1
|
Huang G, Li N, Wu X, Zheng N, Zhao S, Zhang Y, Wang J. Nutrition, production, and processing of virgin omega-3 polyunsaturated fatty acids in dairy: An integrative review. Heliyon 2024; 10:e39810. [PMID: 39748956 PMCID: PMC11693896 DOI: 10.1016/j.heliyon.2024.e39810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 01/04/2025] Open
Abstract
With improving living standards, functional and healthy foods are accounting for an increased share in human food. The development of dairy products that are rich in virgin omega-3 polyunsaturated fatty acids (n-3 PUFAs) has become a topic of interest. Virgin n-3 PUFA milk can provide high-quality protein and calcium, as well as provide n-3 PUFAs to improve human health. This review aims to investigate the effect of virgin n-3 PUFAs in milk on human health and discuss the content of virgin n-3 PUFAs in milk regulated by dairy animal diet and the effect of food processing on the content of virgin n-3 PUFAs in dairy production. The interaction between n-3 PUFAs and proteins in milk is the key to improving the nutritional value of n-3 PUFAs in milk. n-3 PUFA supplementation in the diet of dairy animals is the key method to improve n-3 PUFAs in raw milk, as well as to adjust the types of virgin n-3 PUFAs. Compared with a common source, virgin n-3 PUFAs in milk show higher antioxidant activity, but elevated temperatures and long-term thermal processing should be avoided.
Collapse
Affiliation(s)
- Guoxin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- College of Life Science, Nankai University, Tianjin, 300071, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Ning Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Xufang Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| |
Collapse
|
2
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Seth J, Sharma S, Leong CJ, Rabkin SW. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) Ameliorate Heart Failure through Reductions in Oxidative Stress: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:955. [PMID: 39199201 PMCID: PMC11351866 DOI: 10.3390/antiox13080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The objectives of this study were to explore the role that eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) plays in heart failure (HF), highlighting the potential connection to oxidative stress pathways. Following PRISMA guidelines, we conducted electronic searches of the literature in MEDLINE and EMBASE focusing on serum EPA and/or DHA and EPA and/or DHA supplementation in adult patients with heart failure or who had heart failure as an outcome of this study. We screened 254 studies, encompassing RCTs, observational studies, and cohort studies that examined HF outcomes in relation to either serum concentrations or dietary supplementation of EPA and/or DHA. The exclusion criteria were pediatric patients, non-HF studies, abstracts, editorials, case reports, and reviews. Eleven studies met our criteria. In meta-analyses, high serum concentrations of DHA were associated with a lower rate of heart failure with a hazard ratio of 0.74 (CI = 0.59-0.94). High serum concentrations of EPA also were associated with an overall reduction in major adverse cardiovascular events with a hazard ratio of 0.60 (CI = 0.46-0.77). EPA and DHA, or n3-PUFA administration, were associated with an increased LVEF with a mean difference of 1.55 (CI = 0.07-3.03)%. A potential explanation for these findings is the ability of EPA and DHA to inhibit pathways by which oxidative stress damages the heart or impairs cardiac systolic or diastolic function producing heart failure. Specifically, EPA may lower oxidative stress within the heart by reducing the concentration of reactive oxygen species (ROS) within cardiac tissue by (i) upregulating nuclear factor erythroid 2-related factor 2 (Nrf2), which increases the expression of antioxidant enzyme activity, including heme oxygenase-1, thioredoxin reductase 1, ferritin light chain, ferritin heavy chain, and manganese superoxide dismutase (SOD), (ii) increasing the expression of copper-zinc superoxide dismutase (MnSOD) and glutathione peroxidase, (iii) targeting Free Fatty Acid Receptor 4 (Ffar4), (iv) upregulating expression of heme-oxygenase-1, (v) lowering arachidonic acid levels, and (vi) inhibiting the RhoA/ROCK signaling pathway. DHA may lower oxidative stress within the heart by (i) reducing levels of mitochondrial-fission-related protein DRP-1(ser-63), (ii) promoting the incorporation of cardiolipin within the mitochondrial membrane, (iii) reducing myocardial fibrosis, which leads to diastolic heart failure, (iv) reducing the expression of genes such as Appa, Myh7, and Agtr1α, and (v) reducing inflammatory cytokines such as IL-6, TNF-α. In conclusion, EPA and/or DHA have the potential to improve heart failure, perhaps mediated by their ability to modulate oxidative stress.
