1
|
Ruvira S, Rodríguez-Rodríguez P, Abderrahim F, Morales D, Cañas S, Valdivieso A, Ramiro-Cortijo D, Arribas SM. Resistance artery vasodilator pathways involved in the antihypertensive effects of cocoa shell extract in rats exposed to fetal undernutrition. J Physiol 2024. [PMID: 39388282 DOI: 10.1113/jp287097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Fetal undernutrition establishes the foundations for hypertension development, with oxidative stress being a key hallmark. A growing interest in nutraceuticals for treating hypertension and environmental waste concerns prompted the present study aiming to evaluate whether supplementation with a polyphenol enriched extract from cocoa shell (CSE), a by-product from the chocolate industry with antioxidant properties, reduces hypertension of developmental origin, thus improving mesenteric resistance artery (MRA) vasodilatation. Adult male and female offspring from rats exposed to 50% food restriction from mid-gestation (maternal undernutrition, MUN) and controls were used. Supplementation was given through a gelatine (vehicle, VEH) or containing CSE (250 mg kg-1 day-1) 5 days week-1 for 3 weeks. Systolic blood pressure (SBP) was assessed by tail-cuff plethysmography. MRA function was studied by wire myography, and superoxide anion and nitric oxide were investigated by fluorescent indicators and confocal microscopy. Compared to control-VEH, MUN-VEH males showed significantly higher SBP, reduced MRA as well as relaxation to ACh, sodium nitroprusside and the AMPK agonist 5-aminoimidazole-4-carboxamide riboside, but not to isoproterenol. In MUN males, endothelial endothelium-derived hyperpolarizing factor and nitric oxide were unaltered, but MRA released a vasoconstrictor prostanoid and produced higher levels of superoxide anion. CSE normalized blood pressure and improved all above-mentioned MRA alterations in MUN males without an effect on control counterparts, except the reduction of superoxide anion. MUN-VEH females were normotensive and only showed a tendency towards larger superoxide anion production, which was abolished by CSE. CSE supplementation reduces SBP improving endothelium-dependent and independent MRA vasodilatation, related to local superoxide anion reduction, being a potential nutraceutical ingredient to counteract hypertension, in addition to contributing to the circular economy. KEY POINTS: Fetal undernutrition induces hypertension in males associated with deficient resistance artery vasodilatation, being normalized by cocoa shell extract (CSE). Release of a cyclooxygenase-derived contractile factor is the main endothelial alteration, which is abolished by CSE. AMPK and soluble guanylyl cyclase-mediated relaxation are also reduced in smooth muscle cells from maternal undernutrition resistance arteries, being improved by CSE. Vascular oxidative damage caused by excess superoxide anion generation can account for impaired vasodilatation, which is improved by CSE. The capacity of CSE to improve relaxation is probably related to its antioxidant bioactive factors, and thus cocoa shell is a potential food by-product to treat hypertension.
Collapse
Affiliation(s)
- Santiago Ruvira
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fatima Abderrahim
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Dolores Morales
- Confocal Microscopy Service (SiDI), Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Silvia Cañas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Madrid, Spain
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (UAM-CSIC), Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Valdivieso
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Burgos-Santamaría A, Rodríguez-Rodríguez P, Arnalich-Montiel A, Arribas SM, Fernández-Riveira C, Barrio-Pérez IM, Río J, Ligero JM, Quintana-Villamandos B. OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair-A Randomized Clinical Trial. Int J Mol Sci 2024; 25:10770. [PMID: 39409100 PMCID: PMC11476523 DOI: 10.3390/ijms251910770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
An aortic aneurysm (AA) is a life-threatening condition. Oxidative stress may be a common pathway linking multiple mechanisms of an AA, including vascular inflammation and metalloproteinase activity. Endovascular aneurysm repair (EVAR) is the preferred surgical approach for AA treatment. During surgery, inflammation and ischemia-reperfusion injury occur, and reactive oxygen species (ROS) play a key role in their modulation. Increased perioperative oxidative stress is associated with higher postoperative complications. The use of volatile anesthetics during surgery has been shown to reduce oxidative stress. Individual biomarkers only partially reflect the oxidative status of the patients. A global indicator of oxidative stress (OXY-SCORE) has been validated in various pathologies. This study aimed to compare the effects of the main volatile anesthetics, sevoflurane and desflurane, on oxidative status during EVAR. Eighty consecutive patients undergoing EVAR were randomized into two groups: sevoflurane and desflurane. Plasma biomarkers of oxidative damage (protein carbonylation and malondialdehyde) and antioxidant defense (total thiols, glutathione, nitrates, superoxide dismutase, and catalase activity) were measured before surgery and 24 h after EVAR. The analysis of individual biomarkers showed no significant differences between the groups. However, the OXY-SCORE was positive in the desflurane group (indicating a shift towards antioxidants) and negative in the sevoflurane group (favoring oxidants) (p < 0.044). Compared to sevoflurane, desflurane had a positive effect on oxidative stress during EVAR. The OXY-SCORE could provide a more comprehensive perspective on oxidative stress in this patient population.
Collapse
Affiliation(s)
- Alba Burgos-Santamaría
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Autónoma University, 28029 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Ana Arnalich-Montiel
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Autónoma University, 28029 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Carmen Fernández-Riveira
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
| | - I. María Barrio-Pérez
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
| | - Javier Río
- Department of Angiology and Vascular Surgery, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (J.R.); (J.M.L.)
| | - José Manuel Ligero
- Department of Angiology and Vascular Surgery, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (J.R.); (J.M.L.)
| | - Begoña Quintana-Villamandos
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
3
|
Ahidjo N, Maidawa Yaya F, Njamnshi WY, Rissia-Ngo Pambe JC, Ndianteng EW, Nwasike CNC, Kemmo C, Choupo AC, Meka’a Zang LY, Pieme AC, Vecchio L, Ngadjui BT, Njamnshi AK, Seke Etet PF. Therapeutic potential of Garcinia kola against experimental toxoplasmosis in rats. Brain Commun 2024; 6:fcae255. [PMID: 39130514 PMCID: PMC11316209 DOI: 10.1093/braincomms/fcae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
Cerebral toxoplasmosis, the most common opportunistic infection in immunocompromised individuals, is increasingly reported in immunocompetent individuals due to mutant strains of Toxoplasma gondii, which, furthermore, are reported to be resistant to available treatments. We assessed the therapeutic potential of Garcinia kola, a medicinal plant reported to have antiplasmodial and neuroprotective properties, against experimental toxoplasmosis in rats. Severe toxoplasmosis was induced in male Wistar rats (156.7 ± 4.1 g) by injecting them with 10 million tachyzoites in suspension in 500 µl of saline (intraperitoneal), and exclusive feeding with a low-protein diet [7% protein (weight by weight)]. Then, animals were treated with hexane, dichloromethane, and ethyl acetate fractions of Garcinia kola. Footprints were analysed and open-field and elevated plus maze ethological tests were performed when symptoms of severe disease were observed in the infected controls. After sacrifice, blood samples were processed for Giemsa staining, organs were processed for haematoxylin and eosin staining, and brains were processed for Nissl staining and cell counting. Compared with non-infected animals, the infected control animals had significantly lower body weights (30.27%↓, P = 0.001), higher body temperatures (P = 0.033) during the sacrifice, together with signs of cognitive impairment and neurologic deficits such as lower open-field arena centre entries (P < 0.001), elevated plus maze open-arm time (P = 0.029) and decreased stride lengths and step widths (P < 0.001), as well as neuronal loss in various brain areas. The ethyl acetate fraction of Garcinia kola prevented or mitigated most of these signs. Our data suggest that the ethyl acetate fraction of Garcinia kola has therapeutic potential against cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Nene Ahidjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Frederic Maidawa Yaya
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | - Wepnyu Y Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Judith C Rissia-Ngo Pambe
- Department of Morphological Sciences and Pathological Anatomy, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Ethel W Ndianteng
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Caroline N C Nwasike
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Christelle Kemmo
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Arnaud C Choupo
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Luc Yvan Meka’a Zang
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Anatole C Pieme
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Lorella Vecchio
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | | | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Paul F Seke Etet
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| |
Collapse
|
4
|
Monedero Cobeta I, Gomez Bris R, Rodríguez-Rodríguez P, Saez A, Quintana-Villamandos B, González Granado JM, Arribas SM. Fetal programming and lactation: modulating gene expression in response to undernutrition during intrauterine life. Pediatr Res 2024; 95:1764-1774. [PMID: 38326476 DOI: 10.1038/s41390-024-03042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Adverse environmental conditions during intrauterine life, known as fetal programming, significantly contribute to the development of diseases in adulthood. Fetal programming induced by factors like maternal undernutrition leads to low birth weight and increases the risk of cardiometabolic diseases. METHODS We studied a rat model of maternal undernutrition during gestation (MUN) to investigate gene expression changes in cardiac tissue using RNA-sequencing of day 0-1 litters. Moreover, we analyzed the impact of lactation at day 21, in MUN model and cross-fostering experiments, on cardiac structure and function assessed by transthoracic echocardiography, and gene expression changes though qPCR. RESULTS Our analysis identified specific genes with altered expression in MUN rats at birth. Two of them, Agt and Pparg, stand out for being associated with cardiac hypertrophy and fibrosis. At the end of the lactation period, MUN males showed increased expression of Agt and decreased expression of Pparg, correlating with cardiac hypertrophy. Cross-fostering experiments revealed that lactation with control breastmilk mitigated these expression changes reducing cardiac hypertrophy in MUN males. CONCLUSIONS Our findings highlight the interplay between fetal programming, gene expression, and cardiac hypertrophy suggesting that lactation period is a potential intervention window to mitigate the effects of fetal programming. IMPACT Heart remodeling involves the alteration of several groups of genes and lactation period plays a key role in establishing gene expression modification caused by fetal programming. We could identify expression changes of relevant genes in cardiac tissue induced by undernutrition during fetal life. We expose the contribution of the lactation period in modulating the expression of Agt and Pparg, relevant genes associated with cardiac hypertrophy. This evidence reveal lactation as a crucial intervention window for preventing or countering fetal programming.
