1
|
Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 2024; 21:76. [PMID: 39511615 PMCID: PMC11542427 DOI: 10.1186/s12979-024-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In the last forty years, the number of people over 60 years of age has increased significantly owing to better nutrition and lower rates of infectious diseases in developing countries. Aging significantly impacts adipose tissue, which plays crucial role in hormone regulation and energy storage. This can lead to imbalances in glucose, and overall energy homeostasis within the body. Aging is irreversible phenomena and potentially causing lipid infiltration in other organs, leading to systemic inflammation, metabolic disorders. This review investigates various pathways contributing to aging-related defects in adipogenesis, such as changes in adipose tissue function and distribution. Polyphenols, a diverse group of natural compounds, can mitigate aging effects via free radicals, oxidative stress, inflammation, senescence, and age-related diseases. Polyphenols like resveratrol, quercetin and EGCG exhibit distinct mechanisms and regulate crucial pathways, such as the TGF-β, AMPK, Wnt, PPAR-γ, and C/EBP transcription factors, and influence epigenetic modifications, such as DNA methylation and histone modification. This review highlights the critical importance of understanding the intricate relationship between aging and adipogenesis for optimizing well-being with increasing age. These findings highlight the therapeutic potential of polyphenols like quercetin and resveratrol in enhancing adipose tissue function and promoting healthy aging.
Collapse
Affiliation(s)
- Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Dai H, Huang Z, Shi F, Li S, Zhang Y, Wu H, Lv Z. Effects of maternal hawthorn-leaf flavonoid supplementation on the intestinal development of offspring chicks. Poult Sci 2024; 103:103969. [PMID: 39047316 PMCID: PMC11318554 DOI: 10.1016/j.psj.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders in maternal generation during the late egg-laying period have adverse effects on neonatal development. The study was conducted to clarify the effects of maternal feeding of hawthorn-leaf flavonoid (HF) on the microbial community and intestinal development of chicks. Breeder hens were fed a basic corn-soybean diet, while the treatment groups were supplemented with 30 or 60 mg/kg HF. The offspring chicks were divided into CON, LHF, and HHF groups according to the maternal treatments. Maternal HF supplementation at 60 mg/kg increased the average daily gain and decreased the feed conversion rate of chicks (P < 0.05), but did not affect the average daily feed intake. HF treatments increased the villus height to crypt depth ratio and up-regulated the protein expressions of PCNA, IGF-1R, PI3K and p-mTOR in the jejunum (P < 0.05) of 1-day-old and 14-day-old chicks. Additionally, maternal HF treatment up-regulated the mRNA expression of tight junction transmembrane proteins (occludin) and scaffolding proteins (ZO-1 and ZO-2) in the jejunum of 1-day-old chicks (P < 0.05). Moreover, the maternal effects of HF on ZO-1 expression could last for 14 d (P < 0.05). Interestingly, dietary HF supplementation altered the vertically transmitted microbial community from breeder hens to chicks, especially increased the relative abundance of probiotics (i.e., Clostridium_sensu_stricto_1) in the meconium of chicks (P < 0.05), which may help with early gut microbiota colonization and intestinal development. In summary, dietary HF supplementation for breeder hens altered the bacterial community of neonates and might promote intestinal development of chicks through the IGF-1R/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hongjian Dai
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwu Huang
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simeng Li
- College of Biotechnology, Aksu Vocational and Technical College, Aksu 843000, China
| | - Yi Zhang
- School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Haoze Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Ru Q, Huang K, Yu R, Wu X, Shen J. Effects of Camellia oleifera seed shell polyphenols and 1,3,6-tri-O-galloylglucose on androgenic alopecia via inhibiting 5a-reductase and regulating Wnt/β-catenin pathway. Fitoterapia 2024; 177:106116. [PMID: 38977254 DOI: 10.1016/j.fitote.2024.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Androgenetic alopecia (AGA) is the leading cause of hair loss in adults. Its pathogenesis remains unclear, but studies have shown that the androgen-mediated 5α-reductase-AR receptor pathway and the Wnt/β-catenin signaling pathway play significant roles. Camellia oleifera is an oil plant, and its fruits have been documented in folklore as having a hair cleansing effect and preventing hair loss. In this study, we used UPLC-Q-TOF-MS/MS to identify the structure of the substances contained in the polyphenols of Camellia oleifera seed shell. These polyphenols are mainly used for shampooing and anti-hair loss purposes. Next, we used molecular docking technology to dock 41 polyphenols and steroidal 5 alpha reductase 2 (SRD5A2). We found that the docking scores and docking sites of 1,3,6-tri-O-galloylglucose (TGG) and finasteride were similar. We constructed a mouse model of DHT-induced AGA to evaluate the effects of Camellia oleifera seed shell polyphenols (CSSP) and TGG in vivo. Treatment with CSSP and TGG alleviated alopecia symptoms and reduced DHT levels. Additionally, CSSP and TGG were able to reduce androgen levels by inhibiting the SRD5A2-AR receptor signaling pathway. Furthermore, by regulating the secretion of growth factors and activating the Wnt/β-catenin signaling pathway, CSSP and TGG were able to extend the duration of hair growth. In conclusion, our study showed that CSSP and TGG can improve AGA in C57BL/6 J mice and reduce the effect of androgen on hair follicle through the two signaling pathways mentioned above. This provides new insights into the material basis and mechanism of the treatment of AGA by CSSP.