Collapse
Affiliation(s)
- Jayant Seth
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Sohat Sharma
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Cameron J. Leong
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
| | - Simon W. Rabkin
- Faculty of Medicine, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada; (J.S.); (S.S.); (C.J.L.)
- Department of Medicine, Division of Cardiology, University of British Columbia, 9th Floor 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
4
|
Chu I, Chen YC, Lai RY, Chan JF, Lee YH, Balazova M, Hsu YHH. Phosphatidylglycerol Supplementation Alters Mitochondrial Morphology and Cardiolipin Composition. MEMBRANES 2022; 12:membranes12040383. [PMID: 35448353 PMCID: PMC9028734 DOI: 10.3390/membranes12040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
The pathogenic variant of the TAZ gene is directly associated with Barth syndrome. Because tafazzin in the mitochondria is responsible for cardiolipin (CL) remodeling, all molecules related to the metabolism of CL can affect or be affected by TAZ mutation. In this study, we intend to recover the distortion of the mitochondrial lipid composition, especially CL, for Barth syndrome treatment. The genetically edited TAZ knockout HAP1 cells were demonstrated to be a suitable cellular model, where CL desaturation occurred and monolyso-CL (MLCL) was accumulated. From the species analysis by mass spectrometry, phosphatidylethanolamine showed changed species content after TAZ knockout. TAZ knockout also caused genetic down-regulation of PGS gene and up-regulation of PNPLA8 gene, which may decrease the biosynthesis of CLs and increase the hydrolysis product MLCL. Supplemented phosphatidylglycerol(18:1)2 (PG(18:1)2) was successfully biosynthesized to mature symmetrical CL and drastically decrease the concentration of MLCL to recover the morphology of mitochondria and the cristae shape of inner mitochondria. Newly synthesized mature CL may induce the down-regulation of PLA2G6 and PNPLA8 genes to potentially decrease MLCL production. The excess supplemented PG was further metabolized into phosphatidylcholine and phosphatidylethanolamine.
Collapse
Affiliation(s)
- I Chu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Ying-Chih Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Ruo-Yun Lai
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Jui-Fen Chan
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Ya-Hui Lee
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
| | - Maria Balazova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (I.C.); (Y.-C.C.); (R.-Y.L.); (J.-F.C.); (Y.-H.L.)
- Correspondence: ; Tel.: +886-4-23590121 (ext. 32230); Fax: +886-4-23590426
| |
Collapse
|
5
|
Dave A, Pillai PP. Docosahexaenoic acid increased MeCP2 mediated mitochondrial respiratory complexes II and III enzyme activities in cortical astrocytes. J Biochem Mol Toxicol 2022; 36:e23002. [PMID: 35174922 DOI: 10.1002/jbt.23002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG-binding protein 2 (MeCP2) in the neurons and glial cells of the central nervous system. Currently, therapeutics for RTT is aimed at restoring the loss-of-function by MeCP2 gene therapy, but that approach has multiple challenges. We have already reported impaired mitochondrial bioenergetics in MeCP2 deficient astrocytes. Docosahexaenoic acid (DHA), a polyunsaturated fatty acid, has been shown with health benefits, but its impact on mitochondrial functions in MeCP2 deficient astrocytes has never been paid much attention. The present study aimed to investigate the effects of DHA on mitochondrial respiratory chain regulation in MeCP2 knockdown astrocytes. We determined NADH dehydrogenase (ubiquinone) flavoprotein 2 (Ndufv2-complex-I), Ubiquinol cytochrome c reductase core protein (Uqcrc1-complex-III) genes expression, Ndufv2 protein expression, respiratory electron transport chain complex I, II, III, and IV enzyme activities, intracellular Ca+2 , reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in DHA pre-incubated MeCP2 knock-down rat primary cortical astrocytes. Our study demonstrates that 100 µM DHA increases MeCP2 gene and protein expression. Increases brain-derived neurotrophic factor (BDNF) and Uqcrc1 gene expression, Ndufv2 protein expression, but has no effect on glial fibrillary acidic protein (GFAP) gene expression. DHA treatment also increases mitochondrial respiratory Complexes II and III activities and reduces intracellular calcium levels. Taken together, the effects of DHA seem independent of MeCP2 deficiency in astrocytes. Hence, further studies are warranted to understand the complicated mechanisms of DHA and for its therapeutic significance in MeCP2-mediated mitochondrial dysfunction and in RTT disease.
