1
|
Karasu A, Kuşcu Y, Kayikci C, Yildirim S, Kuşcu O, Kiliçlioğlu M. Effect of low- and high-dose methotrexate on wound healing in rats. Acta Cir Bras 2025; 40:e403225. [PMID: 40105606 PMCID: PMC11908735 DOI: 10.1590/acb403225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/29/2024] [Indexed: 03/20/2025] Open
Abstract
PURPOSE To investigate the effect of intraperitoneal treatment with low- and high-dose methotrexate (MTX) on wound healing in rats. METHODS The study sample consisted of 54 healthy rats. Under aseptic conditions, skin wounds were created with two circular full-thickness punch tools, 10 mm in diameter, one on the right and the other one on the left of the dorsal vertebral line. The rats were randomly assigned to one of three main treatment groups. On the 0th day (2 hours before wound creation), 7th day, and 14th day, the control group received 0.3-mL saline, the low-MTX group received 3 mg/kg MTX, and the high-MTX group received 30 mg/kg MTX, all administered intraperitoneally. The wounds were evaluated seven, 14, and 21 days after injury through morphometrical, biochemical, histopathological, and immunohistochemical analyses. RESULTS MTX dose-dependently decreased the degree of inflammation and angiogenesis, tissue hydroxyproline level, and HSP70 and tumor necrosis factor-α expression in the early phase of wound healing. It also suppressed epithelialization and collagen 1 expression throughout the wound-healing process. CONCLUSION The wounds treated with high-dose of MTX had statistically delayed wound closure on days 7, 14 and 21 compared to the saline group, while wounds treated with low-dose of MTX only had statistically delayed wound closure on day 14. In addition, weight loss was observed in rats treated with high-dose MTX, which was thought to reflect its toxicity. The dose-dependent adverse effect of MTX on wound healing may be due to its antiproliferative, antifibrotic, anti-inflammatory, and antiangiogenic effects.
Collapse
Affiliation(s)
- Abdullah Karasu
- Van Yuzuncu Yil University - Faculty of Veterinary Medicine - Department of Surgery - Van - Türkiye
| | - Yağmur Kuşcu
- Van Yuzuncu Yil University - Faculty of Veterinary Medicine - Department of Surgery - Van - Türkiye
| | - Caner Kayikci
- Van Yuzuncu Yil University - Faculty of Veterinary Medicine - Department of Surgery - Van - Türkiye
| | - Serkan Yildirim
- Ataturk University - Faculty of Veterinary Medicine - Department of Pathology - Erzurum - Türkiye
| | - Oğuzhan Kuşcu
- Van Yuzuncu Yil University - Faculty of Medicine - Department of Histology and Embryology - Van - Türkiye
| | - Metin Kiliçlioğlu
- Ataturk University - Faculty of Veterinary Medicine - Department of Pathology - Erzurum - Türkiye
| |
Collapse
|
2
|
Kozlik-Siwiec P, Buregwa-Czuma S, Zawlik I, Dziedzina S, Myszka A, Zuk-Kuwik J, Siwiec-Kozlik A, Zarychta J, Okon K, Zareba L, Soja J, Jakiela B, Kepski M, Bazan JG, Bazan-Socha S. Co-Expression Analysis of Airway Epithelial Transcriptome in Asthma Patients with Eosinophilic vs. Non-Eosinophilic Airway Infiltration. Int J Mol Sci 2023; 24:3789. [PMID: 36835202 PMCID: PMC9959255 DOI: 10.3390/ijms24043789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Asthma heterogeneity complicates the search for targeted treatment against airway inflammation and remodeling. We sought to investigate relations between eosinophilic inflammation, a phenotypic feature frequent in severe asthma, bronchial epithelial transcriptome, and functional and structural measures of airway remodeling. We compared epithelial gene expression, spirometry, airway cross-sectional geometry (computed tomography), reticular basement membrane thickness (histology), and blood and bronchoalveolar lavage (BAL) cytokines of n = 40 moderate to severe eosinophilic (EA) and non-eosinophilic asthma (NEA) patients distinguished by BAL eosinophilia. EA patients showed a similar extent of airway remodeling as NEA but had an increased expression of genes involved in the immune response and inflammation (e.g., KIR3DS1), reactive oxygen species generation (GYS2, ATPIF1), cell activation and proliferation (ANK3), cargo transporting (RAB4B, CPLX2), and tissue remodeling (FBLN1, SOX14, GSN), and a lower expression of genes involved in epithelial integrity (e.g., GJB1) and histone acetylation (SIN3A). Genes co-expressed in EA were involved in antiviral responses (e.g., ATP1B1), cell migration (EPS8L1, STOML3), cell adhesion (RAPH1), epithelial-mesenchymal transition (ASB3), and airway hyperreactivity and remodeling (FBN3, RECK), and several were linked to asthma in genome- (e.g., MRPL14, ASB3) or epigenome-wide association studies (CLC, GPI, SSCRB4, STRN4). Signaling pathways inferred from the co-expression pattern were associated with airway remodeling (e.g., TGF-β/Smad2/3, E2F/Rb, and Wnt/β-catenin).