Collapse
Affiliation(s)
- Qi Ru
- Natural Products and Human Research Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Huang
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 217, Reading RG6 6AH, United Kingdom
| | - Ruining Yu
- Natural Products and Human Research Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqin Wu
- Natural Products and Human Research Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianfu Shen
- Natural Products and Human Research Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Muraleedharan A, Ray SK. Epigallocatechin-3-Gallate and Genistein for Decreasing Gut Dysbiosis, Inhibiting Inflammasomes, and Aiding Autophagy in Alzheimer's Disease. Brain Sci 2024; 14:96. [PMID: 38275516 PMCID: PMC10813550 DOI: 10.3390/brainsci14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
There are approximately 24 million cases of Alzheimer's disease (AD) worldwide, and the number of cases is expected to increase four-fold by 2050. AD is a neurodegenerative disease that leads to severe dementia in most patients. There are several neuropathological signs of AD, such as deposition of amyloid beta (Aβ) plaques, formation of neurofibrillary tangles (NFTs), neuronal loss, activation of inflammasomes, and declining autophagy. Several of these hallmarks are linked to the gut microbiome. The gastrointestinal (GI) tract contains microbial diversity, which is important in regulating several functions in the brain via the gut-brain axis (GBA). The disruption of the balance in the gut microbiota is known as gut dysbiosis. Recent studies strongly support that targeting gut dysbiosis with selective bioflavonoids is a highly plausible solution to attenuate activation of inflammasomes (contributing to neuroinflammation) and resume autophagy (a cellular mechanism for lysosomal degradation of the damaged components and recycling of building blocks) to stop AD pathogenesis. This review is focused on two bioflavonoids, specifically epigallocatechin-3-gallate (EGCG) and genistein (GS), as a possible new paradigm of treatment for maintaining healthy gut microbiota in AD due to their implications in modulating crucial AD signaling pathways. The combination of EGCG and GS has a higher potential than either agent alone to attenuate the signaling pathways implicated in AD pathogenesis. The effects of EGCG and GS on altering gut microbiota and GBA were also explored, along with conclusions from various delivery methods to increase the bioavailability of these bioflavonoids in the body.
Collapse
Affiliation(s)
- Ahalya Muraleedharan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
5
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
6
|
Chen K, Gao P, Li Z, Dai A, Yang M, Chen S, Su J, Deng Z, Li L. Forkhead Box O Signaling Pathway in Skeletal Muscle Atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1648-1657. [PMID: 36174679 DOI: 10.1016/j.ajpath.2022.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Skeletal muscle atrophy is the consequence of protein degradation exceeding protein synthesis because of disease, aging, and physical inactivity. Patients with skeletal muscle atrophy have decreased muscle mass and fiber cross-sectional area, and experience reduced survival quality and motor function. The forkhead box O (FOXO) signaling pathway plays an important role in the pathogenesis of skeletal muscle atrophy by regulating E3 ubiquitin ligases and some autophagy factors. However, the mechanism of FOXO signaling pathway leading to skeletal muscle atrophy is still unclear. The development of treatment strategies for skeletal muscle atrophy has been a thorny clinical problem. FOXO-targeted therapy to treat skeletal muscle atrophy is a promising approach, and an increasing number of relevant studies have been reported. This article reviews the mechanism and therapeutic targets of the FOXO signaling pathway mediating skeletal muscle atrophy, and provides ideas for the clinical treatment of this condition.