Collapse
Affiliation(s)
- Arpita Dave
- Department of Zoology, Division of Neurobiology, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Prakash P Pillai
- Department of Zoology, Division of Neurobiology, The Maharaja Sayajirao University of Baroda, Gujarat, India
| |
Collapse
|
6
|
Oemer G, Koch J, Wohlfarter Y, Lackner K, Gebert REM, Geley S, Zschocke J, Keller MA. The lipid environment modulates cardiolipin and phospholipid constitution in wild type and tafazzin-deficient cells. J Inherit Metab Dis 2022; 45:38-50. [PMID: 34494285 DOI: 10.1002/jimd.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Deficiency of the transacylase tafazzin due to loss of function variants in the X-chromosomal TAFAZZIN gene causes Barth syndrome (BTHS) with severe neonatal or infantile cardiomyopathy, neutropenia, myopathy, and short stature. The condition is characterized by drastic changes in the composition of cardiolipins, a mitochondria-specific class of phospholipids. Studies examining the impact of tafazzin deficiency on the metabolism of other phospholipids have so far generated inhomogeneous and partly conflicting results. Recent studies showed that the cardiolipin composition in cells and different murine tissues is highly dependent on the surrounding lipid environment. In order to study the relevance of different lipid states and tafazzin function for cardiolipin and phospholipid homeostasis we conducted systematic modulation experiments in a CRISPR/Cas9 knock-out model for BTHS. We found that-irrespective of tafazzin function-the composition of cardiolipins strongly depends on the nutritionally available lipid pool. Tafazzin deficiency causes a consistent shift towards cardiolipin species with more saturated and shorter acyl chains. Interestingly, the typical biochemical BTHS phenotype in phospholipid profiles of HEK 293T TAZ knock-out cells strongly depends on the cellular lipid context. In response to altered nutritional lipid compositions, we measured more pronounced changes on phospholipids that were largely masked under standard cell culturing conditions, therewith giving a possible explanation for the conflicting results reported so far on BTHS lipid phenotypes.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita E M Gebert
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Wang Z, Zhao J, Wang Y, Zhang T, Liu R, Chang M, Wang X. Advances in EPA-GPLs: Structural features, mechanisms of nutritional functions and sources. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
9
|
Shilovsky GA, Putyatina TS, Ashapkin VV, Yamskova OV, Lyubetsky VA, Sorokina EV, Shram SI, Markov AV, Vyssokikh MY. Biological Diversity and Remodeling of Cardiolipin in Oxidative Stress and Age-Related Pathologies. BIOCHEMISTRY (MOSCOW) 2020; 84:1469-1483. [PMID: 31870251 DOI: 10.1134/s000629791912006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Age-related dysfunctions are accompanied by impairments in the mitochondrial morphology, activity of signaling pathway, and protein interactions. Cardiolipin is one of the most important phospholipids that maintains the curvature of the cristae and facilitates assembly and interaction of complexes and supercomplexes of the mitochondrial respiratory chain. The fatty acid composition of cardiolipin influences the biophysical properties of the membrane and, therefore, is crucial for the mitochondrial bioenergetics. The presence of unsaturated fatty acids in cardiolipin is the reason of its susceptibility to oxidative damage. Damaged cardiolipin undergoes remodeling by phospholipases, acyltransferases, and transacylases, creating a highly specific fatty acyl profile for each tissue. In this review, we discuss the variability of cardiolipin fatty acid composition in various species and different tissues of the same species, both in the norm and at various pathologies (e.g., age-related diseases, oxidative and traumatic stresses, knockouts/knockdowns of enzymes of the cardiolipin synthesis pathway). Progressive pathologies, including age-related ones, are accompanied by cardiolipin depletion and decrease in the efficiency of its remodeling, as well as the activation of an alternative way of pathological remodeling, which causes replacement of cardiolipin fatty acids with polyunsaturated ones (e.g., arachidonic or docosahexaenoic acids). Drugs or special diet can contribute to the partial restoration of the cardiolipin acyl profile to the one rich in fatty acids characteristic of an intact organ or tissue, thereby correcting the consequences of pathological or insufficient cardiolipin remodeling. In this regard, an urgent task of biomedicine is to study the mechanism of action of mitochondria-targeted antioxidants effective in the treatment of age-related pathologies and capable of accumulating not only in vitro, but also in vivo in the cardiolipin-enriched membrane fragments.