Collapse
Affiliation(s)
- Pawel Kozlik-Siwiec
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Haematology Clinical Department, University Hospital, 31-501 Krakow, Poland
| | - Sylwia Buregwa-Czuma
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Izabela Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Sylwia Dziedzina
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Aleksander Myszka
- Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Joanna Zuk-Kuwik
- Haematology Clinical Department, University Hospital, 31-501 Krakow, Poland
- Haematology Department, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | | | - Jacek Zarychta
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Pulmonary Hospital, 34-736 Zakopane, Poland
| | - Krzysztof Okon
- Department of Pathology, Jagiellonian University Medical College, 33-332 Krakow, Poland
| | - Lech Zareba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jerzy Soja
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Bogdan Jakiela
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Michał Kepski
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jan G. Bazan
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Stanislawa Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| |
Collapse
|
3
|
Abstract
INTRODUCTION Methotrexate (MTX) is one of the most commonly used disease modifying drugs administered for wide spectrum of conditions. Through the expansion of the indications of MTX use, an increasing number of patients nowadays attend orthopaedic departments receiving this pharmacological agent. The aim of this manuscript is to present our current understanding on the effect of MTX on bone and wound healing. Areas covered: The authors offer a comprehensive review of the existing literature on the experimental and clinical studies analysing the effect of MTX on bone and wound healing. The authors also analyse the available literature and describe the incidence of complications after elective orthopaedic surgery in patients receiving MTX. Expert opinion: The available experimental data and clinical evidence are rather inadequate to allow any safe scientific conclusions on the effect of MTX on bone healing. Regarding wound healing, in vitro and experimental animal studies suggest that MTX can adversely affect wound healing, whilst the clinical studies show that lose-dose MTX is safe and does not affect the incidence of postoperative wound complications.
Collapse
Affiliation(s)
- Ippokratis Pountos
- a Academic Department of Trauma & Orthopaedics, School of Medicine , University of Leeds , Leeds , United Kingdom
| | - Peter V Giannoudis
- a Academic Department of Trauma & Orthopaedics, School of Medicine , University of Leeds , Leeds , United Kingdom.,b NIHR Leeds Biomedical Research Unit , Chapel Allerton Hospital , Leeds , UK
| |
Collapse
|
4
|
Abstract
Exfoliation syndrome (XFS) is an age-related disease characterized by the production, deposition, and progressive accumulation of a white, fibrillar, extracellular material in many ocular tissues, most prominent on the anterior lens surface and pupillary border. Its prevalence increases steadily with age in all populations. It is the most common identifiable cause of open-angle glaucoma worldwide and is a potentially reversible or even curable disease. First described in Finland in 1917 by Lindberg, it has long been associated with open-angle glaucoma. However, in recent years, it is being increasingly reported in conjunction with a multiplicity of both ocular and systemic disorders, and the number of these is expected to grow, particularly with investigations based on attempts to associate other diseases with those genes known to be associated with XFS. Despite the focus on XFS as a cause of open-angle glaucoma for nearly a century, in reality it is still only an ocular manifestation of a protean systemic disease. It is a unique disorder with extensive and often serious ocular and systemic manifestations and not, as it has long been termed, a "form" or "type" of glaucoma. This misconception has delayed research into the molecular and cellular processes involved in its development, and the underestimation of its overall importance and its underlying causative mechanisms have largely been long ignored. The purpose of this article is to review the systemic disorders which are becoming increasingly associated with XFS. Reviews of epidemiology, genetics, biomarkers, molecular mechanisms of development, and ocular findings may be found elsewhere.