Collapse
Affiliation(s)
- Ignacio Monedero Cobeta
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Raquel Gomez Bris
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | | | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Spain
| | - Begoña Quintana-Villamandos
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jose Maria González Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041, Madrid, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain.
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Ruvira S, Rodríguez-Rodríguez P, Ramiro-Cortijo D, Martín-Trueba M, Martín-Cabrejas MA, Arribas SM. Cocoa Shell Extract Reduces Blood Pressure in Aged Hypertensive Rats via the Cardiovascular Upregulation of Endothelial Nitric Oxide Synthase and Nuclear Factor (Erythroid-Derived 2)-like 2 Protein Expression. Antioxidants (Basel) 2023; 12:1698. [PMID: 37760002 PMCID: PMC10525428 DOI: 10.3390/antiox12091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Cocoa shell is a by-product of cocoa manufacturing. We obtained an aqueous extract (CSE) rich in polyphenols and methylxanthines with antioxidant and vasodilatory properties. We aimed to evaluate the effects of CSE supplementation in aged hypertensive rats on blood pressure and the mechanism implicated. Eighteen-month-old male and female rats exposed to undernutrition during the fetal period who developed hypertension, with a milder form in females, were used (MUN rats). Systolic blood pressure (SBP; tail-cuff plethysmography) and a blood sample were obtained before (basal) and after CSE supplementation (250 mg/kg; 2 weeks, 5 days/week). Plasma SOD, catalase activity, GSH, carbonyls, and lipid peroxidation were assessed (spectrophotometry). In hearts and aortas from supplemented and non-supplemented age-matched rats, we evaluated the protein expression of SOD-2, catalase, HO-1, UCP-2, total and phosphorylated Nrf2 and e-NOS (Western blot), and aorta media thickness (confocal microscopy). MUN males had higher SBP compared with females, which was reduced via CSE supplementation with a significant difference for group, sex, and interaction effect. After supplementation with plasma, GSH, but not catalase or SOD, was elevated in males and females. Compared with non-supplemented rats, CSE-supplemented males and females exhibited increased aorta e-NOS and Nrf2 protein expression and cardiac phosphorylated-Nrf2, without changes in SOD-2, catalase, HO-1, or UCP-2 in cardiovascular tissues or aorta remodeling. In conclusion, CSE supplementation induces antihypertensive actions related to the upregulation of e-NOS and Nrf2 expression and GSH elevation and a possible direct antioxidant effect of CSE bioactive components. Two weeks of supplementation may be insufficient to increase antioxidant enzyme expression.
Collapse
Affiliation(s)
- Santiago Ruvira
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Ph.D. Program in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 2, 28049 Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - María Martín-Trueba
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (UAM-CSIC), C/Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - María A. Martín-Cabrejas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (UAM-CSIC), C/Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Rodríguez-Rodríguez P, Poasakate A, Ruvira-Hernando S, Gutierrez-Arzapalo PY, Böger R, Hannemann J, Lüneburg N, Arribas SM. Vascular nitrosative stress in hypertension induced by fetal undernutrition in rats. J Physiol Biochem 2023; 79:555-568. [PMID: 36821073 PMCID: PMC10338582 DOI: 10.1007/s13105-023-00949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Fetal undernutrition predisposes to hypertension development. Since nitric oxide (NO) is a key factor in blood pressure control, we aimed to investigate the role of NO alterations in hypertension induced by fetal undernutrition in rats. Male and female offspring from dams exposed to undernutrition during the second half of gestation (MUN) were studied at 21 days (normotensive) and 6 months of age (hypertension developed only in males). In aorta, we analyzed total and phosphorylated endothelial NO synthase (eNOS, p-eNOS), 3-nitrotyrosine (3-NT), and Nrf2 (Western blot). In plasma we assessed L-arginine, asymmetric and symmetric dimethylarginine (ADMA, SDMA; LC-MS/MS), nitrates (NOx, Griess reaction), carbonyl groups, and lipid peroxidation (spectrophotometry). In iliac arteries, we studied superoxide anion production (DHE staining, confocal microscopy) and vasodilatation to acetylcholine (isometric tension). Twenty-one-day-old MUN offspring did not show alterations in vascular e-NOS or 3NT expression, plasma L-Arg/ADMA ratio, or NOx. Compared to control group, 6-month-old MUN rats showed increased aortic expression of p-eNOS/eNOS and 3-NT, being Nrf2 expression lower, elevated plasma L-arginine/ADMA, NOx and carbonyl levels, increased iliac artery DHE staining and reduced acetylcholine-mediated relaxations. These alterations in MUN rats were sex-dependent, affecting males. However, females showed some signs of endothelial dysfunction. We conclude that increased NO production in the context of a pro-oxidative environment, leads to vascular nitrosative damage and dysfunction, which can participate in hypertension development in MUN males. Females show a better adaptation, but signs of endothelial dysfunction, which can explain hypertension in ageing.
Collapse
Affiliation(s)
- Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029, Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) multidisciplinary research group, Universidad Autónoma de Madrid, Madrid, Spain
| | - Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Santiago Ruvira-Hernando
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029, Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) multidisciplinary research group, Universidad Autónoma de Madrid, Madrid, Spain
- PhD student at Pharmacology and Physiology PhD Program, Doctorate School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Perla Y Gutierrez-Arzapalo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029, Madrid, Spain
- Present address: Centro de Investigación y Docencia en Ciencias de la Salud (CIDOCS), Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Rainer Böger
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hannemann
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Lüneburg
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia M Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029, Madrid, Spain.
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) multidisciplinary research group, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Adachi H, Ishiyama S, Mochizuki K. Dietary protein restriction during pregnancy and/or early weaning reduces the number of goblet cells in the small and large intestines of female mice pups. Biochem Biophys Rep 2023; 34:101475. [PMID: 37197734 PMCID: PMC10183655 DOI: 10.1016/j.bbrep.2023.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Background It remains unclear whether goblet cell numbers in offspring are altered by maternal nutritional status and/or early weaning. Herein, using a murine model, we clarified whether a low-protein (LP) diet during pregnancy and/or early weaning changes villus structures, goblet cell numbers, mucin intensity, and mucin mRNA expression in the mucosal layer throughout the intestines in mice offspring. Methods We examined villus-crypt structures and goblet cell numbers using hematoxylin-eosin staining. By performing alcian blue-PAS staining and RT-qPCR, we investigated mucin intensity in the mucosal layer and mRNA expressions of Muc2 and Muc4, respectively, in 17 (early weaning)-, 21 (normal weaning)- and 28-day old mice born from LP diet-fed mothers or those born from control diet-fed mothers during pregnancy. Results Dietary protein restriction reduced goblet cell numbers in throughout the intestine, particularly in the duodenum and jejunum, and mucin intensity in the mucosal layer at the border of the jejunum and colon. The LP diet increased villus height and decreased villus thickness throughout the small intestine and crypt depth and width in the cecum and colon. Conclusions Dietary protein restriction during pregnancy and/or early weaning decreased the number of goblet cells, mucin intensity in the mucosal layer, and the Muc2 and Muc4 mRNA expressions in the small and large intestines, and affected the villus and crypt structures in the small and large intestines in female offspring mice during and after weaning. General significance Dietary abnormalities in fetal and weaning periods affects intestinal function.
Collapse
|
8
|
Martín-Oropesa R, Rodríguez-Rodríguez P, Pazó-Sayós L, Arnalich-Montiel A, Arribas SM, González MC, Quintana-Villamandos B. Maintenance over Time of the Effect Produced by Esmolol on the Structure and Function of Coronary Arteries in Hypertensive Heart Diseases. Antioxidants (Basel) 2022; 11:antiox11102042. [PMID: 36290764 PMCID: PMC9598983 DOI: 10.3390/antiox11102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
We previously observed that esmolol treatment for 48 h reduced vascular lesions in spontaneously hypertensive rats (SHRs). Therefore, we investigated whether this beneficial effect is persistent after withdrawal. Fourteen-month-old SHRs (SHR-Es) were treated with esmolol (300 μg/kg/min) or a vehicle for 48 h. Two separate groups were also given identical treatment, but they were then monitored for a further 1 week and 1 month after drug withdrawal. We analyzed the geometry and composition of the coronary artery, vascular reactivity and plasma redox status. Esmolol significantly decreased wall thickness (medial layer thickness and cell count), external diameter and cross-sectional area of the artery, and this effect persisted 1 month after drug withdrawal. Esmolol significantly improved endothelium-dependent relaxation by ACh (10−9–10−4 mol/L); this effect persisted 1 week (10−9–10−4 mol/L) and 1 month (10−6–10−4 mol/L) after withdrawal. Esmolol reduced the contraction induced by 5-HT (3 × 10−8–3 × 10−5 mol/L), and this effect persisted 1 week after withdrawal (10−6–3 × 10−5 mol/L). Esmolol increased nitrates and reduced glutathione, and it decreased malondialdehyde and carbonyls; this enhancement was maintained 1 month after withdrawal. This study shows that the effect of esmolol on coronary remodeling is persistent after treatment withdrawal in SHRs, and the improvement in plasma oxidative status can be implicated in this effect.