Collapse
Affiliation(s)
- G A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - T S Putyatina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O V Yamskova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - V A Lyubetsky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - E V Sorokina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S I Shram
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A V Markov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - M Y Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
10
|
Ting HC, Chen LT, Chen JY, Huang YL, Xin RC, Chan JF, Hsu YHH. Double bonds of unsaturated fatty acids differentially regulate mitochondrial cardiolipin remodeling. Lipids Health Dis 2019; 18:53. [PMID: 30764880 PMCID: PMC6376731 DOI: 10.1186/s12944-019-0990-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Supplemented fatty acids can incorporate into cardiolipin (CL) and affect its remodeling. The change in CL species may alter the mitochondrial membrane composition, potentially disturbing the mitochondrial structure and function during inflammation. METHOD To investigate the effect of the unsaturation of fatty acids on CL, we supplemented macrophage-like RAW264.7 cells with 18-carbon unsaturated fatty acids including oleic acid (OA, 18:1), linoleic acid (LA, 18:2), α-linolenic acid (ALA, 18:3), γ-linolenic acid (GLA, 18:3), and stearidonic acid (SDA, 18:4). Mitochondrial changes in CL were measured through mass spectrometry. RESULT Our data indicated that OA(18:1) was the most efficient fatty acid that incorporated into CL, forming symmetrical CL without fatty acid elongation and desaturation. In addition, LA(18:2) and ALA(18:3) were further elongated before incorporation, significantly increasing the number of double bonds and the chain length of CL. GLA and SDA were not optimal substrates for remodeling enzymes. The findings of RT-qPCR experiments revealed that none of these changes in CL occurred through the regulation of CL remodeling- or synthesis-related genes. The fatty acid desaturase and transportation genes-Fads2 and Cpt1a, respectively-were differentially regulated by the supplementation of five unsaturated 18-carbon fatty acids. CONCLUSIONS The process of fatty acid incorporation to CL was regulated by the fatty acid desaturation and transportation into mitochondria in macrophage. The double bonds of fatty acids significantly affect the incorporation process and preference. Intact OA(18:1) was incorporated to CL; LA(18:2) and ALA(18:3) were desaturated and elongated to long chain fatty acid before the incorporation; GLA(18:3) and SDA(18:4) were unfavorable for the CL incorporation.
Collapse
Affiliation(s)
- Hsiu-Chi Ting
- Department of Chemistry, Tunghai University, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Li-Tzu Chen
- Department of Chemistry, Tunghai University, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Jo-Yu Chen
- Department of Chemistry, Tunghai University, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Yi-Li Huang
- Department of Chemistry, Tunghai University, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Rui-Cheng Xin
- Department of Chemistry, Tunghai University, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Jui-Fen Chan
- Department of Chemistry, Tunghai University, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China. .,Life Science Research Center, Tunghai University, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China.
| |
Collapse
|
11
|
Ghizoni H, Ventura M, Colle D, Gonçalves CL, de Souza V, Hartwig JM, Santos DB, Naime AA, Cristina de Oliveira Souza V, Lopes MW, Barbosa F, Brocardo PS, Farina M. Effects of perinatal exposure to n-3 polyunsaturated fatty acids and methylmercury on cerebellar and behavioral parameters in mice. Food Chem Toxicol 2018; 120:603-615. [DOI: 10.1016/j.fct.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
|
12
|
Chang WH, Ting HC, Chen WW, Chan JF, Hsu YHH. Omega-3 and omega-6 fatty acid differentially impact cardiolipin remodeling in activated macrophage. Lipids Health Dis 2018; 17:201. [PMID: 30153842 PMCID: PMC6114728 DOI: 10.1186/s12944-018-0845-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023] Open
Abstract
Background The macrophage plays an important role in innate immunity to induce immune responses. Lipid replacement therapy has been shown to change the lipid compositions of mitochondria and potentially becomes an alternative to reduce the inflammatory response. Methods We examined the effects of omega-6 arachidonic acid (AA), omega-3 eicosapentaenoic acid (EPA), and omega-3 docosahexaenoic acid (DHA) supplementation on the activated the macrophage cell line RAW264.7 via KdO2-lipid A (KLA). The mitochondrial cardiolipin (CL) and monolysocardiolipin (MLCL) were analyzed by LC-MS. Results After macrophage activation by KLA, CL shifted to saturated species, but did not affect the quantity of CL. Inhibition of delta 6 desaturase also resulted in the same trend of CL species shift. We further examined the changes in CL and MLCL species induced by polyunsaturated fatty acid supplementation during inflammation. After supplementation of AA, EPA and DHA, the MLCL/CL ratio increased significantly in all treatments. The percentages of the long-chain species highly elevated and those of short-chain species reduced in both CL and MLCL. Conclusions Comparisons of AA, EPA and DHA supplementation revealed that the 20-carbon EPA (20:5) and AA (20:4) triggered higher incorporation and CL remodeling efficiency than 22-carbon DHA (22:6). EPA supplementation not only efficiently extended the chain length of CL but also increased the unsaturation of CL. Electronic supplementary material The online version of this article (10.1186/s12944-018-0845-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wan-Hsin Chang
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Hsiu-Chi Ting
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Wei-Wei Chen
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Jui-Fen Chan
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China. .,Life Science Research Center, Tunghai University, Taichung, No.1727, Sec4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan, Republic of China.