Collapse
Affiliation(s)
- Robert Ritch
- From the Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| |
Collapse
|
5
|
Thakur S, Rahat B, Hamid A, Najar RA, Kaur J. Identification of regulatory mechanisms of intestinal folate transport in condition of folate deficiency. J Nutr Biochem 2015; 26:1084-94. [PMID: 26168702 DOI: 10.1016/j.jnutbio.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/03/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Folic acid is an essential micronutrient, deficiency of which can lead to disturbance in various metabolic processes of cell. Folate transport across intestine occurs via the involvement of specialized folate transporters viz. proton coupled folate transporter (PCFT) and reduced folate carrier (RFC), which express at the membrane surfaces. The current study was designed to identify the regulatory mechanisms underlying the effects of folate deficiency (FD) on folate transport in human intestinal cell line as well as in rats and to check the reversibility of such effects. Caco-2 cells were grown for five generations in control and FD medium. Following treatment, one subgroup of cells was shifted on folate sufficient medium and grown for three more generations. Similarly, rats were fed an FD diet for 3 and 5 months, and after 3 months of FD treatment, one group of rats were shifted on normal folate-containing diet. Increase in folate transport and expression of folate transporters were observed on FD treatment. However, when cells and rats were shifted to control conditions after treatment, transport and expression of these genes restored to the control level. FD was found to have no impact on promoter methylation of PCFT and RFC; however, messenger RNA stability of transporters was found to be decreased, suggesting some adaptive response. Overall, increased expression of transporters under FD conditions can be attributed to enhanced rate of transcription of folate transporters and also to the increased binding of specificity protein 1 transcription factor to the RFC promoter only.
Collapse
Affiliation(s)
- Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rauf Ahmad Najar
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
6
|
AK000953 silencing can enhance the killing effect of danazol on uterine fibroids. Arch Gynecol Obstet 2015; 292:1075-81. [PMID: 25894338 DOI: 10.1007/s00404-015-3695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Our aim was to study the role of AK000953 silencing for the killing effect of danazol on uterine fibroids. METHODS Quantitative PCR was applied to identify differential expression of AK000953 in uterine fibroid tissue and normal uterine tissue. Then we isolated and cultured uterine fibroid cells, designed the siRNA of AK000953 to silence its expression in uterine fibroid cells, and detected the treatment effect of danazol and AK000953 siRNA on cell proliferation, cell apoptosis, and cell invasion. Finally, guinea pig model of uterine fibroids was constructed to verify the effect of AK000953 silencing on uterine fibroid treatment with danazol in vivo. RESULTS Quantitative PCR showed that the AK000953 gene was highly expressed in uterine fibroid tissue compared with normal uterine tissue (2.1 ± 0.15 vs. 0.8 ± 0.05, p < 0.01). After AK000953 silencing in uterine fibroid cells, we discovered that the inhibition rate in danazol-siRNA group was 56 ± 5 %, the cell apoptosis rate of danazol-siRNA group was 43 ± 2.3 %, and the invasion rate of uterine fibroid cells was 12 ± 1 %, which all showed significant differences with the control group or danazol group. Guinea pig model confirmed that the treatment of danazol and AK000953 siRNA effectively inhibited the development of fibroids in vivo. CONCLUSION AK000953 silencing could effectively enhance the killing effect of danazol on uterine fibroid cells.
Collapse
|
7
|
Medical Management of Exfoliative Glaucoma. Clin Ophthalmol 2014; 54:57-70. [DOI: 10.1097/iio.0000000000000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med 2013; 51:477-88. [PMID: 23241609 DOI: 10.1515/cclm-2012-0568] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/23/2012] [Indexed: 12/18/2022]
Abstract
The causes of cobalamin (B12, Cbl) deficiency are multifactorial. Whether nutritional due to poor dietary intake, or functional due to impairments in absorption or intracellular processing and trafficking events, the major symptoms of Cbl deficiency include megaloblastic anemia, neurological deterioration and in extreme cases, failure to thrive and death. The common biomarkers of Cbl deficiency (hyperhomocysteinemia and methylmalonic acidemia) are extremely valuable diagnostic indicators of the condition, but little is known about the changes that occur at the protein level. A mechanistic explanation bridging the physiological changes associated with functional B12 deficiency with its intracellular processers and carriers is lacking. In this article, we will cover the effects of B12 deficiency in a cblC-disrupted background (also referred to as MMACHC) as a model of functional Cbl deficiency. As will be shown, major protein changes involve the cytoskeleton, the neurological system as well as signaling and detoxification pathways. Supplementation of cultured MMACHC-mutant cells with hydroxocobalamin (HOCbl) failed to restore these variants to the normal phenotype, suggesting that a defective Cbl processing pathway produces irreversible changes at the protein level.