Collapse
Affiliation(s)
- Raquel Martín-Oropesa
- Department of Anesthesiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | | | - Laia Pazó-Sayós
- Department of Anesthesiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Ana Arnalich-Montiel
- Department of Anesthesiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Maria Carmen González
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Begoña Quintana-Villamandos
- Department of Anesthesiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Department of Pharmacology and Toxicology Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
Rodríguez-Rodríguez P, Monedero-Cobeta I, Ramiro-Cortijo D, Puthong S, Quintana-Villamandos B, Gil-Ramírez A, Cañas S, Ruvira S, Arribas SM. Slower Growth during Lactation Rescues Early Cardiovascular and Adipose Tissue Hypertrophy Induced by Fetal Undernutrition in Rats. Biomedicines 2022; 10:biomedicines10102504. [PMID: 36289765 PMCID: PMC9599558 DOI: 10.3390/biomedicines10102504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Low birth weight (LBW) and accelerated growth during lactation are associated with cardiometabolic disease development. LBW offspring from rats exposed to undernutrition during gestation (MUN) develops hypertension. In this rat model, we tested if slower postnatal growth improves early cardiometabolic alterations. MUN dams were fed ad libitum during gestation days 1–10, with 50% of the daily intake during days 11–21 and ad libitum during lactation. Control dams were always fed ad libitum. Pups were maintained with their own mother or cross-fostered. Body weight and length were recorded weekly, and breastmilk was obtained. At weaning, the heart was evaluated by echocardiography, and aorta structure and adipocytes in white perivascular fat were studied by confocal microscopy (size, % beige-adipocytes by Mitotracker staining). Breastmilk protein and fat content were not significantly different between groups. Compared to controls, MUN males significantly accelerated body weight gain during the exclusive lactation period (days 1–14) while females accelerated during the last week; length growth was slower in MUN rats from both sexes. By weaning, MUN males, but not females, showed reduced diastolic function and hypertrophy in the heart, aorta, and adipocytes; the percentage of beige-type adipocytes was smaller in MUN males and females. Fostering MUN offspring on control dams significantly reduced weight gain rate, cardiovascular, and fat hypertrophy, increasing beige-adipocyte proportion. Control offspring nursed by MUN mothers reduced body growth gain, without cardiovascular modifications. In conclusion, slower growth during lactation can rescue early cardiovascular alterations induced by fetal undernutrition. Exclusive lactation was a key period, despite no modifications in breastmilk macronutrients, suggesting the role of bioactive components. Our data support that lactation is a key period to counteract cardiometabolic disease programming in LBW and a potential intervention window for the mother.
Collapse
Affiliation(s)
- Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Ignacio Monedero-Cobeta
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Sophida Puthong
- Department of Physiology, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Alicia Gil-Ramírez
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Silvia Cañas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Santiago Ruvira
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
10
|
Elevated Vascular Sympathetic Neurotransmission and Remodelling Is a Common Feature in a Rat Model of Foetal Programming of Hypertension and SHR. Biomedicines 2022; 10:biomedicines10081902. [PMID: 36009448 PMCID: PMC9405620 DOI: 10.3390/biomedicines10081902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertension is of unknown aetiology, with sympathetic nervous system hyperactivation being one of the possible contributors. Hypertension may have a developmental origin, owing to the exposure to adverse factors during the intrauterine period. Our hypothesis is that sympathetic hyperinnervation may be implicated in hypertension of developmental origins, being this is a common feature with essential hypertension. Two-animal models were used: spontaneously hypertensive rats (SHR-model of essential hypertension) and offspring from dams exposed to undernutrition (MUN-model of developmental hypertension), with their respective controls. In adult males, we assessed systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), sympathetic nerve function (3H-tritium release), sympathetic innervation (immunohistochemistry) and vascular remodelling (histology). MUN showed higher SBP/DBP, but not HR, while SHR exhibited higher SBP/DBP/HR. Regarding the mesenteric arteries, MUN and SHR showed reduced lumen, increased media and adventitial thickness and increased wall/lumen and connective tissue compared to respective controls. Regarding sympathetic nerve activation, MUN and SHR showed higher tritium release compared to controls. Total tritium tissue/tyrosine hydroxylase detection was higher in SHR and MUN adventitia arteries compared to respective controls. In conclusion, sympathetic hyperinnervation may be one of the contributors to vascular remodelling and hypertension in rats exposed to undernutrition during intrauterine life, which is a common feature with spontaneous hypertension.
Collapse
|
11
|
Mendes Garrido Abregú F, Caniffi C, Arranz CT, Tomat AL. Impact of Zinc Deficiency During Prenatal and/or Postnatal Life on Cardiovascular and Metabolic Diseases: Experimental and Clinical Evidence. Adv Nutr 2022; 13:833-845. [PMID: 35167660 PMCID: PMC9156367 DOI: 10.1093/advances/nmac012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
This review summarizes the latest findings, from animal models and clinical studies, regarding the cardiovascular and metabolic consequences in adult life of zinc deficiency (ZD) during prenatal and early postnatal life. The effect of zinc supplementation (ZS) and new insights about sex differences in the phenotype and severity of cardiovascular and metabolic alterations are also discussed. Zinc has antioxidant, anti-inflammatory, and antiapoptotic properties and regulates the activity of enzymes involved in regulation of the metabolic, cardiovascular, and renal systems. Maternal ZD is associated with intrauterine growth restriction and low birth weight (LBW). Breast-fed preterm infants are at risk of ZD due to lower zinc uptake during fetal life and reduced gut absorption capacity. ZS is most likely to increase growth in preterm infants and survival in LBW infants in countries where ZD is prevalent. Studies performed in rats revealed that moderate ZD during prenatal and/or early postnatal growth is a risk factor for the development of hypertension, cardiovascular and renal alterations, obesity, and diabetes in adult life. An adequate zinc diet during postweaning life does not always prevent the cardiovascular and metabolic alterations induced by zinc restriction during fetal and lactation periods. Male rats are more susceptible to this injury than females, and some of the mechanisms involved include: 1) alterations in organogenesis, 2) activation of oxidative, apoptotic, and inflammatory processes, 3) dysfunction of nitric oxide and renin-angiotensin-aldosterone systems, 4) changes in glucose and lipid metabolism, and 5) adipose tissue dysfunction. Safeguarding body zinc requirements during pregnancy, lactation, and growth periods could become a new target in the prevention and treatment of cardiovascular and metabolic disorders. Further research is needed to elucidate the efficacy of ZS during early stages of growth to prevent the development of these diseases later in life.
Collapse
Affiliation(s)
- Facundo Mendes Garrido Abregú
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Caniffi
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina T Arranz
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
12
|
Vieira-Rocha MS, Rodriguez-Rodriguez P, Ferreira-Duarte M, Faria M, Sousa JB, Morato M, Arribas SM, Diniz C. Fetal Undernutrition Modifies Vascular RAS Balance Enhancing Oxidative Damage and Contributing to Remodeling. Int J Mol Sci 2022; 23:1233. [PMID: 35163158 PMCID: PMC8835999 DOI: 10.3390/ijms23031233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fetal stress is known to increase susceptibility to cardiometabolic diseases and hypertension in adult age in a process known as fetal programming. This study investigated the relationship between vascular RAS, oxidative damage and remodeling in fetal programming. Six-month old Sprague-Dawley offspring from mothers that were fed ad libitum (CONTROL) or with 50% intake during the second half of gestation (maternal undernutrition, MUN) were used. qPCR or immunohistochemistry were used to obtain the expression of receptors and enzymes. Plasma levels of carbonyls were measured by spectrophotometry. In mesenteric arteries from MUN rats we detected an upregulation of ACE, ACE2, AT1 receptors and NADPH oxidase, and lower expression of AT2, Mas and MrgD receptors compared to CONTROL. Systolic and diastolic blood pressure and plasma levels of carbonyls were higher in MUN than in CONTROL. Vascular morphology evidenced an increased media/lumen ratio and adventitia/lumen ratio, and more connective tissue in MUN compared to CONTROL. In conclusion, fetal undernutrition indices RAS alterations and oxidative damage which may contribute to the remodeling of mesenteric arteries, and increase the risk of adverse cardiovascular events and hypertension.
Collapse
Affiliation(s)
- Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Pilar Rodriguez-Rodriguez
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Miguel Faria
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
- Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Joana Beatriz Sousa
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| |
Collapse
|
13
|
Masiero BC, Calsa B, Oliveira CA, Moretti de Andrade TA, Esquisatto MAM, Catisti R. Morphofunctional and immunological cardiac evaluation of protein restriction on rat offspring. Ann Anat 2022; 241:151889. [DOI: 10.1016/j.aanat.2022.151889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
|
14
|
Implication of RAS in Postnatal Cardiac Remodeling, Fibrosis and Dysfunction Induced by Fetal Undernutrition. PATHOPHYSIOLOGY 2021; 28:273-290. [PMID: 35366262 PMCID: PMC8830479 DOI: 10.3390/pathophysiology28020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Fetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated cardiovascular fibrosis and remodeling, and lactation is a key developmental window. We aimed to assess if alterations in RAS during lactation participate in cardiac dysfunction associated with fetal undernutrition. Control dams received food ad libitum, and MUN had 50% nutrient restriction during the second half of gestation. Both dams were fed ad libitum during lactation, and male offspring were studied at weaning. We assessed: ventricular structure and function (echocardiography); blood pressure (intra-arterially, anesthetized rats); collagen content and intramyocardial artery structure (Sirius red, Masson Trichromic); myocardial and intramyocardial artery RAS receptors (immunohistochemistry); plasma angiotensin-II (ELISA) and TGF-β1 protein expression (Western Blot). Compared to Control, MUN offspring exhibited significantly higher plasma Angiotensin-II and a larger left ventricular mass, as well as larger intramyocardial artery media/lumen, interstitial collagen and perivascular collagen. In MUN hearts, TGF-β1 tended to be higher, and the end-diastolic diameter and E/A ratio were significantly lower with no differences in ejection fraction or blood pressure. In the myocardium, no differences between groups were detected in AT1, AT2 or Mas receptors, with MrgD being significantly lower in the MUN group. In intramyocardial arteries from MUN rats, AT1 and Mas receptors were significantly elevated, while AT2 and MrgD were lower compared to Control. Conclusions. In rats exposed to fetal undernutrition, RAS disbalance and associated cardiac remodeling during lactation may set the basis for later heart dysfunction.