Collapse
Affiliation(s)
- Kun Chen
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Peng Gao
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zongchao Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Aonan Dai
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ming Yang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; School of Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingyue Su
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; School of Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; School of Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Liangjun Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
| |
Collapse
|
7
|
Zarifi SH, Bagherniya M, Banach M, Johnston TP, Sahebkar A. Phytochemicals: A potential therapeutic intervention for the prevention and treatment of cachexia. Clin Nutr 2022; 41:2843-2857. [PMID: 36403384 DOI: 10.1016/j.clnu.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Cachexia, a multifactorial and often irreversible wasting syndrome, is often associated with the final phase of several chronic disorders. Although cachexia is characterized by skeletal muscle wasting and adipose tissue loss, it is a syndrome affecting different organs, which ultimately results in systemic complications and impaired quality of life. The pathogenesis and underlying molecular mechanisms of cachexia are not fully understood, and currently there are no effective standard treatments or approved drug therapies to completely reverse cachexia. Moreover, adequate nutritional interventions alone cannot significantly improve cachexia. Other approaches to ameliorate cachexia are urgently needed, and thus, the role of medicinal plants has received considerable importance in this respect due to their beneficial health properties. Increasing evidence indicates great potential of medicinal plants and their phytochemicals as an alternative and promising treatment strategy to reduce the symptoms of many diseases including cachexia. This article reviews the current status of cachexia, the molecular mechanisms of primary events driving cachexia, and state-of-the-art knowledge that reports the preventive and therapeutic activities of multiple families of phytochemical compounds and their pharmacological mode of action, which may hold promise as an alternative treatment modality for the management of cachexia. Based on our review of various in vitro and in vivo models of cachexia, we would conclude that phytochemicals may have therapeutic potential to attenuate cachexia, although clinical trials are required to unequivocally confirm this premise.
Collapse
Affiliation(s)
- Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Cabezas Perez RJ, Ávila Rodríguez MF, Rosero Salazar DH. Exogenous Antioxidants in Remyelination and Skeletal Muscle Recovery. Biomedicines 2022; 10:biomedicines10102557. [PMID: 36289819 PMCID: PMC9599955 DOI: 10.3390/biomedicines10102557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory, oxidative, and autoimmune responses cause severe damage to the nervous system inducing loss of myelin layers or demyelination. Even though demyelination is not considered a direct cause of skeletal muscle disease there is extensive damage in skeletal muscles following demyelination and impaired innervation. In vitro and in vivo evidence using exogenous antioxidants in models of demyelination is showing improvements in myelin formation alongside skeletal muscle recovery. For instance, exogenous antioxidants such as EGCG stimulate nerve structure maintenance, activation of glial cells, and reduction of oxidative stress. Consequently, this evidence is also showing structural and functional recovery of impaired skeletal muscles due to demyelination. Exogenous antioxidants mostly target inflammatory pathways and stimulate remyelinating mechanisms that seem to induce skeletal muscle regeneration. Therefore, the aim of this review is to describe recent evidence related to the molecular mechanisms in nerve and skeletal muscle regeneration induced by exogenous antioxidants. This will be relevant to identifying further targets to improve treatments of neuromuscular demyelinating diseases.
