old subjects exhibited a favourable, albeit distinctive, fatty acids and eCBome profile that may be indicative of a metabolic pattern potentially protective from adverse chronic conditions. These factors could point to a suitable physiological metabolic pattern that may counteract the adverse stimuli leading to age-related disorders such as neurodegenerative and metabolic diseases.
Collapse
Affiliation(s)
- Claudia Manca
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Elisabetta Murru
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Armita Abolghasemi
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Hastimansooreh Ansar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Alessandra Errigo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Brussels, Belgium
| | - Sebastiano Banni
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy.
| | - Giovanni Mario Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,Sardinia Longevity Blue Zone Observatory, Ogliastra, Italy
| |
Collapse
|
46
|
LC-MS/MS Based Metabolomics Reveal Candidate Biomarkers and Metabolic Changes in Different Buffalo Species. Animals (Basel) 2021; 11:ani11020560. [PMID: 33672725 PMCID: PMC7924386 DOI: 10.3390/ani11020560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Consumers have shown more and more interest in high-quality and healthy dairy products and buffalo milk is commercially more viable than other milks in producing superior dairy products due to its higher contents of fat, crude protein, and total solids. Metabolomics is one of the most powerful strategies in molecular mechanism research however, little study has been focused on the milk metabolites in different buffalo species. Therefore, the aim of this study was to explore the underlying molecular mechanism of the fatty synthesis and candidate biomarkers by analyzing the metabolomic profiles. Milk of three groups of buffaloes, including 10 Mediterranean, 12 Murrah, and 10 crossbred buffaloes (Murrah × local swamp buffalo), were collected and UPLC-Q-Orbitrap HRMS was used to obtain the metabolomic profiles. Results showed that milk fatty acid in Mediterranean buffalo was significantly higher than Murrah buffalo and crossbred buffalo. A total of 1837/726 metabolites was identified in both positive and negative electrospray ionization (ESI±) mode, including 19 significantly different metabolites between Mediterranean and Murrah buffalo, and 18 different metabolites between Mediterranean and crossbred buffalo. We found 11 of the different metabolites were both significantly different between Mediterranean vs. Murrah group and Mediterranean vs crossbred group, indicating that they can be used as candidate biomarkers of Mediterranean buffalo milk. Further analysis found that the different metabolites were mainly enriched in fat synthesis related pathways such as fatty acid biosynthesis, unsaturated fatty acid biosynthesis, and linoleic acid metabolism, indicating that the priority of different pathways affected the milk fat content in different buffalo species. These specific metabolites may be used as biomarkers in the identification of milk quality and molecular breeding of high milk fat buffalo.
Collapse
|
47
|
Tang L, Cao X, Li X, Ding H. Topical application with conjugated linoleic acid ameliorates 2, 4-dinitrofluorobenzene-induced atopic dermatitis-like lesions in BALB/c mice. Exp Dermatol 2021; 30:237-248. [PMID: 33206422 DOI: 10.1111/exd.14242] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a multifactorial chronic inflammatory skin disease characterized by skin barrier dysfunction, eczematous lesions, pruritus, and abnormal immune responses. In this study, we assessed the therapeutic effect of topical applied conjugated linoleic acid (CLA) on a murine AD model that was developed by repetitive applications of 2, 4-dinitrofluorobenzene (DNFB). 2% or 5% CLA could markedly ameliorate AD-like skin lesions, scratching behaviour and skin inflammation as evidenced by the reduced inflammatory blood cells, IgE and Th2-related cytokine levels, and the infiltration of mast cells and inflammatory cells to the dermal tissues. Moreover, topical application with CLA modulated skin barrier repair including maintaining a balanced skin pH and increasing skin hydration, partially mediated by upregulating skin barrier-related protein, filaggrin (FLG). In addition, topical CLA significantly dose-dependently inhibited pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, tumour necrosis factor (TNF)-α and pro-inflammatory enzyme expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in inflamed mice skin. Its anti-inflammatory effect was associated with the inhibition of DNFB-stimulated IκBα and NF-κB p65 phosphorylation in mouse skin. Taken together, our results suggest that locally applied CLA exerts potentially protective effects against AD lesional skin at least in part, due to regulation of skin barrier function and inflammatory response.