Collapse
|
15
|
Voggel J, Lubomirov L, Lechner F, Fink G, Nüsken E, Wohlfarth M, Pfitzer G, Shah-Hosseini K, Hellmich M, Alejandre Alcázar MA, Dötsch J, Nüsken KD. Vascular tone regulation in renal interlobar arteries of male rats is dysfunctional after intrauterine growth restriction. Am J Physiol Renal Physiol 2021; 321:F93-F105. [PMID: 34056927 DOI: 10.1152/ajprenal.00653.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intrauterine growth restriction (IUGR) due to an adverse intrauterine environment predisposes to arterial hypertension and loss of kidney function. Here, we investigated whether vascular dysregulation in renal interlobar arteries (RIAs) may contribute to hypertensive glomerular damage after IUGR. In rats, IUGR was induced by bilateral uterine vessel ligation. Offspring of nonoperated rats served as controls. From postnatal day 49, blood pressure was telemetrically recorded. On postnatal day 70, we evaluated contractile function in RIAs and mesenteric arteries. In addition, blood, urine, and glomerular parameters as well as renal collagen deposition were analyzed. IUGR RIAs not only showed loss of stretch activation in 9 of 11 arteries and reduced stretch-induced myogenic tone but also showed a shift of the concentration-response relation of acetylcholine-induced relaxation toward lower concentrations. However, IUGR RIAs also exhibited augmented contractions through phenylephrine. Systemic mean arterial pressure [mean difference: 4.8 mmHg (daytime) and 5.7 mmHg (night)], mean glomerular area (IUGR: 9,754 ± 338 µm2 and control: 8,395 ± 227 µm2), and urinary protein-to-creatinine ratio (IUGR: 1.67 ± 0.13 g/g and control: 1.26 ± 0.10 g/g) were elevated after IUGR. We conclude that male IUGR rat offspring may have increased vulnerability toward hypertensive glomerular damage due to loss of myogenic tone and augmented endothelium-dependent relaxation in RIAs.NEW & NOTEWORTHY For the first time, our study presents wire myography data from renal interlobar arteries (RIAs) and mesenteric arteries of young adult rat offspring after intrauterine growth restriction (IUGR). Our data indicate that myogenic tone in RIAs is dysfunctional after IUGR. Furthermore, IUGR offspring suffer from mild arterial hypertension, glomerular hypertrophy, and increased urinary protein-to-creatinine ratio. Dysregulation of vascular tone in RIAs could be an important variable that impacts upon vulnerability toward glomerular injury after IUGR.
Collapse
Affiliation(s)
- Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Lubomir Lubomirov
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Felix Lechner
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria Wohlfarth
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Kija Shah-Hosseini
- Institute of Medical Statistics and Computational Biology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcázar
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Sex-dependent vulnerability of fetal nonhuman primate cardiac mitochondria to moderate maternal nutrient reduction. Clin Sci (Lond) 2021; 135:1103-1126. [PMID: 33899910 DOI: 10.1042/cs20201339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Poor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity. To enable human translation, we developed a primate baboon model (Papio spp.) of moderate MNR in which mothers receive 70% of control nutrition during pregnancy, resulting in intrauterine growth restriction (IUGR) offspring and later exhibiting myocardial remodeling and heart failure at human equivalent ∼25 years. Term control and MNR baboon offspring were necropsied following cesarean-section, and left ventricle (LV) samples were collected. MNR adversely impacted fetal cardiac LV mitochondria in a sex-dependent fashion. Increased maternal plasma aspartate aminotransferase, creatine phosphokinase (CPK), and elevated cortisol levels in MNR concomitant with decreased blood insulin in male fetal MNR were measured. MNR resulted in a two-fold increase in fetal LV mitochondrial DNA (mtDNA). MNR resulted in increased transcripts for several respiratory chain (NDUFB8, UQCRC1, and cytochrome c) and adenosine triphosphate (ATP) synthase proteins. However, MNR fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, possibly contributing to the 73% decreased ATP content and increased lipid peroxidation. MNR fetal LV showed mitochondria with sparse and disarranged cristae dysmorphology. Conclusion: MNR disruption of fetal cardiac mitochondrial fitness likely contributes to the documented developmental programming of adult cardiac dysfunction, indicating a programmed mitochondrial inability to deliver sufficient energy to cardiac tissues as a chronic mechanism for later-life heart failure.
Collapse
|
17
|
Kawarazaki W, Fujita T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat Rev Nephrol 2021; 17:350-363. [PMID: 33627838 DOI: 10.1038/s41581-021-00399-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Dietary salt intake increases blood pressure (BP) but the salt sensitivity of BP differs between individuals. The interplay of ageing, genetics and environmental factors, including malnutrition and stress, contributes to BP salt sensitivity. In adults, obesity is often associated with salt-sensitive hypertension. The children of women who experience malnutrition during pregnancy are at increased risk of developing obesity, diabetes and salt-sensitive hypertension as adults. Similarly, the offspring of mice that are fed a low-protein diet during pregnancy develop salt-sensitive hypertension in association with aberrant DNA methylation of the gene encoding type 1A angiotensin II receptor (AT1AR) in the hypothalamus, leading to upregulation of hypothalamic AT1AR and renal sympathetic overactivity. Ageing is also associated with salt-sensitive hypertension. In aged mice, promoter methylation leads to reduced kidney production of the anti-ageing factor Klotho and a decrease in circulating soluble Klotho. In the setting of Klotho deficiency, salt-induced activation of the vascular Wnt5a-RhoA pathway leads to ageing-associated salt-sensitive hypertension, potentially as a result of reduced renal blood flow and increased peripheral resistance. Thus, kidney mechanisms and aberrant DNA methylation of certain genes are involved in the development of salt-sensitive hypertension during fetal development and old age. Three distinct paradigms of epigenetic memory operate on different timescales in prenatal malnutrition, obesity and ageing.
Collapse
Affiliation(s)
- Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. .,School of Medicine, Shinshu University, Matsumoto, Japan. .,Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
18
|
Oxidative Stress at Birth Is Associated with the Concentration of Iron and Copper in Maternal Serum. Nutrients 2021; 13:nu13051491. [PMID: 33924889 PMCID: PMC8145844 DOI: 10.3390/nu13051491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress (OS) in the foetal and neonatal periods leads to many disorders in newborns and in later life. The nutritional status of pregnant women is considered to be one of the key factors that triggers OS. We investigated the relationship between the concentration of selected mineral elements in the blood of pregnant women and the concentration of 3′nitrotyrosine (3′NT) as a marker of OS in the umbilical cord blood of newborns. The study group consisted of 57 pregnant women and their newborn children. The concentrations of magnesium (Mg), calcium (Ca), iron (Fe), zinc (Zn) and copper (Cu) in maternal serum (MS) were measured by the flame atomic absorption/emission spectrometry (FAAS/FAES) method. The concentration of 3′NT in umbilical cord serum (UCS) of newborns was determined by the ELISA method. A positive correlation between MS Fe and UCS 3′NT in male newborns was shown (rho = 0.392, p = 0.053). Significantly higher UCS 3′NT was demonstrated in newborns, especially males, whose mothers were characterized by MS Fe higher than 400 μg/dL compared to those of mothers with MS Fe up to 300 μg/dL (p < 0.01). Moreover, a negative correlation between the MS Cu and UCS 3′NT in male newborns was observed (rho = −0.509, p = 0.008). Results of the study showed the need to develop strategies to optimize the nutritional status of pregnant women. Implementation of these strategies could contribute to reducing the risk of pre- and neonatal OS and its adverse health effects in the offspring.
Collapse
|
19
|
Christians JK, Shergill HK, Albert AYK. Sex-dependent effects of prenatal food and protein restriction on offspring physiology in rats and mice: systematic review and meta-analyses. Biol Sex Differ 2021; 12:21. [PMID: 33563335 PMCID: PMC7871651 DOI: 10.1186/s13293-021-00365-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Males and females may experience different effects of early-life adversity on life-long health. One hypothesis is that male foetuses invest more in foetal growth and relatively less in placental growth, and that this makes them susceptible to poor nutrition in utero, particularly if nutrition is reduced part-way through gestation. OBJECTIVES Our objectives were to examine whether (1) food and/ or protein restriction in rats and mice has consistent sex-dependent effects, (2) sex-dependency differs between types of outcomes, and (3) males are more severely affected when restriction starts part-way through gestation. DATA SOURCES PubMed and Web of Science were searched to identify eligible studies. STUDY ELIGIBILITY CRITERIA Eligible studies described controlled experiments that restricted protein or food during gestation in rats or mice, examined physiological traits in offspring from manipulated pregnancies, and tested whether effects differed between males and females. RESULTS Our search identified 292 articles, of which the full texts of 72 were assessed, and 65 were included for further synthesis. A majority (50) used Wistar or Sprague-Dawley rats and so these were the primary focus. Among studies in which maternal diet was restricted for the duration of gestation, no type of trait was consistently more severely affected in one particular sex, although blood pressure was generally increased in both sexes. Meta-analysis found no difference between sexes in the effect of protein restriction throughout gestation on blood pressure. Among studies restricting food in the latter half of gestation only, there were again few consistent sex-dependent effects, although three studies found blood pressure was increased in males only. Meta-analysis found that food restriction in the second half of gestation increased adult blood pressure in both sexes, with a significantly greater effect in males. Birthweight was consistently reduced in both sexes, a result confirmed by meta-analysis. CONCLUSIONS We found little support for the hypotheses that males are more affected by food and protein restriction, or that effects are particularly severe if nutrition is reduced part-way through gestation. However, less than half of the studies tested for sex by maternal diet interactions to identify sex-dependent effects. As a result, many reported sex-specific effects may be false positives.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada.