Collapse
Affiliation(s)
- Luciana Hannibal
- Department of Pathobiology (NC2 – 104), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
9
|
Hoeferlin LA, Fekry B, Ogretmen B, Krupenko SA, Krupenko NI. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 2013; 288:12880-90. [PMID: 23519469 DOI: 10.1074/jbc.m113.461798] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the role of ceramide in the cellular adaptation to folate stress induced by Aldh1l1, the enzyme involved in the regulation of folate metabolism. Our previous studies demonstrated that Aldh1l1, similar to folate deficiency, evokes metabolic stress and causes apoptosis in cancer cells. Here we report that the expression of Aldh1l1 in A549 or HCT116 cells results in the elevation of C16-ceramide and a transient up-regulation of ceramide synthase 6 (CerS6) mRNA and protein. Pretreatment with ceramide synthesis inhibitors myriocin and fumonisin B1 or siRNA silencing of CerS6 prevented C16-ceramide accumulation and rescued cells supporting the role of CerS6/C16-ceramide as effectors of Aldh1l1-induced apoptosis. The CerS6 activation by Aldh1l1 and increased ceramide generation were p53-dependent; this effect was ablated in p53-null cells. Furthermore, the expression of wild type p53 but not transcriptionally inactive R175H p53 mutant strongly elevated CerS6. Also, this dominant negative mutant prevented accumulation of CerS6 in response to Aldh1l1, indicating that CerS6 is a transcriptional target of p53. In support of this mechanism, bioinformatics analysis revealed the p53 binding site 3 kb downstream of the CerS6 transcription start. Interestingly, ceramide elevation in response to Aldh1l1 was inhibited by silencing of PUMA, a proapoptotic downstream effector of p53 whereas the transient expression of CerS6 elevated PUMA in a p53-dependent manner indicating reciprocal relationships between ceramide and p53/PUMA pathways. Importantly, folate withdrawal also induced CerS6/C16-ceramide elevation accompanied by p53 accumulation. Overall, these novel findings link folate and de novo ceramide pathways in cellular stress response.
Collapse
Affiliation(s)
- L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
10
|
The influence of folate supplementation on global gene expression in normal colonic mucosa of subjects with colorectal adenoma. Mol Nutr Food Res 2013; 57:709-20. [DOI: 10.1002/mnfr.201200617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/12/2012] [Accepted: 11/18/2012] [Indexed: 12/31/2022]
|
11
|
Leslie EJ, Mansilla MA, Biggs LC, Schuette K, Bullard S, Cooper M, Dunnwald M, Lidral AC, Marazita ML, Beaty TH, Murray JC. Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome-wide association on chromosome 1p22. ACTA ACUST UNITED AC 2012; 94:934-42. [PMID: 23008150 DOI: 10.1002/bdra.23076] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/08/2012] [Accepted: 07/26/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a common birth defect with complex etiology reflecting the action of multiple genetic and environmental factors. Genome-wide association studies have successfully identified five novel loci associated with NSCL/P, including a locus on 1p22.1 near the ABCA4 gene. Because neither expression analysis nor mutation screening support a role for ABCA4 in NSCL/P, we investigated the adjacent gene ARHGAP29. METHODS Mutation screening for ARHGAP29 protein coding exons was conducted in 180 individuals with NSCL/P and controls from the United States and the Philippines. Nine exons with variants in ARHGAP29 were then screened in an independent set of 872 cases and 802 controls. Arhgap29 expression was evaluated using in situ hybridization in murine embryos. RESULTS Sequencing of ARHGAP29 revealed eight potentially deleterious variants in cases including a frameshift and a nonsense variant. Arhgap29 showed craniofacial expression and was reduced in a mouse deficient for Irf6, a gene previously shown to have a critical role in craniofacial development. CONCLUSION The combination of genome-wide association, rare coding sequence variants, craniofacial specific expression, and interactions with IRF6 support a role for ARHGAP29 in NSCL/P and as the etiologic gene at the 1p22 genome-wide association study locus for NSCL/P. This work suggests a novel pathway in which the IRF6 gene regulatory network interacts with the Rho pathway via ARHGAP29. Birth Defects Research (Part A) 2012. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elizabeth J Leslie
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hennemeier I, Humpf HU, Gekle M, Schwerdt G. The food contaminant and nephrotoxin ochratoxin A enhances Wnt1 inducible signaling protein 1 and tumor necrosis factor-α expression in human primary proximal tubule cells. Mol Nutr Food Res 2012; 56:1375-84. [PMID: 22778029 DOI: 10.1002/mnfr.201200164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/09/2012] [Accepted: 05/31/2012] [Indexed: 11/07/2022]
Abstract
SCOPE The underlying molecular mechanisms of nanomolar ochratoxin A (OTA) concentrations, especially those on pathophysiological relevant gene expression in target tissue and underlying signaling mechanisms are unknown. METHODS AND RESULTS qPCR arrays showed that 14 days exposure of human primary proximal tubule cells to 10 nM OTA influences the expression of genes that are related to inflammation, malignant transformation, and epithelial-to-mesenchymal transition. Wnt1 inducible signaling protein 1 (WISP1), an oncogenic, and profibrotic growth factor, turned out to be the gene with the strongest upregulation. Its expression, and that of TNF-α, an important inflammatory mediator, was further investigated in human renal cells and in primary human lung fibroblasts. OTA-induced upregulation of WISP1 and TNF-α occurs only in renal cells. Inhibition of ERK1/2 activation reverses the effect of OTA on WISP1 and TNF-α expression. Wnt or other signaling pathways were not involved. Upregulation of WISP1 and TNF-α occured independently of each other. CONCLUSION Long-term exposure of human kidney cells with OTA concentrations expectable in renal tissue due to average dietary intake leads in an ERK1/2-dependent manner to pathogenetic alterations of gene expression, notably WISP1 and TNF-α. Renal long-term risk by OTA is actually not excludable and argues for low but rational safety levels.
