1
|
Melo JSVD, Macêdo PFCD, Costa LAR, Batista-de-Oliveira-Hornsby M, Ferreira DJS. Fish oil supplementation and physical exercise during the development period increase cardiac antioxidant capacity in Wistar rats. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220017721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
2
|
Maternal DHA Supplementation during Pregnancy and Lactation in the Rat Protects the Offspring against High-Calorie Diet-Induced Hepatic Steatosis. Nutrients 2021; 13:nu13093075. [PMID: 34578953 PMCID: PMC8468499 DOI: 10.3390/nu13093075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Maternal supplementation during pregnancy with docosahexaenoic acid (DHA) is internationally recommended to avoid postpartum maternal depression in the mother and improve cognitive and neurological outcomes in the offspring. This study was aimed at determining whether this nutritional intervention, in the rat, protects the offspring against the development of obesity and its associated metabolic disorders. Pregnant Wistar rats received an extract of fish oil enriched in DHA or saline (SAL) as placebo by mouth from the beginning of gestation to the end of lactation. At weaning, pups were fed standard chow or a free-choice, high-fat, high-sugar (fc-HFHS) diet. Compared to animals fed standard chow, rats exposed to the fc-HFHS diet exhibited increased body weight, liver weight, body fat and leptin in serum independently of saline or DHA maternal supplementation. Nevertheless, maternal DHA supplementation prevented both the glucose intolerance and the rise in serum insulin resulting from consumption of the fc-HFHS diet. In addition, animals from the DHA-fc-HFHS diet group showed decreased hepatic triglyceride accumulation compared to SAL-fc-HFHS rats. The beneficial effects on glucose homeostasis declined with age in male rats. Yet, the preventive action against hepatic steatosis was still present in 6-month-old animals of both sexes and was associated with decreased hepatic expression of lipogenic genes. The results of the present work show that maternal DHA supplementation during pregnancy programs a healthy phenotype into the offspring that was protective against the deleterious effects of an obesogenic diet.
Collapse
|
3
|
Ferchaud-Roucher V, Zair Y, Aguesse A, Krempf M, Ouguerram K. Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia. J Clin Endocrinol Metab 2020; 105:5893579. [PMID: 32805740 DOI: 10.1210/clinem/dgaa459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/08/2020] [Indexed: 01/17/2023]
Abstract
CONTEXT Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in lipoproteins remain unknown. OBJECTIVES In subjects with hypertriglyceridemia, we analyzed the effect of n-3 LC-PUFAs on the turnover apoB100-containing lipoproteins and on their sphingolipid content and looked for the possible association between these lipid levels and apoB100-containing lipoprotein turnover parameters. METHODS Six subjects underwent a kinetic study before and after n-3 supplementation for 2 months with 1 g of fish oil 3 times day containing 360 mg of eicosapentaenoic acid (EPA) and 240 mg of docosahexaenoic acid (DHA) in the form of triglycerides. We examined apoB100-containing lipoprotein turnover by primed perfusion labeled [5,5,5-2H3]-leucine and determined kinetic parameters using a multicompartmental model. We quantified sphingolipid species content in lipoproteins using mass spectrometry. RESULTS Supplementation decreased very low-density lipoprotein (VLDL), triglyceride, and apoB100 concentrations. The VLDL neutral and polar lipids showed increased n-3 LC-PUFA and decreased n-6 LC-PUFA content. The conversion rate of VLDL1 to VLDL2 and of VLDL2 to LDL was increased. We measured a decrease in total apoB100 production and VLDL1 production. Supplementation reduced the total ceramide concentration in VLDL while the sphingomyelin content in LDL was increased. We found positive correlations between plasma palmitic acid and VLDL ceramide and between VLDL triglyceride and VLDL ceramide, and inverse correlations between VLDL n-3 LC-PUFA and VLDL production. CONCLUSION Based on these results, we hypothesize that the improvement in apoB100 metabolism during n-3 LC-PUFA supplementation is contributed to by changes in sphingolipids.