| | - Haroop K Shergill
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Arianne Y K Albert
- Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Do preterm girls need different nutrition to preterm boys? Sex-specific nutrition for the preterm infant. Pediatr Res 2021; 89:313-317. [PMID: 33184497 DOI: 10.1038/s41390-020-01252-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Boys born preterm are recognised to be at higher risk of adverse outcomes than girls born preterm. Despite advances in neonatal intensive care and overall improvements in neonatal morbidity and mortality, boys born preterm continue to show worse short- and long-term outcomes than girls. Preterm birth presents a nutritional crisis during a critical developmental period, with postnatal undernutrition and growth-faltering common complications of neonatal intensive care. Furthermore, this preterm period corresponds to that of rapid in utero brain growth and development, and the developmental window relating to foetal programming of adult non-communicable diseases, the prevalence of which are associated both with preterm birth and sex. There is increasing evidence to show that from foetal life, boys and girls have different responses to maternal nutrition, that maternal breastmilk composition differs based on foetal sex and that early neonatal nutritional interventions affect boys and girls differently. This narrative review examines the evidence that sex is an important moderator of the outcomes of preterm nutrition intervention, and describes what further knowledge is required before providing nutrition intervention for infants born preterm based on their sex. IMPACT: This review examines the increasing evidence that boys and girls respond differently to nutritional stressors before birth, that maternal breastmilk composition differs by foetal sex and that nutritional interventions have different responses based on infant sex. Boys and girls born preterm are given standard nutritional support which does not take infant sex into account, and few studies of neonatal nutrition consider infant sex as a potential mediator of outcomes. By optimising early nutrition for boys and girls born preterm, we may improve outcomes for both sexes. We propose future studies of neonatal nutritional interventions should consider infant sex.
Collapse
|
21
|
Sex Differences in Placental Protein Expression and Efficiency in a Rat Model of Fetal Programming Induced by Maternal Undernutrition. Int J Mol Sci 2020; 22:ijms22010237. [PMID: 33379399 PMCID: PMC7795805 DOI: 10.3390/ijms22010237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Fetal undernutrition programs cardiometabolic diseases, with higher susceptibility in males. The mechanisms implicated are not fully understood and may be related to sex differences in placental adaptation. To evaluate this hypothesis, we investigated placental oxidative balance, vascularization, glucocorticoid barrier, and fetal growth in rats exposed to 50% global nutrient restriction from gestation day 11 (MUN, n = 8) and controls (n = 8). At gestation day 20 (G20), we analyzed maternal, placental, and fetal weights; oxidative damage, antioxidants, corticosterone, and PlGF (placental growth factor, spectrophotometry); and VEGF (vascular endothelial growth factor), 11β-HSD2, p22phox, XO, SOD1, SOD2, SOD3, catalase, and UCP2 expression (Western blot). Compared with controls, MUN dams exhibited lower weight and plasma proteins and higher corticosterone and catalase without oxidative damage. Control male fetuses were larger than female fetuses. MUN males had higher plasma corticosterone and were smaller than control males, but had similar weight than MUN females. MUN male placenta showed higher XO and lower 11β-HSD2, VEGF, SOD2, catalase, UCP2, and feto-placental ratio than controls. MUN females had similar feto-placental ratio and plasma corticosterone than controls. Female placenta expressed lower XO, 11β-HSD2, and SOD3; similar VEGF, SOD1, SOD2, and UCP2; and higher catalase than controls, being 11β-HSD2 and VEGF higher compared to MUN males. Male placenta has worse adaptation to undernutrition with lower efficiency, associated with oxidative disbalance and reduced vascularization and glucocorticoid barrier. Glucocorticoids and low nutrients may both contribute to programming in MUN males.
Collapse
|
22
|
Gutiérrez-Arzapalo PY, Rodríguez-Rodríguez P, Ramiro-Cortijo D, Gil-Ortega M, Somoza B, de Pablo ÁLL, González MDC, Arribas SM. Fetal Undernutrition Induces Resistance Artery Remodeling and Stiffness in Male and Female Rats Independent of Hypertension. Biomedicines 2020; 8:biomedicines8100424. [PMID: 33081182 PMCID: PMC7602844 DOI: 10.3390/biomedicines8100424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Fetal undernutrition programs hypertension and cardiovascular diseases, and resistance artery remodeling may be a contributing factor. We aimed to assess if fetal undernutrition induces resistance artery remodeling and the relationship with hypertension. Sprague–Dawley dams were fed ad libitum (Control) or with 50% of control intake between days 11 and 21 of gestation (maternal undernutrition, MUN). In six-month-old male and female offspring we assessed blood pressure (anesthetized and tail-cuff); mesenteric resistance artery (MRA) structure and mechanics (pressure myography), cellular and internal elastic lamina (IEL) organization (confocal microscopy) and plasma MMP-2 and MMP-9 activity (zymography). Systolic blood pressure (SBP, tail-cuff) and plasma MMP activity were assessed in 18-month-old rats. At the age of six months MUN males exhibited significantly higher blood pressure (anesthetized or tail-cuff) and plasma MMP-9 activity, while MUN females did not exhibit significant differences, compared to sex-matched controls. MRA from 6-month-old MUN males and females showed a smaller diameter, reduced adventitial, smooth muscle cell density and IEL fenestra area, and a leftward shift of stress-strain curves. At the age of eighteen months SBP and MMP-9 activity were higher in both MUN males and females, compared to sex-matched controls. These data suggest that fetal undernutrition induces MRA inward eutrophic remodeling and stiffness in both sexes, independent of blood pressure level. Resistance artery structural and mechanical alterations can participate in the development of hypertension in aged females and may contribute to adverse cardiovascular events associated with low birth weight in both sexes.
Collapse
Affiliation(s)
- Perla Y. Gutiérrez-Arzapalo
- Center of Research and Teaching in Health Sciences (CIDOCS), Universidad Autonoma de Sinaloa, Av. Cedros y calle Sauces s/n, Culiacán 80010, Sinaloa, Mexico;
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
| | - David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Marta Gil-Ortega
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad CEU-San Pablo, C/Julián Romea, 23, 28003 Madrid, Spain; (M.G.-O.); (B.S.)
| | - Beatriz Somoza
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad CEU-San Pablo, C/Julián Romea, 23, 28003 Madrid, Spain; (M.G.-O.); (B.S.)
| | - Ángel Luis López de Pablo
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
| | - Maria del Carmen González
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
- Correspondence:
| |
Collapse
|
23
|
Tan DX, Hardeland R. Targeting Host Defense System and Rescuing Compromised Mitochondria to Increase Tolerance against Pathogens by Melatonin May Impact Outcome of Deadly Virus Infection Pertinent to COVID-19. Molecules 2020; 25:molecules25194410. [PMID: 32992875 PMCID: PMC7582936 DOI: 10.3390/molecules25194410] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Fighting infectious diseases, particularly viral infections, is a demanding task for human health. Targeting the pathogens or targeting the host are different strategies, but with an identical purpose, i.e., to curb the pathogen's spreading and cure the illness. It appears that targeting a host to increase tolerance against pathogens can be of substantial advantage and is a strategy used in evolution. Practically, it has a broader protective spectrum than that of only targeting the specific pathogens, which differ in terms of susceptibility. Methods for host targeting applied in one pandemic can even be effective for upcoming pandemics with different pathogens. This is even more urgent if we consider the possible concomitance of two respiratory diseases with potential multi-organ afflictions such as Coronavirus disease 2019 (COVID-19) and seasonal flu. Melatonin is a molecule that can enhance the host's tolerance against pathogen invasions. Due to its antioxidant, anti-inflammatory, and immunoregulatory activities, melatonin has the capacity to reduce the severity and mortality of deadly virus infections including COVID-19. Melatonin is synthesized and functions in mitochondria, which play a critical role in viral infections. Not surprisingly, melatonin synthesis can become a target of viral strategies that manipulate the mitochondrial status. For example, a viral infection can switch energy metabolism from respiration to widely anaerobic glycolysis even if plenty of oxygen is available (the Warburg effect) when the host cell cannot generate acetyl-coenzyme A, a metabolite required for melatonin biosynthesis. Under some conditions, including aging, gender, predisposed health conditions, already compromised mitochondria, when exposed to further viral challenges, lose their capacity for producing sufficient amounts of melatonin. This leads to a reduced support of mitochondrial functions and makes these individuals more vulnerable to infectious diseases. Thus, the maintenance of mitochondrial function by melatonin supplementation can be expected to generate beneficial effects on the outcome of viral infectious diseases, particularly COVID-19.