Collapse
|
9
|
Satta S, Shahabipour F, Gao W, Lentz SR, Perlman S, Ashammakhi N, Hsiai T. Engineering viral genomics and nano-liposomes in microfluidic platforms for patient-specific analysis of SARS-CoV-2 variants. Theranostics 2022; 12:4779-4790. [PMID: 35832078 PMCID: PMC9254234 DOI: 10.7150/thno.72339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuing to spread globally, contributing to the persistence of the COVID-19 pandemic. Increasing resources have been focused on developing vaccines and therapeutics that target the Spike glycoprotein of SARS-CoV-2. Recent advances in microfluidics have the potential to recapitulate viral infection in the organ-specific platforms, known as organ-on-a-chip (OoC), in which binding of SARS-CoV-2 Spike protein to the angiotensin-converting enzyme 2 (ACE2) of the host cells occurs. As the COVID-19 pandemic lingers, there remains an unmet need to screen emerging mutations, to predict viral transmissibility and pathogenicity, and to assess the strength of neutralizing antibodies following vaccination or reinfection. Conventional detection of SARS-CoV-2 variants relies on two-dimensional (2-D) cell culture methods, whereas simulating the micro-environment requires three-dimensional (3-D) systems. To this end, analyzing SARS-CoV-2-mediated pathogenicity via microfluidic platforms minimizes the experimental cost, duration, and optimization needed for animal studies, and obviates the ethical concerns associated with the use of primates. In this context, this review highlights the state-of-the-art strategy to engineer the nano-liposomes that can be conjugated with SARS-CoV-2 Spike mutations or genomic sequences in the microfluidic platforms; thereby, allowing for screening the rising SARS-CoV-2 variants and predicting COVID-19-associated coagulation. Furthermore, introducing viral genomics to the patient-specific blood accelerates the discovery of therapeutic targets in the face of evolving viral variants, including B1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), c.37 (Lambda), and B.1.1.529 (Omicron). Thus, engineering nano-liposomes to encapsulate SARS-CoV-2 viral genomic sequences enables rapid detection of SARS-CoV-2 variants in the long COVID-19 era.
Collapse
Affiliation(s)
- Sandro Satta
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, California, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| | - Fahimeh Shahabipour
- Skin Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Wei Gao
- Medical Engineering, California Institute of Technology, California, Pasadena, USA
| | - Steven R. Lentz
- Section of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Medicine, College of Medicine, University of Iowa, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, College of Medicine, University of Iowa, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering & Applied Science, University of California, CA, USA
- Institute for Quantitative Health Science & Engineering and Department of Biomedical Engineering, College of Engineering, Michigan State University, MI, USA
| | - Tzung Hsiai
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, California, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
10
|
Sun Y, Wang Z, Nie C, Xue L, Wang Y, Liu J, Fan M, Zhang D, He R, Zhang X, Qian H, Chow BKC, Li Y, Wang L. Hydroxysafflor yellow A triggered a fast-to-slow muscle fiber-type conversion via regulating FoxO1 in myocytes. Food Funct 2022; 13:6317-6328. [PMID: 35611953 DOI: 10.1039/d1fo03612b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxysafflor yellow A (HSYA) is the main bioactive component of safflower and has been reported to have significant health-promoting abilities. However, the regulation of HSYA on different types of skeletal myofibers is largely unknown. Here, in vitro experiments found that the water extract of safflower could significantly increase MyHC I, MB and Tnni1 mRNA expression while downregulating MyHC IIb mRNA expression. Furthermore, HSYA triggered fast-to-slow fiber-type switching and increased gene expression related to mitochondrial biosynthesis both in vitro and in vivo. Autodock analyses proved that FoxO1 is a potential target of HSYA, and qRT-PCR and western blotting further showed that HSYA significantly promoted the activation of the FoxO1 signaling pathway. Additionally, the levels of PGC1α, downstream of FoxO1, also significantly increased after HSYA treatment. Together, our findings suggested that HSYA triggered a fast-to-slow myofiber-type shift through the FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhijun Wang
- COFCO Aerocean Oils & Grain Industrial Co. Ltd, Shawan, No. 1 West Park Road, West Urumqi Road, Shawan County, Tacheng District, Xinjiang Province 832100, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Yue J, Aobulikasimu A, Sun W, Liu S, Xie W, Sun W. Targeted regulation of FoxO1 in chondrocytes prevents age-related osteoarthritis via autophagy mechanism. J Cell Mol Med 2022; 26:3075-3082. [PMID: 35560791 PMCID: PMC9170816 DOI: 10.1111/jcmm.17319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is designated as a biological recycling process to maintain cellular homeostasis by the sequestration of damaged proteins and organelles in plasma and cargo delivery to lysosomes for degradation and reclamation. This organelle recycling process promotes chondrocyte homeostasis and has been previously implicated in osteoarthritis (OA). Autophagy is widely involved in regulating chondrocyte degeneration markers such as MMPs, ADAMSTs and Col10 in chondrocytes. The critical autophagy‐related (ATG) proteins have now been considered the protective factor against late‐onset OA. The current research field proposes that the autophagic pathway is closely related to chondrocyte activity. However, the mechanism is complex yet needs precise elaboration. This review concluded that FoxO1, a forkhead O family protein, which is a decisive mediator of autophagy, facilitates the pathological process of osteoarthritis. Diverse mechanisms regulate the activity of FoxO1 and promote the initiation of autophagy, including the prominent AMPK and Sirt‐2 cellular pathways. FoxO1 transactive is regulated by phosphorylation and acetylation processes, which modulates the downstream ATGs expression. Furthermore, FoxO1 induces autophagy by directly interacting with ATGs proteins, which control the formation of autophagosomes and lysosomes fusion. This review will discuss cutting‐edge evidence that the FoxO–autophagy pathway plays an essential regulator in the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aikebaier Aobulikasimu
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shuyu Liu
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei Xie
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021; 26:molecules26164887. [PMID: 34443483 PMCID: PMC8398525 DOI: 10.3390/molecules26164887] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.