Collapse
Affiliation(s)
- Véronique Ferchaud-Roucher
- University of Nantes, CHU Nantes, INRAe, UMR 1280 Physiopathology of Nutritional Adaptations, Nantes, France
- CRNH, West Human Nutrition Research Center, Nantes, France
| | - Yassine Zair
- CRNH, West Human Nutrition Research Center, Nantes, France
| | - Audrey Aguesse
- University of Nantes, CHU Nantes, INRAe, UMR 1280 Physiopathology of Nutritional Adaptations, Nantes, France
- CRNH, West Human Nutrition Research Center, Nantes, France
| | - Michel Krempf
- University of Nantes, CHU Nantes, INRAe, UMR 1280 Physiopathology of Nutritional Adaptations, Nantes, France
- CRNH, West Human Nutrition Research Center, Nantes, France
| | - Khadija Ouguerram
- University of Nantes, CHU Nantes, INRAe, UMR 1280 Physiopathology of Nutritional Adaptations, Nantes, France
- CRNH, West Human Nutrition Research Center, Nantes, France
| |
Collapse
|
4
|
Suzuki A, Correia-Santos AM, Vicente GC, Velarde LGC, Boaventura GT. Effects of Maternal Flaxseed Supplementation on Female Offspring of Diabetic Rats in Serum Concentration of Glucose, Insulin, and Thyroid Hormones. INT J VITAM NUTR RES 2019; 89:45-54. [PMID: 30957705 DOI: 10.1024/0300-9831/a000259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective: This study aimed to evaluate the effect of maternal consumption of flaxseed flour and oil on serum concentrations of glucose, insulin, and thyroid hormones of the adult female offspring of diabetic rats. Methods: Wistar rats were induced to diabetes by a high-fat diet (60%) and streptozotocin (35 mg/kg). Rats were mated and once pregnancy was confirmed, were divided into the following groups: Control Group (CG): casein-based diet; High-fat Group (HG): high-fat diet (49%); High-fat Flaxseed Group (HFG): high-fat diet supplemented with 25% flaxseed flour; High-fat Flaxseed Oil group (HOG): high-fat diet, where soya oil was replaced with flaxseed oil. After weaning, female pups (n = 6) from each group were separated, received a commercial rat diet and were sacrificed after 180 days. Serum insulin concentrations were determined by ELISA, the levels of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH) were determined by chemiluminescence. Results: There was a significant reduction in body weight at weaning in HG (-31%), HFG (-33%) and HOG (44%) compared to CG (p = 0.002), which became similar by the end of 180 days. Blood glucose levels were reduced in HFG (-10%, p = 0.044) when compared to CG, and there was no significant difference between groups in relation to insulin, T3, T4, and TSH after 180 days. Conclusions: Maternal severe hyperglycemia during pregnancy and lactation resulted in a microsomal offspring. Maternal consumption of flaxseed reduces blood glucose levels in adult offspring without significant effects on insulin levels and thyroid hormones.
Collapse
Affiliation(s)
- Akemi Suzuki
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - André Manoel Correia-Santos
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gabriela Câmara Vicente
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Luiz Guillermo Coca Velarde
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gilson Teles Boaventura
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Khaire A, Rathod R, Randhir K, Kale A, Joshi S. A combined supplementation of vitamin B12and omega-3 fatty acids across two generations improves cardiometabolic variables in rats. Food Funct 2016; 7:3910-9. [DOI: 10.1039/c6fo00148c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle.