| |
Collapse
|
13
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
14
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
15
|
Chen WW, Chao YJ, Chang WH, Chan JF, Hsu YHH. Phosphatidylglycerol Incorporates into Cardiolipin to Improve Mitochondrial Activity and Inhibits Inflammation. Sci Rep 2018; 8:4919. [PMID: 29559686 PMCID: PMC5861085 DOI: 10.1038/s41598-018-23190-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Chronic inflammation and concomitant oxidative stress can induce mitochondrial dysfunction due to cardiolipin (CL) abnormalities in the mitochondrial inner membrane. To examine the responses of mitochondria to inflammation, macrophage-like RAW264.7 cells were activated by Kdo2-Lipid A (KLA) in our inflammation model, and then the mitochondrial CL profile, mitochondrial activity, and the mRNA expression of CL metabolism-related genes were examined. The results demonstrated that KLA activation caused CL desaturation and the partial loss of mitochondrial activity. KLA activation also induced the gene upregulation of cyclooxygenase (COX)-2 and phospholipid scramblase 3, and the gene downregulation of COX-1, lipoxygenase 5, and Δ-6 desaturase. We further examined the phophatidylglycerol (PG) inhibition effects on inflammation. PG supplementation resulted in a 358-fold inhibition of COX-2 mRNA expression. PG(18:1)2 and PG(18:2)2 were incorporated into CLs to considerably alter the CL profile. The decreased CL and increased monolysocardiolipin (MLCL) quantity resulted in a reduced CL/MLCL ratio. KLA-activated macrophages responded differentially to PG(18:1)2 and PG(18:2)2 supplementation. Specifically, PG(18:1)2 induced less changes in the CL/MLCL ratio than did PG(18:2)2, which resulted in a 50% reduction in the CL/MLCL ratio. However, both PG types rescued 20–30% of the mitochondrial activity that had been affected by KLA activation.
Collapse
Affiliation(s)
- Wei-Wei Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yu-Jen Chao
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Wan-Hsin Chang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jui-Fen Chan
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Life Science Research Center, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
16
|
Chao YJ, Wu WH, Balazova M, Wu TY, Lin J, Liu YW, Hsu YHH. Chlorella diet alters mitochondrial cardiolipin contents differentially in organs of Danio rerio analyzed by a lipidomics approach. PLoS One 2018; 13:e0193042. [PMID: 29494608 PMCID: PMC5832209 DOI: 10.1371/journal.pone.0193042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/02/2018] [Indexed: 01/14/2023] Open
Abstract
The zebrafish (Danio rerio) is an important and widely used vertebrate model organism for the study of human diseases which include disorders caused by dysfunctional mitochondria. Mitochondria play an essential role in both energy metabolism and apoptosis, which are mediated through a mitochondrial phospholipid cardiolipin (CL). In order to examine the cardiolipin profile in the zebrafish model, we developed a CL analysis platform by using liquid chromatography-mass spectrometry (LC-MS). Meanwhile, we tested whether chlorella diet would alter the CL profile in the larval fish, and in various organs of the adult fish. The results showed that chlorella diet increased the chain length of CL in larval fish. In the adult zebrafish, the distribution patterns of CL species were similar between the adult brain and eye tissues, and between the heart and muscles. Interestingly, monolyso-cardiolipin (MLCL) was not detected in brain and eyes but found in other examined tissues, indicating a different remodeling mechanism to maintain the CL integrity. While the adult zebrafish were fed with chlorella for four weeks, the CL distribution showed an increase of the species of saturated acyl chains in the brain and eyes, but a decrease in the other organs. Moreover, chlorella diet led to a decrease of MLCL percentage in organs except the non-MLCL-containing brain and eyes. The CL analysis in the zebrafish provides an important tool for studying the mechanism of mitochondria diseases, and may also be useful for testing medical regimens targeting against the Barth Syndrome.