Collapse
|
13
|
Lnc-ORA interacts with microRNA-532-3p and IGF2BP2 to inhibit skeletal muscle myogenesis. J Biol Chem 2021; 296:100376. [PMID: 33548229 PMCID: PMC8289116 DOI: 10.1016/j.jbc.2021.100376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is one of the most important organs of the animal body. Long noncoding RNAs play a crucial role in the regulation of skeletal muscle development via several mechanisms. We recently identified obesity-related lncRNA (lnc-ORA) in a search for long noncoding RNAs that influence adipogenesis, finding it impacted adipocyte differentiation by regulating the PI3K/protein kinase B/mammalian target of rapamycin pathway. However, whether lnc-ORA has additional roles, specifically in skeletal muscle myogenesis, is not known. Here, we found that lnc-ORA was significantly differentially expressed with age in mouse skeletal muscle tissue and predominantly located in the cytoplasm. Overexpression of lnc-ORA promoted C2C12 myoblast proliferation and inhibited myoblast differentiation. In contrast, lnc-ORA knockdown repressed myoblast proliferation and facilitated myoblast differentiation. Interestingly, silencing of lnc-ORA rescued dexamethasone-induced muscle atrophy in vitro. Furthermore, adeno-associated virus 9–mediated overexpression of lnc-ORA decreased muscle mass and the cross-sectional area of muscle fiber by upregulating the levels of muscle atrophy–related genes and downregulating the levels of myogenic differentiation–related genes in vivo. Mechanistically, lnc-ORA inhibited skeletal muscle myogenesis by acting as a sponge of miR-532-3p, which targets the phosphatase and tensin homolog gene; the resultant changes in phosphatase and tensin homolog suppressed the PI3K/protein kinase B signaling pathway. In addition, lnc-ORA interacted with insulin-like growth factor 2 mRNA-binding protein 2 and reduced the stability of myogenesis genes, such as myogenic differentiation 1 and myosin heavy chain. Collectively, these findings indicate that lnc-ORA could be a novel underlying regulator of skeletal muscle development.