Collapse
Affiliation(s)
- Amrita Khaire
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth Deemed University
- Pune 411043
- India
| | - Richa Rathod
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth Deemed University
- Pune 411043
- India
| | - Karuna Randhir
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth Deemed University
- Pune 411043
- India
| | - Anvita Kale
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth Deemed University
- Pune 411043
- India
| | - Sadhana Joshi
- Department of Nutritional Medicine
- Interactive Research School for Health Affairs
- Bharati Vidyapeeth Deemed University
- Pune 411043
- India
| |
Collapse
|
6
|
da Silva Pedroza AA, Lopes A, Mendes da Silva RF, Braz GR, Nascimento LP, Ferreira DS, dos Santos ÂA, Batista-de-Oliveira-Hornsby M, Lagranha CJ. Can fish oil supplementation and physical training improve oxidative metabolism in aged rat hearts? Life Sci 2015; 137:133-41. [DOI: 10.1016/j.lfs.2015.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/17/2023]
|
7
|
Kabaran S, Besler HT. Do fatty acids affect fetal programming? JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2015; 33:14. [PMID: 26825664 PMCID: PMC5025983 DOI: 10.1186/s41043-015-0018-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. METHODS Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. RESULTS The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. CONCLUSIONS Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.
Collapse
Affiliation(s)
- Seray Kabaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, T.R. North Cyprus via Mersin 10, Turkey.
| | - H Tanju Besler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Samanpazarı/Ankara, Turkey
| |
Collapse
|
8
|
Khaire A, Rathod R, Kale A, Joshi S. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats. Prostaglandins Leukot Essent Fatty Acids 2015; 99:7-17. [PMID: 26003565 DOI: 10.1016/j.plefa.2015.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.
Collapse
Affiliation(s)
- Amrita Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Richa Rathod
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
9
|
Vinayak V, Manoylov KM, Gateau H, Blanckaert V, Hérault J, Pencréac'h G, Marchand J, Gordon R, Schoefs B. Diatom milking: a review and new approaches. Mar Drugs 2015; 13:2629-65. [PMID: 25939034 PMCID: PMC4446598 DOI: 10.3390/md13052629] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors;
Collapse
Affiliation(s)
- Vandana Vinayak
- Department of Criminology & Forensic Science, School of Applied Sciences, Dr. H.S. Gour University (Central University), Sagar Madhya Pradesh, India.
| | - Kalina M Manoylov
- Department of Biological & Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Hélène Gateau
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Vincent Blanckaert
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Josiane Hérault
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Gaëlle Pencréac'h
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Justine Marchand
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Richard Gordon
- Gulf Specimen Aquarium & Marine Laboratory, Panacea, FL 32346, USA.
- Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA.
| | - Benoît Schoefs
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| |
Collapse
|
10
|
Kasbi-Chadli F, Ferchaud-Roucher V, Krempf M, Ouguerram K. Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet. Eur J Nutr 2015; 55:589-599. [DOI: 10.1007/s00394-015-0879-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
|
11
|
A maternal mouse diet with moderately high-fat levels does not lead to maternal obesity but causes mesenteric adipose tissue dysfunction in male offspring. J Nutr Biochem 2014; 26:259-66. [PMID: 25533905 DOI: 10.1016/j.jnutbio.2014.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022]
Abstract
The impact of an increase in maternal fat consumption on fetal metabolic programming separately from maternal obesity remains unclear. The purpose of this study was to document the effect of in utero high-fat diet exposure on the development of metabolic syndrome characteristics in offspring. C57BL/6 female mice were fed either a control diet (10% fat) or a moderately high-fat (MHF) diet (45% fat) until delivery. All pups were fostered to mothers fed with the control diet. Pups were raised on the control diet and assessed until 35 weeks of age. The caloric intake from fat was significantly increased in the MHF dams compared with the control dams. There were no significant differences in the maternal weight at mating or at gestational Day 18 between the two groups. The MHF offspring did not become obese, but they developed hypertension and glucose intolerance. Moreover, the MHF offspring had significantly higher serum non-esterified fatty acid and triglyceride levels during the refeeding state following fasting as compared with the control offspring. Serum adiponectin levels were significantly lower, and the cell size of the mesenteric adipose tissue was significantly larger in the MHF offspring than in the control offspring. The mRNA levels of the proinflammatory macrophage markers in the mesenteric adipose tissue were significantly higher in the MHF offspring than those of the control offspring. These results suggest that in utero high-fat diet exposure causes hypertension and glucose intolerance resulting from mesenteric adipose tissue dysfunction in offspring, independently of maternal obesity.
Collapse
|