Collapse
Affiliation(s)
- Liu Tang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaoqin Cao
- College of Medicine, Jianghan University, Wuhan, China
| | - Xiaolei Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Hong Ding
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Bojková B, Kurhaluk N, Winklewski PJ. The interconnection of high-fat diets, oxidative stress, the heart, and carcinogenesis. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Pretorius B, Schönfeldt HC. Cholesterol, fatty acids profile and the indices of atherogenicity and thrombogenicity of raw lamb and mutton offal. Food Chem 2020; 345:128868. [PMID: 33352404 DOI: 10.1016/j.foodchem.2020.128868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Dietary fats may affect blood lipid levels and the development of cardiovascular diseases. Offal, may contribute to food security in marginalised communities and information on the contribution to dietary fat intake is needed to inform dietary guidelines and recommendations and consumers. This study aimed to describe the fatty acid profile, cholesterol content and indexes of lipid quality. The fatty acid profile and cholesterol were determined by gas chromatography coupled with flame ionisation detection (GC-FID). To evaluate lipid quality the indices of atherogenicity (IA) and thrombogenicity (IT) were calculated. Offal products can contribute beneficial fatty acids to the diet, not only in terms of essential fatty acids such as linoleic (C18:2n-6) and alpha linolenic (C18:3n-3) acids, but also the polyunsaturated fatty acids, arachidonic (C20:4n-6) and eicosapentaenoic (C20:5n3) acids. The offal studied in the present work showed a P/S ratio of 0.04-0.12 and the n-6/n-3 ratio varied between 3.9 and 12.5.
Collapse
Affiliation(s)
- B Pretorius
- Department of Animal and Wildlife Sciences, University of Pretoria, South Africa.
| | - H C Schönfeldt
- Department of Animal and Wildlife Sciences, University of Pretoria, South Africa; ARUA Centre of Excellence: Food Security, University of Pretoria, South Africa
| |
Collapse
|
50
|
Cai D, Li Y, Zhang K, Zhou B, Guo F, Holm L, Liu HY. Co-option of PPARα in the regulation of lipogenesis and fatty acid oxidation in CLA-induced hepatic steatosis. J Cell Physiol 2020; 236:4387-4402. [PMID: 33184849 DOI: 10.1002/jcp.30157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022]
Abstract
Nonalcoholic-fatty-liver-disease (NAFLD) is the result of imbalances in hepatic lipid partitioning and is linked to dietary factors. We demonstrate that conjugated linoleic acid (CLA) when given to mice as a dietary supplement, induced an enlarged liver, hepatic steatosis, and increased plasma levels of fatty acid (FA), alanine transaminase, and triglycerides. The progression of NAFLD and insulin resistance was reversed by GW6471 a small-molecule antagonist of peroxisome proliferator-activated receptor α (PPARα). Transcriptional profiling of livers revealed that the genes involved in FA oxidation and lipogenesis as two core gene programs controlled by PPARα in response to CLA and GW6471 including Acaca and Acads. Bioinformatic analysis of PPARα ChIP-seq data set and ChIP-qPCR showed that GW6471 blocks PPARα binding to Acaca and Acads and abolishes the PPARα-mediated local histone modifications of H3K27ac and H3K4me1 in CLA-treated hepatocytes. Thus, our findings reveal a dual role of PPARα in the regulation of lipid homeostasis and highlight its druggable nature in NAFLD.
Collapse
Affiliation(s)
- Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kexin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bo Zhou
- Institute of Digestive Disease, Zhengzhou University, Zhengzhou, China
| | - Feilong Guo
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|