Collapse
Affiliation(s)
- Dun-Xian Tan
- S.T. Bio-Life, San Antonio, TX 78240, USA
- Correspondence: ; Tel.: +1-215-672-550
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
24
|
Kennaway DJ. Measuring melatonin by immunoassay. J Pineal Res 2020; 69:e12657. [PMID: 32281677 DOI: 10.1111/jpi.12657] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
The pineal gland hormone melatonin continues to be of considerable interest to biomedical researchers. Of particular interest is the pattern of secretion of melatonin in relation to sleep timing as well as its potential role in certain diseases. Measuring melatonin in biological fluids such as blood and saliva presents particular methodological challenges since the production and secretion of the hormone are known to be extremely low during the light phase in almost all situations. Active secretion only occurs around the time of lights out in a wide range of species. The challenge then is to develop practical high-throughput assays that are sufficiently sensitive and accurate enough to detect levels of melatonin less than 1 pg/mL in biological fluids. Mass spectrometry assays have been developed that achieve the required sensitivity, but are really not practical or even widely available to most researchers. Melatonin radioimmunoassays and ELISA have been developed and are commercially available. But the quality of the results that are being published is very variable, partly not only because of poor experimental designs, but also because of poor assays. In this review, I discuss issues around the design of studies involving melatonin measurement. I then provide a critical assessment of 21 immunoassay kits marketed by 11 different companies with respect to validation, specificity and sensitivity. Technical managers of the companies were contacted in an attempt to obtain information not available online or in kit inserts. A search of the literature was also conducted to uncover papers that have reported the use of these assays, and where possible, both daytime and night-time plasma or saliva melatonin concentrations were extracted and tabulated. The results of the evaluations are disturbing, with many kits lacking any validation studies or using inadequate validation methods. Few assays have been properly assessed for specificity, while others report cross-reaction profiles that can be expected to result in over estimation of the melatonin levels. Some assays are not fit for purpose because they are not sensitive enough to determine plasma or saliva DLMO of 10 and 3 pg/mL, respectively. Finally, some assays produce unrealistically high daytime melatonin levels in humans and laboratory animals in the order of hundreds of pg/mL. In summary, this review provides a comprehensive and unique assessment of the current commercial melatonin immunoassays and their use in publications. It provides researchers new to the field with the information they need to design valid melatonin studies from both the perspective of experimental/clinical trial design and the best assay methodologies. It will also hopefully help journal editors and reviewers who may not be fully aware of the pitfalls of melatonin measurement make better informed decisions on publication acceptability.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
25
|
Quintana-Villamandos B, Pazó-Sayós L, González Del Pozo I, Rodríguez-Rodríguez P, Bellón JM, Pedraz-Prieto Á, Pinto ÁG, González MC. OXY-SCORE: a new perspective for left ventricular hypertrophy diagnosis. Ther Adv Chronic Dis 2020; 11:2040622320936417. [PMID: 32647560 PMCID: PMC7328060 DOI: 10.1177/2040622320936417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022] Open
Abstract
Background: A recently developed global indicator of oxidative stress (OXY-SCORE), by
combining individual plasma biomarkers of oxidative damage and antioxidant
capacity, has been validated in several pathologies, but not in left
ventricular hypertrophy (LVH). The aim of this study was to design and
calculate a plasma oxidative stress global index for patients with LVH. Methods: A total of 70 consecutive adult patients were recruited in our institution
and assigned to one of the two study groups (control group/LVH group) by an
echocardiography study. We evaluated plasmatic biomarkers of oxidative
damage (malondialdehyde and thiolated proteins) and antioxidant defense
(total thiols, reduced glutathione, total antioxidant capacity, catalase,
and superoxide dismutase activities) by spectrophotometry/fluorimetry in
order to calculate a plasma oxidative stress global index (OXY-SCORE) in
relation to LVH. Results: The OXY-SCORE exhibited a highly significant difference between the groups
(p < 0.001). The area under the receiver operating
characteristic curve was 0.74 (95% confidence interval (CI), 0.62–0.85;
p < 0.001). At a cut-off value of −1, the 68.6%
sensitivity and 68.6% specificity values suggest that OXY-SCORE could be
used to screen for LVH. A multivariable logistic regression model showed a
positive association (p = 0.001) between OXY-SCORE and LVH
[odds ratio = 0.55 (95% CI, 0.39–0.79)], independent of gender, age,
smoking, glucose, systolic and diastolic arterial pressure, dyslipidemia,
estimated glomerular filtration rate, body mass index, and valvular/coronary
disease. Conclusion: OXY-SCORE could help in the diagnosis of LVH and could be used to monitor
treatment response.
Collapse
Affiliation(s)
- Begoña Quintana-Villamandos
- Department of Anesthesiology Hospital Gregorio Marañón. C/, Doctor Esquerdo Nº 46, Madrid, 28007, Spain Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Laia Pazó-Sayós
- Department of Anesthesiology and Intensive Care, Gregorio Marañón Hospital, Madrid, Spain
| | | | | | - Jose María Bellón
- Department Statistics, Health Research Institute of Gregorio Marañón Hospital, Madrid, Spain
| | | | - Ángel G Pinto
- Department of Cardiovascular Surgery, Gregorio Marañón Hospital, Madrid, Spain
| | | |
Collapse
|
26
|
Gobetto MN, Mendes Garrido Abregú F, Caniffi C, Veiras L, Elesgaray R, Gironacci M, Tomat AL, Arranz C. Fetal and postnatal zinc restriction: sex differences in the renal renin-angiotensin system of newborn and adult Wistar rats. J Nutr Biochem 2020; 81:108385. [PMID: 32388253 DOI: 10.1016/j.jnutbio.2020.108385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/05/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to evaluate renal morphology and the renal renin-angiotensin system in 6- and 81-day-old male and female offspring exposed to zinc deficiency during fetal life, lactation and/or postnatal growth. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. Afterwards, offspring were fed a low- or a control zinc diet until 81 days of life. In 6- and/or 81-day-old offspring, we evaluated systolic blood pressure, renal morphology, renal angiotensin II and angiotensin 1-7 concentration, and AT1 and AT2 receptors and angiotensin-converting enzymes protein and/or mRNA expression. At 6 days, zinc-deficient male offspring showed decreased glomerular filtration areas, remodelling of renal arteries, greater number of renal apoptotic cells, increased levels of Angiotensin II, higher Angiotensin II/Angiotensin 1-7 ratio and increased angiotensin-converting enzyme 1, AT1 and AT2 receptors mRNA and/or protein expression. Exacerbation of the renal Ang II/AT1 receptor axis and remodelling of renal arteries were also observed in adult zinc-deficient male offspring. An adequate zinc diet during post-weaning life did not improve all the alterations induced by zinc deficiency in early stages of development. Female offspring would appear to be less sensitive to zinc deficiency with no increase in blood pressure or significant alterations in renal morphology and the renin-angiotensin system. Moderate zinc deficiency during critical periods of prenatal and postnatal development leads to early morphological renal alterations and to permanent and long-term changes in the renal renin-angiotensin system that could predispose to renal and cardiovascular diseases in adult life.
Collapse
Affiliation(s)
- María Natalia Gobetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Facundo Mendes Garrido Abregú
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Caniffi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciana Veiras
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Davis Research Bldg., Rm. 2007.110N, George Burns Rd., Los Angeles, CA 90048
| | - Rosana Elesgaray
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Junín 956, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Analía Lorena Tomat
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Cristina Arranz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Junín 956, Piso 7, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín 956, Piso 2, CP 1113, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
27
|
Braz GRF, da Silva AI, Silva SCA, Pedroza AAS, de Lemos MDT, de Lima FAS, Silva TLA, Lagranha CJ. Chronic serotonin reuptake inhibition uncouples brown fat mitochondria and induces beiging/browning process of white fat in overfed rats. Life Sci 2020; 245:117307. [DOI: 10.1016/j.lfs.2020.117307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
|
28
|
Chan KA, Jazwiec PA, Gohir W, Petrik JJ, Sloboda DM. Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss. Biol Reprod 2019; 98:664-682. [PMID: 29351580 DOI: 10.1093/biolre/ioy008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/15/2018] [Indexed: 11/14/2022] Open
Abstract
Reproductive abnormalities are included as health complications in offspring exposed to poor prenatal nutrition. We have previously shown in a rodent model that offspring born to nutrient restriction during pregnancy are born small, enter puberty early, and display characteristics of early ovarian aging as adults. The present study investigated whether key proteins involved in follicle recruitment and growth mediate ovarian follicle loss. Pregnant rats were randomized to a standard diet throughout pregnancy and lactation (CON), or a calorie-restricted (50% of control) diet (UN) during pregnancy. Offspring reproductive phenotype was investigated at postnatal days 4, 27, and 65. Maternal UN resulted in young adult (P65) irregular estrous cyclicity due to persistent estrus, a significant loss of antral follicles, corpora lutea, and an increase in atretic follicles. This decrease in growing follicles in UN offspring appears to be due to increased apoptosis as seen by immunopositive staining of pro-apoptotic factor CASP3 (caspase 3) in ovaries of young adult offspring. UN prepubertal offspring had reduced expression levels of Fshr in antral follicles, which may contribute to a decrease in PI3K/AKT activation evident as a decrease in pAKT immunolocalization in prepubertal antral follicles. Moreover, neonatal ovaries of UN offspring show decreased levels of immunopositive staining for AMHR2 (anti-mullerian hormone receptor 2). Collectively, these data demonstrate that maternal UN during pregnancy impacts ovarian function in offspring as early as P65 and provides a model for understanding the mechanisms driving early life UN-induced follicle loss and reproductive dysfunction.