Collapse
|
14
|
Abstract
Significance: Regular contractile activity plays a critical role in maintaining skeletal muscle morphological integrity and physiological function. If the muscle is forced to stop contraction, such as during limb immobilization (IM), the IGF/Akt/mTOR signaling pathway that normally stimulates protein synthesis and inhibits proteolysis will be suppressed, whereas the FoxO-controlled catabolic pathways such as ubiquitin-proteolysis and autophagy/mitophagy will be activated and dominate, resulting in muscle fiber atrophy. Recent Advances: Mitochondria occupy a central position in the regulation of both protein synthesis and degradation through several redox-sensitive pathways, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mitochondrial fusion and fission proteins, mitophagy, and sirtuins. Prolonged IM downregulates PGC-1α due to AMPK (5'-AMP-activated protein kinase) and FoxO activation, thus decreasing mitochondrial biogenesis and causing oxidative damage. Decrease of mitochondrial inner membrane potential and increase of mitochondrial fission can trigger cascades of mitophagy leading to loss of mitochondrial homeostasis (mitostasis), inflammation, and apoptosis. The phenotypic outcomes of these disorders are compromised muscle function and fiber atrophy. Critical Issues: Given the molecular mechanism of the pathogenesis, it is imperative that the integrity of intracellular signaling be restored to prevent the deterioration. So far, overexpression of PGC-1α via transgene and in vivo DNA transfection has been found to be effective in ameliorating mitostasis and reduces IM-induced muscle atrophy. Nutritional supplementation of select amino acids and phytochemicals also provides mechanistic and practical insights into the prevention of muscle disuse atrophy. Future Directions: In light of the importance of mitochondria in regulating the various critical signaling pathways, future work should focus on exploring new epigenetic strategies to restore mitostasis and redox balance.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Dongwook Yeo
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Chounghun Kang
- Departmet Physical Education, Inha University, Incheon, South Korea
| |
Collapse
|
15
|
Ferreira LT, de Sousa Filho CPB, Marinovic MP, Rodrigues AC, Otton R. Green tea polyphenols positively impact hepatic metabolism of adiponectin-knockout lean mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
16
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
17
|
Veri N, As E, Mutiah C, Seriana I, Malinda R. Protective effect of green tea on tunica adventitia and endothelial changes resulting from depot medroxy progesterone acetate. J Taibah Univ Med Sci 2019; 14:8-13. [PMID: 31435385 PMCID: PMC6694920 DOI: 10.1016/j.jtumed.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022] Open
Abstract
Objective This study aimed to analyse the effects of green tea in inhibiting uterine atrophy and vascular changes due to the use of depot medroxy progesterone acetate (DMPA). Methods Twenty-five female Wistar rats aged one to two months were randomly assigned to five treatment groups: control group, DMPA-induced group, and DMPA-induced group orally treated with green tea extract (at 10.8 mg/day, 21.6 mg/day, or 43.2 mg/day). Histologic analysis of uterine and vascular tissues was performed with haematoxylin-eosin staining. Results DMPA decreased the thickness of endometrium and tunica adventitia, as well as significantly decreased endothelial cell count (p < 0.05). DMPA-induced decreases in the thickness of tunica adventitia and endothelial cell count could be significantly inhibited by green tea extract (p < 0.05). Conclusion This study concluded that DMPA triggered the depletion of uterine endometrium and vascular tunica adventitia and decreased endothelial cell count. Green tea extract at the highest dose normalized tunica adventitia and endothelial changes to the basal value.
Collapse
Affiliation(s)
- Nora Veri
- Midwifery Study Program, Ministry of Health Polytechnic of Langsa, Aceh, Special Region of Aceh, Indonesia
| | - Emilda As
- Midwifery Study Program, Ministry of Health Polytechnic of Langsa, Aceh, Special Region of Aceh, Indonesia
| | - Cut Mutiah
- Midwifery Study Program, Ministry of Health Polytechnic of Langsa, Aceh, Special Region of Aceh, Indonesia
| | - Irma Seriana
- Department of Midwifery, Polytechnic of Health-Ministry of Health, Aceh, Indonesia
| | - Risnati Malinda
- STIKES Bustanul Ulum of Langsa, Aceh, Special Region of Aceh, Indonesia
| |
Collapse
|
18
|