Collapse
Affiliation(s)
- Isabell Hennemeier
- Julius-Bernstein-Institut für Physiologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | | | |
Collapse
|
13
|
Investigation of the molecular response to folate metabolism inhibition. J Nutr Biochem 2012; 23:1531-6. [PMID: 22402366 DOI: 10.1016/j.jnutbio.2011.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/20/2022]
Abstract
We investigated the molecular response to folate metabolism inhibition by exposing human lymphoblast cell lines to the methionine adenosyltransferase inhibitor cycloleucine. We carried out microarray analysis on replicate control and exposed cells by examining 47,000 transcripts on the Affymetrix HG U133 plus 2.0 arrays. We identified 13 genes that we considered reliable responders to cycloleucine treatment: chemokine receptor 3 (CXCR3), prostaglandin-endoperoxide synthase 2, growth arrest-specific 7, reduced folate carrier, klotho beta, early growth response 1, diaphanous homolog 3, prostaglandin D2 synthase (PGDS), butyrophilin-like 9, low-density lipoprotein receptor-related protein 11, chromosome 21 orf15, G-protein-coupled receptor 98 (GPR98) and cystathionine-beta-synthase (CBS). We further demonstrated that four of these genes, CXCR3, PGDS, GPR98 and CBS, consistently responded to cycloleucine treatment in additional experiments over a range of concentrations. We carried out gene-specific DNA methylation analysis on five genes, including CBS, and found no evidence that DNA methylation changes were mediating the gene expression changes observed. Pathway analysis of the microarray data identified four pathways of relevance for response to cycloleucine; the immune response NF-AT signaling pathway was the most statistically significant. Comparison with other gene expression studies focusing on folate deficiency revealed that gene products related to immune cells or the immune response is a common theme. This indicates that apart from their role in the immune response, it is likely that these gene products may also have a role to play in the cellular response to folate status.
Collapse
|
14
|
Salbaum JM, Kappen C. Genetic and epigenomic footprints of folate. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:129-58. [PMID: 22656376 DOI: 10.1016/b978-0-12-398397-8.00006-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dietary micronutrient composition has long been recognized as a determining factor for human health. Historically, biochemical research has successfully unraveled how vitamins serve as essential cofactors for enzymatic reactions in the biochemical machinery of the cell. Folate, also known as vitamin B9, follows this paradigm as well. Folate deficiency is linked to adverse health conditions, and dietary supplementation with folate has proven highly beneficial in the prevention of neural tube defects. With its function in single-carbon metabolism, folate levels affect nucleotide synthesis, with implications for cell proliferation, DNA repair, and genomic stability. Furthermore, by providing the single-carbon moiety in the synthesis pathway for S-adenosylmethionine, the main methyl donor in the cell, folate also impacts methylation reactions. It is this capacity that extends the reach of folate functions into the realm of epigenetics and gene regulation. Methylation reactions play a major role for several modalities of the epigenome. The specific methylation status of histones, noncoding RNAs, transcription factors, or DNA represents a significant determinant for the transcriptional output of a cell. Proper folate status is therefore necessary for a broad range of biological functions that go beyond the biochemistry of folate. In this review, we examine evolutionary, genetic, and epigenomic footprints of folate and the implications for human health.