Collapse
Affiliation(s)
- Kaitlyn A Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada.,The Farncombe Family Digestive Diseases Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Darby JRT, Mohd Dollah MHB, Regnault TRH, Williams MT, Morrison JL. Systematic review: Impact of resveratrol exposure during pregnancy on maternal and fetal outcomes in animal models of human pregnancy complications-Are we ready for the clinic? Pharmacol Res 2019; 144:264-278. [PMID: 31029765 DOI: 10.1016/j.phrs.2019.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol (RSV) has been reported to have potential beneficial effects in the complicated pregnancy. Various pregnancy complications lead to a suboptimal in utero environment that impacts fetal growth during critical windows of development. Detrimental structural changes to key organ systems in utero persist into adult life and predispose offspring to an increased risk of chronic non-communicable metabolic diseases such as cardiovascular disease, diabetes and obesity. The aim of this systematic review was to determine the effect of gestational RSV exposure on both maternal and fetal outcomes. Publicly available databases (n = 8) were searched for original studies reporting maternal and/or fetal outcomes after RSV exposure during pregnancy irrespective of species. Of the 115 studies screened, 31 studies were included in this review. RSV exposure occurred for different durations across a range of species (Rats n = 18, Mice n = 7, Japanese Macaques n = 3 and Sheep n = 3), models of complicated pregnancy (eg. maternal dietary manipulations, gestational diabetes, maternal hypoxia, teratogen exposure, etc.), dosages and administration routes. Maternal and fetal outcomes differed not only based on the model of complicated pregnancy assessed but also as a result of species. Given the heterogenic nature of these studies, further investigation assessing RSV exposure during the complicated pregnancy is warranted. In order to make an informed decision regarding the use of RSV to intervene in pregnancy complications, we suggest a minimum data set for consideration in future studies.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Murni H B Mohd Dollah
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Timothy R H Regnault
- Departments of Obstetrics and Gynaecology and Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada; Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada
| | - Marie T Williams
- Health and Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
30
|
Dronedarone induces regression of coronary artery remodeling related to better global antioxidant status. Hypertens Res 2019; 42:1485-1494. [PMID: 30992541 DOI: 10.1038/s41440-019-0257-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023]
Abstract
Our group previously demonstrated that dronedarone induces regression of left ventricular hypertrophy in spontaneously hypertensive rats (SHRs). We assessed changes in vascular remodeling and oxidative stress following short-term use of this agent. The coronary artery was isolated from 10-month-old male SHRs treated with 100 mg kg-1 dronedarone once daily for 14 days (SHR-D group), and age-matched untreated SHRs were used as hypertensive controls. We analyzed the geometry and composition of the artery and constructed dose-response curves for acetylcholine and serotonin (5-HT). We calculated a global score (OXY-SCORE) from plasma biomarkers of oxidative status: carbonyl levels, thiol levels, reduced glutathione levels, total antioxidant capacity, and superoxide anion scavenging activity. Finally, we analyzed asymmetric dimethylarginine (ADMA) concentrations in plasma. Dronedarone significantly decreased wall thickness (medial and adventitial layer thickness and cell count) and the cross-sectional area of the artery. Dronedarone significantly improved endothelium-dependent relaxation and reduced the contraction induced by 5-HT. The OXY-SCORE was negative in the SHR model group (suggesting an enhanced oxidative status) and was positive in the SHR-D group (suggesting enhanced antioxidant defense). Dronedarone significantly decreased the concentrations of ADMA. We conclude that dronedarone improves coronary artery remodeling in SHRs. The better global antioxidant status after treatment with dronedarone and decreased plasma ADMA levels could contribute to the cardiovascular protective effect of dronedarone.
Collapse
|
31
|
Santana DF, Ferreira DS, Braz GRF, Sousa SMS, Silva TLDA, Gomes DA, Fernandes MP, Andrade-da-Costa BL, Lagranha CJ. Maternal Protein Restriction in Two Successive Generations Impairs Mitochondrial Electron Coupling in the Progeny's Brainstem of Wistar Rats From Both Sexes. Front Neurosci 2019; 13:203. [PMID: 30930735 PMCID: PMC6427765 DOI: 10.3389/fnins.2019.00203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Maternal protein deficiency during the critical development period of the progeny disturbs mitochondrial metabolism in the brainstem, which increases the risk of developing cardiovascular diseases in the first-generation (F1) offspring, but is unknown if this effect persists in the second-generation (F2) offspring. The study tested whether mitochondrial health and oxidative balance will be restored in F2 rats. Male and female rats were divided into six groups according to the diet fed to their mothers throughout gestation and lactation periods. These groups were: (1) normoprotein (NP) and (2) low-protein (LP) rats of the first filial generation (F1-NP and F1-LP, respectively) and (3) NP and (4) LP rats of the second filial generation (F2-NP and F2-LP, respectively). After weaning, all groups received commercial chow and a portion of each group was sacrificed on the 30th day of life for determination of mitochondrial and oxidative parameters. The remaining portion of the F1 group was mated at adulthood and fed an NP or LP diet during the periods of gestation and lactation, to produce progeny belonging to (5) F2R-NP and (6) F2R-LP group, respectively. Our results demonstrated that male F1-LP rats suffered mitochondrial impairment associated with an 89% higher production of reactive species (RS) and 137% higher oxidative stress biomarkers, but that the oxidative stress was blunted in female F1-LP animals despite the antioxidant impairment. In the second generation following F0 malnutrition, brainstem antioxidant defenses were restored in the F2-LP group of both sexes. However, F2R-LP offspring, exposed to LP in the diets of the two preceding generations displayed a RS overproduction with a concomitant decrease in mitochondrial bioenergetics. Our findings demonstrate that nutritional stress during the reproductive life of the mother can negatively affect mitochondrial metabolism and oxidative balance in the brainstem of F1 progeny, but that restoration of a normal diet during the reproductive life of those individuals leads toward a mitochondrial recovery in their own (F2) progeny. Otherwise, if protein deprivation is continued from the F0 generation and into the F1 generation, the F2 progeny will exhibit no recovery, but instead will remain vulnerable to further oxidative damage.
Collapse
Affiliation(s)
- David F Santana
- Graduate Program in Neuroscience and Behaviour, Universidade Federal de Pernambuco, Recife, Brazil
| | - Diorginis S Ferreira
- Colegiado de Educação Física, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Glauber Ruda F Braz
- Graduate Program in Neuroscience and Behaviour, Universidade Federal de Pernambuco, Recife, Brazil
| | - Shirley M S Sousa
- Graduate Program in Neuroscience and Behaviour, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Dayane Aparecida Gomes
- Graduate Program in Neuroscience and Behaviour, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Mariana P Fernandes
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Academic Center of Vitoria - Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Núcleo de Educação Física e Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Recife, Brazil
| | - Belmira Lara Andrade-da-Costa
- Graduate Program in Neuroscience and Behaviour, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Claudia J Lagranha
- Graduate Program in Neuroscience and Behaviour, Universidade Federal de Pernambuco, Recife, Brazil.,Núcleo de Educação Física e Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
32
|
Anelli GM, Mandò C, Letizia T, Mazzocco MI, Novielli C, Lisso F, Personeni C, Vago T, Cetin I. Placental ESRRG-CYP19A1 Expressions and Circulating 17-Beta Estradiol in IUGR Pregnancies. Front Pediatr 2019; 7:154. [PMID: 31069202 PMCID: PMC6491753 DOI: 10.3389/fped.2019.00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/01/2019] [Indexed: 12/04/2022] Open
Abstract
Introduction: Sex steroids are regulating factors for intrauterine growth. 17-β Estradiol (E2) is particularly critical to a physiological pregnancy, as increased maternal E2 was correlated to lower fetal weight at delivery. The placenta itself is a primary source of estrogens, synthetized from cholesterol precursors. Cytochrome P450 aromatase (encoded by CYP19A1 gene) is a rate-limiting enzyme for E2 biosynthesis. CYP19A1 transcription is supported by Estrogen Related-Receptor Gamma (ERRγ- ESRRG gene), which thus has an indirect role in placental steroidogenesis. Here we investigated maternal E2 levels and placental CYP19A1 and ESRRG expressions in pregnancies with IntraUterine Growth Restriction (IUGR). Methods: Singleton pregnancies were studied. E2 was measured in maternal plasma by electrochemiluminescence in 16 term controls and 11 IUGR (classified by umbilical artery doppler pulsatility index) at elective cesarean section, and also in 13 controls during pregnancy at a gestational age comparable to IUGR. CYP19A1 and ESRRG expressions were analyzed in placental tissue. Maternal/fetal characteristics, placental and molecular data were compared among study groups and tested for correlations. Results: Maternal E2 plasma concentrations were significantly decreased in IUGR compared to controls at delivery. When analyzing normal pregnancies at a gestational age similar to IUGR, E2 levels were not different to pathological cases. However, E2 levels at delivery positively correlated with placental efficiency. Placental CYP19A1 levels were significantly higher in IUGR placental tissue vs. controls, and specifically increased in female IUGR placentas. ESRRG expression was not different among groups. Discussion: We report a positive correlation between 17-β Estradiol levels and placental efficiency, that might indicate a disrupted steroidogenesis in IUGR pregnancies. Moreover, we show alterations of CYP19A1 expression in IUGR placentas, possibly indicating a compensatory effect to the adverse IUGR intrauterine environment, also depending on fetal sex. Further studies are needed to deeper investigate IUGR alterations in the complex interaction among molecules involved in placental steroidogenesis.
Collapse
Affiliation(s)
- Gaia Maria Anelli
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Chiara Mandò
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Teresa Letizia
- Endocrinology Laboratory, Sacco University Hospital, Milan, Italy
| | - Martina Ilaria Mazzocco
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Chiara Novielli
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Fabrizia Lisso
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Carlo Personeni
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Tarcisio Vago
- Endocrinology Laboratory, Sacco University Hospital, Milan, Italy
| | - Irene Cetin
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy.,Unit of Obstetrics and Gynecology, Buzzi University Hospital, Milan, Italy
| |
Collapse
|
33
|
Effects of Arachidonic and Docosohexahenoic Acid Supplementation during Gestation in Rats. Implication of Placental Oxidative Stress. Int J Mol Sci 2018; 19:ijms19123863. [PMID: 30518038 PMCID: PMC6321355 DOI: 10.3390/ijms19123863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Arachidonic and docosahexaenoic acids (ARA and DHA) are important during pregnancy. However, the effects of dietary supplementation on fetal growth and oxidative stress are inconclusive. We aimed to assess the effect of high ARA and DHA diet during rat gestation on: (1) ARA and DHA availability in plasma and placenta, (2) fetal growth, and (3) placental oxidative stress, analyzing the influence of sex. Experimental diet (ED) was prepared by substituting soybean oil in the control diet (CD) by a fungi/algae-based oil containing ARA and DHA (2:1). Rats were fed with CD or ED during gestation; plasma, placenta, and fetuses were obtained at gestational day 20. DHA, ARA, and their precursors were analyzed in maternal plasma and placenta by gas chromatography/mass spectrophotometry. Fetuses and placentas were weighed, the proportion of fetuses with intrauterine growth restriction (IUGR) determined, and placental lipid and protein oxidation analyzed. ED fetuses exhibited lower body weight compared to CD, being >40% IUGR; fetal weight negatively correlated with maternal plasma ARA, but not DHA. Only ED female placenta exhibited higher lipid and protein oxidation compared to its CD counterparts; lipid peroxidation is negatively associated with fetal weight. In conclusion, high ARA during gestation associates with IUGR, through placental oxidative stress, with females being more susceptible.