Silveira AC, Dias JP, Santos VM, Oliveira PF, Alves MG, Rato L, Silva BM. The Action of Polyphenols in Diabetes Mellitus and Alzheimer's Disease: A Common Agent for Overlapping Pathologies. Curr Neuropharmacol 2019; 17:590-613. [PMID: 30081787 PMCID: PMC6712293 DOI: 10.2174/1570159x16666180803162059] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes Mellitus (DM) and Alzheimer's disease (AD) are two prevalent diseases in modern societies, which are caused mainly by current lifestyle, aging and genetic alterations. It has already been demonstrated that these two diseases are associated, since individuals suffering from DM are prone to develop AD. Conversely, it is also known that individuals with AD are more susceptible to DM, namely type 2 diabetes (T2DM). Therefore, these two pathologies, although completely different in terms of symptomatology, end up sharing several mechanisms at the molecular level, with the most obvious being the increase of oxidative stress and inflammation. Polyphenols are natural compounds widely spread in fruits and vegetables whose dietary intake has been considered inversely proportional to the incidence of DM and AD. So, it is believed that this group of phytochemicals may have preventive and therapeutic potential, not only by reducing the risk and delaying the development of these pathologies, but also by improving brain's metabolic profile and cognitive function. The aim of this review is to understand the extent to which DM and AD are related pathologies, the degree of similarity and the relationship between them, to detail the molecular mechanisms by which polyphenols may exert a protective effect, such as antioxidant and anti-inflammatory effects, and highlight possible advantages of their use as common preventive and therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Branca M. Silva
- Address correspondence to this author at the Faculty of Health Sciences, University of Beira Interior, Av. Infante D.Henrique, 6201-506 Covilhã, Portugal; Tel: +351 275319700; Fax: +351 275 329 183; E-mail:
| |
Collapse
|
19
|
Ding J, Cong YF, Liu B, Miao J, Wang L. Aberrant Protein Turn-Over Associated With Myofibrillar Disorganization in FHL1 Knockout Mice. Front Genet 2018; 9:273. [PMID: 30083183 PMCID: PMC6065255 DOI: 10.3389/fgene.2018.00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in the FHL1 gene, and FHL1 protein deletion, are associated with rare hereditary myopathies and cardiomyopathies. FHL1-null mice develop age-dependent myopathy and increased autophagic activity. However, the molecular pathway involved in contractile function and increased autophagic activity in the FHL1-null mouse has not yet been fully elucidated. In this study, FHL1 protein was knocked out in mice using Transcription Activator-like Effector Nucleases (TALENs) and the IRS1-FOXO1/mTOR signaling pathway was investigated in skeletal muscles and heart. TALEN constructs caused targeted mutations in 30% of newborn mice; these mutations caused a deletion of 1–13 base pairs which blocked synthesis of the full-length FHL1 protein. Furthermore, 2.5-month old FHL1-null male mice were not prone to global muscular fatigue when compared with WT littermates, but histological analysis and ultrastructural analysis by transmission electron microscopy confirmed the presence of myofibrillar disorganization and the accumulation of autophagosome or autolysosome-like structures in FHL1-null mice. Moreover, autophagy and mitophagy were both activated in FHL1 KO mice and the degradation of autophagic lysosomes was impeded. Enhanced autophagic activity in FHL1 KO mice was induced by FOXO1 up-regulation and protein synthesis was increased via mTOR. The cytoskeletal proteins, MYBPC2 and LDB3, were involved in the formation of pathological changes in FHL1 KO mice. Markers of early differentiation (MEF2C and MYOD1) and terminal differentiation (total MYH) were both up-regulated in tibialis anterior (TA) muscles in FHL1 KO mice. The number of type I and type II fibers increased in FHL1-null TA muscles, but the number of type| | b, and type | | d fibers were both reduced in FHL1-null TA muscles. The results obtained from the heart were consistent with those from the skeletal muscle and indicated autophagic activation by FOXO1 and an increase in protein synthesis via mTOR also occurred in the heart tissue of FHL1 knockout mice. In conclusion, aberrant protein turn-over associated with myofibrillar disorganization in FHL1 knockout mice. the up-regulation of FOXO1 was associated with enhanced autophagic activity and pathological changes in the muscle fibers of FHL1 KO mice. These results indicated that autophagy activated by FOXO1 is a promising therapeutic target for hereditary myopathies and cardiomyopathies induced by FHL1.