Collapse
Affiliation(s)
- J Michael Salbaum
- Regulation of Gene Expression Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
15
|
Mangold E, Ludwig KU, Nöthen MM. Breakthroughs in the genetics of orofacial clefting. Trends Mol Med 2011; 17:725-33. [PMID: 21885341 DOI: 10.1016/j.molmed.2011.07.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 01/03/2023]
|
16
|
Hannibal L, DiBello PM, Yu M, Miller A, Wang S, Willard B, Rosenblatt DS, Jacobsen DW. The MMACHC proteome: hallmarks of functional cobalamin deficiency in humans. Mol Genet Metab 2011; 103:226-39. [PMID: 21497120 PMCID: PMC3110603 DOI: 10.1016/j.ymgme.2011.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/08/2011] [Accepted: 03/08/2011] [Indexed: 12/13/2022]
Abstract
Cobalamin (Cbl, B(12)) is an essential micronutrient required to fulfill the enzymatic reactions of cytosolic methylcobalamin-dependent methionine synthase and mitochondrial adenosylcobalamin-dependent methylmalonyl-CoA mutase. Mutations in the MMACHC gene (cblC complementation group) disrupt processing of the upper-axial ligand of newly internalized cobalamins, leading to functional deficiency of the vitamin. Patients with cblC disease present with both hyperhomocysteinemia and methylmalonic acidemia, cognitive dysfunction, and megaloblastic anemia. In the present study we show that cultured skin fibroblasts from cblC patients export increased levels of both homocysteine and methylmalonic acid compared to control skin fibroblasts, and that they also have decreased levels of total intracellular folates. This is consistent with the clinical phenotype of functional cobalamin deficiency in vivo. The protein changes that accompany human functional Cbl deficiency are unknown. The proteome of control and cblC fibroblasts was quantitatively examined by two dimensional difference in-gel electrophoresis (2D-DIGE) and liquid chromatography-electrospray ionization-mass spectrometry (LC/ESI/MS). Major changes were observed in the expression levels of proteins involved in cytoskeleton organization and assembly, the neurological system and cell signaling. Pathway analysis of the differentially expressed proteins demonstrated strong associations with neurological disorders, muscular and skeletal disorders, and cardiovascular diseases in the cblC mutant cell lines. Supplementation of the cell cultures with hydroxocobalamin did not restore the cblC proteome to the patterns of expression observed in control cells. These results concur with the observed phenotype of patients with the cblC disorder and their sometimes poor response to treatment with hydroxocobalamin. Our findings could be valuable for designing alternative therapies to alleviate the clinical manifestation of the cblC disorder, as some of the protein changes detected in our study are common hallmarks of known pathologies such as Alzheimer's and Parkinson's diseases as well as muscular dystrophies.
Collapse
Affiliation(s)
- Luciana Hannibal
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Address correspondence to: Luciana Hannibal, Ph.D., Department of Pathobiology, NC2-104, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, Tel: 216-445-9761, Fax: 216-636-0104, , or Donald W. Jacobsen, Ph.D., Department of Cell Biology, NC-10, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, Tel: 216-444-8340, Fax: 216-444-9404,
| | - Patricia M. DiBello
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
| | - Michelle Yu
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
| | - Abby Miller
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195
| | - Sihe Wang
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195
| | - Belinda Willard
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
| | | | - Donald W. Jacobsen
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Address correspondence to: Luciana Hannibal, Ph.D., Department of Pathobiology, NC2-104, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, Tel: 216-445-9761, Fax: 216-636-0104, , or Donald W. Jacobsen, Ph.D., Department of Cell Biology, NC-10, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, Tel: 216-444-8340, Fax: 216-444-9404,
| |
Collapse
|
17
|
Liu Z, Ciappio ED, Crott JW, Brooks RS, Nesvet J, Smith DE, Choi SW, Mason JB. Combined inadequacies of multiple B vitamins amplify colonic Wnt signaling and promote intestinal tumorigenesis in BAT-LacZxApc1638N mice. FASEB J 2011; 25:3136-45. [PMID: 21646397 DOI: 10.1096/fj.11-184143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Wnt pathway is a pivotal signaling cascade in colorectal carcinogenesis. The purpose of this work is to determine whether depletion of folate and other metabolically related B vitamins induces in vivo activation of intestinal Wnt signaling and whether this occurs in parallel with increased tumorigenesis. A hybrid mouse was created by crossing a Wnt-reporter animal (BAT-LacZ) with a model of colorectal cancer (Apc1638N). A mild depletion of folate and vitamins B₂, B₆, and B₁₂ was induced over 16 wk, and the control animals in each instance were pair fed a diet containing the basal requirement of these nutrients. The multiplicity of macroscopic tumors and aberrant crypt foci both increased by ~50% in the hybrid mice fed the depletion diet (P<0.05). A 4-fold elevation in Wnt signaling was produced by the depletion diet (P<0.05) and was accompanied by significant changes in the expression of a number of Wnt-related genes in a pattern consistent with its activation. Proliferation and apoptosis of the colonic mucosa both changed in a protransformational direction (P<0.05). In summary, mild depletion of multiple B vitamins produces in vivo activation of colonic Wnt signaling, implicating it as a key pathway by which B-vitamin inadequacies enhance intestinal tumorigenesis.