Collapse
Affiliation(s)
- Yu-Jen Chao
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Wen-Hsin Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Maria Balazova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ting-Yuan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jamie Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Life Science Research Center, Tunghai University, Taichung, Taiwan
| | - Yi-Wen Liu
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Life Science Research Center, Tunghai University, Taichung, Taiwan
- * E-mail: (YWL); (YHH)
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
- Life Science Research Center, Tunghai University, Taichung, Taiwan
- * E-mail: (YWL); (YHH)
| |
Collapse
|
17
|
Marine Lipids on Cardiovascular Diseases and Other Chronic Diseases Induced by Diet: An Insight Provided by Proteomics and Lipidomics. Mar Drugs 2017; 15:md15080258. [PMID: 28820493 PMCID: PMC5577612 DOI: 10.3390/md15080258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Marine lipids, especially ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have largely been linked to prevention of diet-induced diseases. The anti-inflammatory and hypolipidemic properties of EPA and DHA supplementation have been well-described. However, there is still a significant lack of information about their particular mechanism of action. Furthermore, repeated meta-analyses have not shown conclusive results in support of their beneficial health effects. Modern "omics" approaches, namely proteomics and lipidomics, have made it possible to identify some of the mechanisms behind the benefits of marine lipids in the metabolic syndrome and related diseases, i.e., cardiovascular diseases and type 2 diabetes. Although until now their use has been scarce, these "omics" have brought new insights in this area of nutrition research. The purpose of the present review is to comprehensively show the research articles currently available in the literature which have specifically applied proteomics, lipidomics or both approaches to investigate the role of marine lipids intake in the prevention or palliation of these chronic pathologies related to diet. The methodology adopted, the class of marine lipids examined, the diet-related disease studied, and the main findings obtained in each investigation will be reviewed.
Collapse
|
18
|
Eicosapentaenoic acid protects cardiomyoblasts from lipotoxicity in an autophagy-dependent manner. Cell Biol Toxicol 2017; 34:177-189. [PMID: 28741157 DOI: 10.1007/s10565-017-9406-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/14/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS The cardiovascular health benefits of eicosapentaenoic acid (EPA) have been demonstrated previously; however, the exact mechanism underlying them remains unclear. Our previous study found that lipotoxicity induced cardiomyocyte apoptosis via the inhibition of autophagy. Accordingly, in this study, we investigated whether EPA attenuated lipotoxicity-induced cardiomyocyte apoptosis through autophagy regulation. The role of EPA in mitochondrial dynamics was analyzed as well. METHODS To explore how EPA protected against lipotoxicity-induced myocardial injury, cardiomyoblast (H9C2) cells were left untreated or were treated with 400 μM palmitic acid (PAM) and/or 80 μM EPA for 24 h. RESULTS Excessive PAM treatment induced apoptosis. EPA reduced this PAM-induced apoptosis; however, EPA was unable to ameliorate the effects of PAM when autophagy was blocked by 3-methyladenine and bafilomycin A1. PAM blocked the autophagic flux, thus causing the accumulation of autophagosomes and acid vacuoles, whereas EPA restored the autophagic flux. PAM caused a decrease in polyunsaturated fatty acid (PUFA) content and an increase in saturated fatty acid content in the mitochondrial membrane, while EPA was incorporated in the mitochondrial membrane and caused a significant increase in the PUFA content. PAM also decreased the mitochondrial membrane potential, whereas EPA enhanced it. Finally, PAM elevated the expressions of autophagy-related proteins (LC3I, LC3II, p62) and mitochondrial fission protein (Drp1), whereas EPA inhibited their elevation under PAM treatment. CONCLUSIONS EPA reduces lipotoxicity-induced cardiomyoblast apoptosis through its effects on autophagy.