Collapse
Affiliation(s)
- Jingjing Ding
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| | - Yan Fei Cong
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| | - Bo Liu
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| | - Jianing Miao
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| | - Lili Wang
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Sakuma K, Yamaguchi A. Drugs of Muscle Wasting and Their Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:463-481. [PMID: 30390265 DOI: 10.1007/978-981-13-1435-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness such as cachexia, atrophy, and sarcopenia are characterized by marked decreases in the protein content, myonuclear number, muscle fiber size, and muscle strength. This chapter focuses on the recent advances of pharmacological approach for attenuating muscle wasting.A myostatin-inhibiting approach is very intriguing to prevent sarcopenia but not muscular dystrophy in humans. Supplementation with ghrelin is also an important candidate to combat sarcopenia as well as cachexia. Treatment with soy isoflavone, trichostatin A (TSA), and cyclooxygenase 2 (Cox2) inhibitors seems to be effective modulators attenuating muscle wasting, although further systematic research is needed on this treatment in particular concerning side effects.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
21
|
Liu Y, Russell SJ, Schneider MF. Foxo1 nucleo-cytoplasmic distribution and unidirectional nuclear influx are the same in nuclei in a single skeletal muscle fiber but vary between fibers. Am J Physiol Cell Physiol 2017; 314:C334-C348. [PMID: 29187365 DOI: 10.1152/ajpcell.00168.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Foxo transcription factors promote protein breakdown and atrophy of skeletal muscle fibers. Foxo transcriptional effectiveness is largely determined by phosphorylation-dependent nucleo-cytoplasmic shuttling. Imaging Foxo1-green fluorescent protein (GFP) over time in 124 nuclei in 68 multinucleated adult skeletal muscle fibers under control culture conditions reveals large variability between fibers in Foxo1-GFP nucleo-cytoplasmic concentration ratio (N/C) and in the apparent rate coefficient ( kI') for Foxo1-GFP unidirectional nuclear influx (measured with efflux blocked by leptomycin B). Pairs of values of N/C or of kI' from different nuclei in the same fiber were essentially the same, but only weakly correlated in nuclei from different fibers in the same culture well. Thus, fiber to fiber variability of cellular factors, but not extracellular factors, determines Foxo1 distribution. Over all nuclei, N/C and kI' were closely proportional, indicating that kI' is the major determinant of Foxo1 distribution. IGF-I activation of Foxo kinase Akt reduces variability by decreasing kI' and N/C in all fibers. However, inhibiting Akt did not drive kI' uniformly high, indicating other pathways in Foxo1 regulation.
Collapse
Affiliation(s)
- Yewei Liu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Sarah J Russell
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
22
|
The regulation of FOXO1 and its role in disease progression. Life Sci 2017; 193:124-131. [PMID: 29158051 DOI: 10.1016/j.lfs.2017.11.030] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/14/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022]
Abstract
Cell proliferation, apoptosis, autophagy, oxidative stress and metabolic dysregulation are the basis of many diseases. Forkhead box transcription factor O1 (FOXO1) changes in response to cellular stimulation and maintains tissue homeostasis during the above-mentioned physiological and pathological processes. Substantial evidences indicate that FOXO1's function depends on the modulation of downstream targets such as apoptosis- and autophagy-associated genes, anti-oxidative stress enzymes, cell cycle arrest genes, and metabolic and immune regulators. In addition, oxidative stress, high glucose and other stimulations induce the regulation of FOXO1 activity via PI3k-Akt, JNK, CBP, Sirtuins, ubiquitin E3 ligases, etc., which mediate multiple signalling pathways. Subsequent post-transcriptional modifications, including phosphorylation, ubiquitination, acetylation, deacetylation, arginine methylation and O-GlcNAcylation, activate or inhibit FOXO1. The regulation of FOXO1 and its role might provide a significant avenue for the prevention and treatment of diseases. However, the subtle mechanisms of the post-transcriptional modifications and the effect of FOXO1 remain elusive and even conflicting in the development of many diseases. The determination of these questions potentially has implications for further research regarding FOXO1 signalling and the identification of targeted drugs.
Collapse
|
23
|
Antidiabetic Effects of Tea. Molecules 2017; 22:molecules22050849. [PMID: 28531120 PMCID: PMC6154530 DOI: 10.3390/molecules22050849] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disease resulted from insulin secretory defect or insulin resistance and it is a leading cause of death around the world. The care of DM patients consumes a huge budget due to the high frequency of consultations and long hospitalizations, making DM a serious threat to both human health and global economies. Tea contains abundant polyphenols and caffeine which showed antidiabetic activity, so the development of antidiabetic medications from tea and its extracts is increasingly receiving attention. However, the results claiming an association between tea consumption and reduced DM risk are inconsistent. The advances in the epidemiologic evidence and the underlying antidiabetic mechanisms of tea are reviewed in this paper. The inconsistent results and the possible causes behind them are also discussed.
Collapse
|