Collapse
Affiliation(s)
- Zhenhua Liu
- Vitamins and Carcinogenesis Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Maldonado E, Murillo J, Barrio C, del Río A, Pérez-Miguelsanz J, López-Gordillo Y, Partearroyo T, Paradas I, Maestro C, Martínez-Sanz E, Varela-Moreiras G, Martínez-Álvarez C. Occurrence of cleft-palate and alteration of Tgf-β(3) expression and the mechanisms leading to palatal fusion in mice following dietary folic-acid deficiency. Cells Tissues Organs 2011; 194:406-20. [PMID: 21293104 DOI: 10.1159/000323213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 02/02/2023] Open
Abstract
Folic acid (FA) is essential for numerous bodily functions. Its decrease during pregnancy has been associated with an increased risk of congenital malformations in the progeny. The relationship between FA deficiency and the appearance of cleft palate (CP) is controversial, and little information exists on a possible effect of FA on palate development. We investigated the effect of a 2-8 weeks' induced FA deficiency in female mice on the development of CP in their progeny as well as the mechanisms leading to palatal fusion, i.e. cell proliferation, cell death, and palatal-shelf adhesion and fusion. We showed that an 8 weeks' maternal FA deficiency caused complete CP in the fetuses although a 2 weeks' maternal FA deficiency was enough to alter all the mechanisms analyzed. Since transforming growth factor-β(3) (TGF-β(3)) is crucial for palatal fusion and since most of the mechanisms impaired by FA deficiency were also observed in the palates of Tgf-β(3)null mutant mice, we investigated the presence of TGF-β(3) mRNA, its protein and phospho-SMAD2 in FA-deficient (FAD) mouse palates. Our results evidenced a large reduction in Tgf-β(3) expression in palates of embryos of dams fed an FAD diet for 8 weeks; Tgf-β(3) expression was less reduced in palates of embryos of dams fed an FAD diet for 2 weeks. Addition of TGF-β(3) to palatal-shelf cultures of embryos of dams fed an FAD diet for 2 weeks normalized all the altered mechanisms. Thus, an insufficient folate status may be a risk factor for the development of CP in mice, and exogenous TGF-β(3) compensates this deficit in vitro.
Collapse
Affiliation(s)
- Estela Maldonado
- Departamento de Anatomía y Embriología Humana I, Facultad de Odontología, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Williams JD, Jacobson MK. Photobiological implications of folate depletion and repletion in cultured human keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 99:49-61. [PMID: 20211567 DOI: 10.1016/j.jphotobiol.2010.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 12/15/2022]
Abstract
Folate nutrition is critical in humans and a high dietary folate intake is associated with a diminished risk of many types of cancer. Both synthetic folic acid and the most biologically abundant extracellular reduced folate, 5-methyltetrahydrofolate, are degraded under conditions of ultraviolet radiation (UVR) exposure. Skin is a proliferative tissue with increased folate nutrient demands due to a dependence upon continuous epidermal cell proliferation and differentiation to maintain homeostasis. Regions of skin are also chronically exposed to UVR, which penetrates to the actively dividing basal layer of the epidermis, increasing the folate nutrient demands in order to replace folate species degraded by UVR exposure and to supply the folate cofactors required for repair of photo-damaged DNA. Localized folate deficiencies of skin are a likely consequence of UVR exposure. We report here a cultured keratinocyte model of folate deficiency that has been applied to examine possible effects of folate nutritional deficiencies in skin. Utilizing this model, we were able to quantify the concentrations of key intracellular folate species during folate depletion and repletion. We investigated the hypotheses that the genomic instability observed under conditions of folate deficiency in other cell types extends to skin, adversely effecting cellular capacity to handle UVR insult and that optimizing folate levels in skin is beneficial in preventing or repairing the pro-carcinogenic effects of UVR exposure. Folate restriction leads to rapid depletion of intracellular reduced folates resulting in S-phase growth arrest, increased levels of inherent DNA damage, and increased uracil misincorporation into DNA, without a significant losses in overall cellular viability. Folate depleted keratinocytes were sensitized toward UVR induced apoptosis and displayed a diminished capacity to remove DNA breaks resulting from both photo and oxidative DNA damage. Thus, folate deficiency creates a permissive environment for genomic instability, an early event in the process of skin carcinogenesis. The effects of folate restriction, even in severely depleted, growth-arrested keratinocytes, were reversible by repletion with folic acid. Overall, these results indicate that skin health can be positively influenced by optimal folate nutriture.