Collapse
|
19
|
Pennington ER, Fix A, Sullivan EM, Brown DA, Kennedy A, Shaikh SR. Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:257-267. [PMID: 27889304 DOI: 10.1016/j.bbamem.2016.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
Cardiolipin (CL) has a critical role in maintaining mitochondrial inner membrane structure. In several conditions such as heart failure and aging, there is loss of CL content and remodeling of CL acyl chains, which are hypothesized to impair mitochondrial inner membrane biophysical organization. Therefore, this study discriminated how CL content and acyl chain composition influenced select properties of simple and complex mitochondrial mimicking model membranes. We focused on monolayer excess area/molecule (a measure of lipid miscibility), bilayer phase transitions, and microdomain organization. In monolayer compression studies, loss of tetralinoleoyl [(18:2)4] CL content decreased the excess area/molecule. Replacement of (18:2)4CL acyl chains with tetraoleoyl [(18:1)4] CL or tetradocosahexaenoyl [(22:6)4] CL generally had little influence on monolayer excess area/molecule; in contrast, replacement of (18:2)4CL acyl chains with tetramyristoyl [(14:0)4] CL increased monolayer excess area/molecule. In bilayers, calorimetric studies showed that substitution of (18:2)4CL with (18:1)4CL or (22:6)4CL lowered the phase transition temperature of phosphatidylcholine vesicles whereas (14:0)4CL had no effect. Finally, quantitative imaging of giant unilamellar vesicles revealed differential effects of CL content and acyl chain composition on microdomain organization, visualized with the fluorescent probe Texas Red DHPE. Notably, microdomain areas were decreased by differing magnitudes upon lowering of (18:2)4CL content and substitution of (18:2)4CL with (14:0)4CL or (22:6)4CL. Conversely, exchanging (18:2)4CL with (18:1)4CL increased microdomain area. Altogether, these data demonstrate that CL content and fatty acyl composition differentially target membrane physical properties, which has implications for understanding how CL regulates mitochondrial activity and the design of CL-specific therapeutics.
Collapse
Affiliation(s)
- Edward Ross Pennington
- Department of Biochemistry & Molecular Biology, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Mail Stop 743, Greenville, NC 27834, USA
| | - Amy Fix
- Department of Biochemistry & Molecular Biology, USA
| | - E Madison Sullivan
- Department of Biochemistry & Molecular Biology, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Mail Stop 743, Greenville, NC 27834, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, 1035 ILSB, 1981 Kraft Drive, Blacksburg, VA 24060, USA
| | - Anthony Kennedy
- Department of Chemistry, East 10th Street, Mail Stop 552, East Carolina University, Greenville, NC 27854, USA
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Mail Stop 743, Greenville, NC 27834, USA.
| |
Collapse
|
20
|
Chao YJ, Chan JF, Hsu YHH. Chemotherapy Drug Induced Discoordination of Mitochondrial Life Cycle Detected by Cardiolipin Fluctuation. PLoS One 2016; 11:e0162457. [PMID: 27627658 PMCID: PMC5023183 DOI: 10.1371/journal.pone.0162457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/23/2016] [Indexed: 12/03/2022] Open
Abstract
Chemotherapy drugs have been prescribed for the systemic treatment of cancer. We selected three chemotherapy drugs, including methotrexate, mitomycine C and vincristine to inhibit the proliferation of HT1080 human fibrosarcoma cells in S, G2 and M phases of the cell cycle respectively. These chemotherapy drugs showed significant toxicity and growth inhibition to the cancer cells measured by MTT assay. After treated with a 50% inhibitory dosage for 48 hours, these cancer cells showed significant accumulation of cardiolipin (CL), which was a reverse trend of the nutritional deficiency induced arrest at G1 phase. The quantity of each CL species was further semi-quantitated by HPLC-ion trap mass spectrometer. Methotraxate treatment caused unique increases of acyl chain length on CL, which were the opposite of the serum starvation, mitomycine C and vincristine treatments. Although mitomycine C and vincristine have different mechanisms to induce cell cycle arrest, these two drugs displayed similar effects on decreasing chain length of CL. Continuation of CL synthesis during cell cycle arrest indicated the chemotherapy drugs resulting in the discoordination of the mitochondrial life cycle from the cell cycle and thus caused the accumulation of CL. These finding reveals that the pre-remodeling nascent CL accumulates during the methotraxate induced arrest; however, the post-remodeling mature CL accumulates during the mitomycine C and vincristine induced arrest after the synthesis phase.
Collapse
Affiliation(s)
- Yu-Jen Chao
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jui-Fen Chan
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
- Life Science Research Center, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
21
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|