Collapse
Affiliation(s)
- Joshua D Williams
- Medicinal and Natural Products Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ 85724, USA.
| | | |
Collapse
|
20
|
Angelilli A, Ritch R. Directed therapy for exfoliation syndrome. Open Ophthalmol J 2009; 3:70-4. [PMID: 19888433 PMCID: PMC2771265 DOI: 10.2174/1874364100903020070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/28/2009] [Accepted: 04/02/2009] [Indexed: 11/22/2022] Open
Abstract
Exfoliation syndrome (XFS) is an age-related disorder of the extracellular matrix that leads the production of abnormal fibrillar material that leads to elevated intraocular pressure and a relatively severe glaucoma. Exfoliation material is deposited in numerous ocular tissues and extraocular organs. XFS is associated with ocular ischemia, cerebrovascular disease, neurodegenerative disease and cardiovascular disease. Current modalities of treatment include intraocular pressure lowering with topical antihypertensives, laser trabeculoplasty and filtration surgery. The disease paradigm for XFS should be expanded to include directed therapy designed specifically to target the underlying disease process. Potential targets include preventing the formation or promoting the depolymerization of exfoliation material. Novel therapies targeting trabecular meshwork may prove particularly useful in the care of exfoliative glaucoma. The systemic and ocular associations of XFS underscore the need for a comprehensive search for neuroprotective agents in its treatment.
Collapse
Affiliation(s)
- Allison Angelilli
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary, New York, NY, USA
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary, New York, NY, USA
- Department of Ophthalmology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
21
|
Abstract
Exfoliation syndrome (XFS) is an age-related disorder of the extracellular matrix that leads the production of abnormal fibrillar material that leads to elevated intraocular pressure and a relatively severe glaucoma. Exfoliation material is deposited in numerous ocular tissues and extraocular organs. XFS is associated with ocular ischemia, cerebrovascular disease, neurodegenerative disease and cardiovascular disease. Current modalities of treatment include intraocular pressure lowering with topical antihypertensives, laser trabeculoplasty and filtration surgery. The disease paradigm for XFS should be expanded to include directed therapy designed specifically to target the underlying disease process. Potential targets include preventing the formation or promoting the depolymerization of exfoliation material. Novel therapies targeting trabecular meshwork may prove particularly useful in the care of exfoliative glaucoma. The systemic and ocular associations of XFS underscore the need for a comprehensive search for neuroprotective agents in its treatment.
Collapse
Affiliation(s)
- Allison Angelilli
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary, New York, NY, USA
| | | |
Collapse
|
22
|
Selga E, Oleaga C, Ramírez S, de Almagro MC, Noé V, Ciudad CJ. Networking of differentially expressed genes in human cancer cells resistant to methotrexate. Genome Med 2009; 1:83. [PMID: 19732436 PMCID: PMC2768990 DOI: 10.1186/gm83] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/31/2009] [Accepted: 09/04/2009] [Indexed: 12/14/2022] Open
Abstract
Background The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). Methods Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. Results Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. Conclusions Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.
Collapse
Affiliation(s)
- Elisabet Selga
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Diagonal Avenue, E-08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Exfoliation syndrome (XFS) is an age-related, generalized disorder of the extracellular matrix characterized by the production and progressive accumulation of a fibrillar extracellular material in many ocular tissues and is the most common identifiable cause of open-angle glaucoma worldwide. XFS plays an etiologic role in open-angle glaucoma, angle-closure glaucoma, cataract, and retinal vein occlusion. It is accompanied by an increase in serious complications at the time of cataract extraction, such as zonular dialysis, capsular rupture, and vitreous loss. It is associated systemically with an increasing number of vascular disorders, hearing loss, and Alzheimer's disease. XFS appears to be a disease of elastic tissue microfibrils. The characteristic fibrils, composed of microfibrillar subunits surrounded by an amorphous matrix comprising various glycoconjugates, contain predominantly epitopes of elastic fibers, such as elastin, tropoelastin, amyloid P, vitronectin, and components of elastic microfibrils, such as fibrillin-1, fibulin-2, vitronectin, microfibril-associated glycoprotein (MAGP-1), and latent TGF-beta binding proteins (LTBP-1 and LTBP-2), the proteoglycans syndecan and versican, the extracellular chaperone clusterin, the cross-linking enzyme lysyl oxidase, and other proteins. A recent milestone study showed that two common single nucleotide polymorphisms in the coding region of the lysyl oxidase-like 1 (LOXL1) gene located on chromosome 15 were specifically associated with XFS and XFG. LOXL1 is a member of the lysyl oxidase family of enzymes, which are essential for the formation, stabilization, maintenance, and remodeling of elastic fibers and prevent age-related loss of elasticity of tissues. LOXL1 protein is a major component of exfoliation deposits and appears to play a role in its accumulation and in concomitant elastotic processes in intra- and extraocular tissues of XFS patients. This discovery should open the way to new approaches and directions of therapy for this protein disorder.
Collapse
Affiliation(s)
- Robert Ritch
- New York Eye and Ear Infirmary, New York, New York 10003, USA.
| |
Collapse
|