Collapse
|
34
|
Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, López de Pablo AL, González MC, Arribas SM. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front Physiol 2018; 9:602. [PMID: 29875698 PMCID: PMC5974054 DOI: 10.3389/fphys.2018.00602] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria.
Collapse
Affiliation(s)
| | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Angel L López de Pablo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Carmen González
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Mendes Garrido Abregú F, Gobetto MN, Juriol LV, Caniffi C, Elesgaray R, Tomat AL, Arranz C. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats. J Nutr Biochem 2018. [PMID: 29525532 DOI: 10.1016/j.jnutbio.2018.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life.
Collapse
Affiliation(s)
- Facundo Mendes Garrido Abregú
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - María Natalia Gobetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Lorena Vanesa Juriol
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Carolina Caniffi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Rosana Elesgaray
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Analía Lorena Tomat
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina.
| | - Cristina Arranz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| |
Collapse
|
36
|
Gutiérrez-Arzapalo PY, Rodríguez-Rodríguez P, Ramiro-Cortijo D, López de Pablo ÁL, López-Giménez MR, Condezo-Hoyos L, Greenwald SE, González MDC, Arribas SM. Role of fetal nutrient restriction and postnatal catch-up growth on structural and mechanical alterations of rat aorta. J Physiol 2018; 596:5791-5806. [PMID: 29277911 DOI: 10.1113/jp275030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Intrauterine growth restriction (IUGR), induced by maternal undernutrition, leads to impaired aortic development. This is followed by hypertrophic remodelling associated with accelerated growth during lactation. Fetal nutrient restriction is associated with increased aortic compliance at birth and at weaning, but not in adult animals. This mechanical alteration may be related to a decreased perinatal collagen deposition. Aortic elastin scaffolds purified from young male and female IUGR animals also exhibit increased compliance, only maintained in adult IUGR females. These mechanical alterations may be related to differences in elastin deposition and remodelling. Fetal undernutrition induces similar aortic structural and mechanical alterations in young male and female rats. Our data argue against an early mechanical cause for the sex differences in hypertension development induced by maternal undernutrition. However, the larger compliance of elastin in adult IUGR females may contribute to the maintenance of a normal blood pressure level. ABSTRACT Fetal undernutrition programmes hypertension development, males being more susceptible. Deficient fetal elastogenesis and vascular growth is a possible mechanism. We investigated the role of aortic mechanical alterations in a rat model of hypertension programming, evaluating changes at birth, weaning and adulthood. Dams were fed ad libitum (Control) or 50% of control intake during the second half of gestation (maternal undernutrition, MUN). Offspring aged 3 days, 21 days and 6 months were studied. Blood pressure was evaluated in vivo. In the thoracic aorta we assessed gross structure, mechanical properties (intact and purified elastin), collagen and elastin content and internal elastic lamina (IEL) organization. Only adult MUN males developed hypertension (systolic blood pressure: MUNmales = 176.6 ± 5.6 mmHg; Controlmales = 136.1 ± 4.9 mmHg). At birth MUN rats were lighter, with smaller aortic cross-sectional area (MUNmales = (1.51 ± 0.08) × 105 μm2 , Controlmales = (2.8 ± 0.04) × 105 μm2 ); during lactation MUN males and females exhibited catch-up growth and aortic hypertrophy (MUNmales = (14.5 ± 0.5) × 105 μm2 , Controlmales = (10.4 ± 0.9) × 105 μm2 ), maintained until adulthood. MUN aortas were more compliant until weaning (functional stiffness: MUNmales = 1.0 ± 0.04; Controlmales = 1.3 ± 0.03), containing less collagen with larger IEL fenestrae, returning to normal in adulthood. Purified elastin from young MUN offspring was more compliant in both sexes; only MUN adult females maintained larger elastin compliance (slope: MUNfemales = 24.1 ± 1.9; Controlfemales = 33.3 ± 2.8). Fetal undernutrition induces deficient aortic development followed by hypertrophic remodelling and larger aortic compliance in the perinatal period, with similar alterations in collagen and elastin in both sexes. The observed alterations argue against an initial mechanical cause for sex differences in hypertension development. However, the maintenance of high elastin compliance in adult females might protect them against blood pressure rise.
Collapse
Affiliation(s)
| | | | | | | | - María Rosario López-Giménez
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Stephen E Greenwald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Silvia M Arribas
- Department of Physiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Abstract
Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early nutritional concepts with specific modifications in macro- or micronutrients are among the most promising approaches to improve future renal health.
Collapse
Affiliation(s)
- Eva Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
38
|
Xue B, Beltz TG, Guo F, Johnson AK. Sex differences in maternal gestational hypertension-induced sensitization of angiotensin II hypertension in rat offspring: the protective effect of estrogen. Am J Physiol Regul Integr Comp Physiol 2017; 314:R274-R281. [PMID: 29046315 DOI: 10.1152/ajpregu.00216.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies demonstrate that maternal hypertension during pregnancy sensitizes an angiotensin (ANG) II-induced increase in blood pressure (BP) in adult male offspring that was associated with upregulation of mRNA expression of several renin-angiotensin-aldosterone system (RAAS) components and NADPH oxidase in the lamina terminalis (LT) and paraventricular nucleus (PVN). The purpose of the present study was to test whether there are sex differences in the maternal hypertension-induced sensitization of ANG II hypertension, and whether sex hormones are involved in the sensitization process. Male offspring of hypertensive dams showed an enhanced hypertensive response to systemic ANG II when compared with male offspring of normotensive dams and to female offspring of either normotensive or hypertensive dams. Castration did not alter the hypertensive response to ANG II in male offspring. Intact female offspring had no upregulation of RAAS components and NADPH oxidase in the LT and PVN, whereas ovariectomy (OVX) upregulated mRNA expression of several RAAS components and NADPH oxidase in these nuclei and induced a greater increase in the pressor response to ANG II in female offspring of hypertensive dams compared with female offspring of normotensive dams. This enhanced increase in BP was partially attenuated by 17β-estradiol replacement in the OVX offspring of hypertensive dams. The results suggest that maternal hypertension induces a sex-specific sensitization of ANG II-induced hypertension and mRNA expression of brain RAAS and NADPH oxidase in offspring. Female offspring are protected from maternal hypertension-induced sensitization of ANG II hypertension, and female sex hormones are partially responsible for this protective effect.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| | - Fang Guo
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa.,Department of Pharmacology, University of Iowa , Iowa City, Iowa.,Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
39
|
de Brito Alves JL, de Oliveira JMD, Ferreira DJS, Barros MADV, Nogueira VO, Alves DS, Vidal H, Leandro CG, Lagranha CJ, Pirola L, da Costa-Silva JH. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata. Clin Exp Pharmacol Physiol 2017; 43:1177-1184. [PMID: 27612187 DOI: 10.1111/1440-1681.12667] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 01/11/2023]
Abstract
Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (P<.05, t test). In addition, we observed that higher MDA levels were associated to decreased SOD (approximately 45%) and CAT (approximately 50%) activities in ventral medulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla.
Collapse
Affiliation(s)
- José L de Brito Alves
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil.,Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - Jéssica M D de Oliveira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Diorginis J S Ferreira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Monique A de V Barros
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Viviane O Nogueira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Débora S Alves
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Hubert Vidal
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - Carol G Leandro
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Cláudia J Lagranha
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Luciano Pirola
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - João H da Costa-Silva
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
40
|
Muralimanoharan S, Li C, Nakayasu ES, Casey CP, Metz TO, Nathanielsz PW, Maloyan A. Sexual dimorphism in the fetal cardiac response to maternal nutrient restriction. J Mol Cell Cardiol 2017. [PMID: 28641979 DOI: 10.1016/j.yjmcc.2017.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Poor maternal nutrition causes intrauterine growth restriction (IUGR); however, its effects on fetal cardiac development are unclear. We have developed a baboon model of moderate maternal undernutrition, leading to IUGR. We hypothesized that the IUGR affects fetal cardiac structure and metabolism. Six control pregnant baboons ate ad-libitum (CTRL)) or 70% CTRL from 0.16 of gestation (G). Fetuses were euthanized at C-section at 0.9G under general anesthesia. Male but not female IUGR fetuses showed left ventricular fibrosis inversely correlated with birth weight. Expression of extracellular matrix protein TSP-1 was increased (p<0.05) in male IUGR. Expression of cardiac fibrotic markers TGFβ, SMAD3 and ALK-1 were downregulated in male IUGRs with no difference in females. Autophagy was present in male IUGR evidenced by upregulation of ATG7 expression and lipidation LC3B. Global miRNA expression profiling revealed 56 annotated and novel cardiac miRNAs exclusively dysregulated in female IUGR, and 38 cardiac miRNAs were exclusively dysregulated in males (p<0.05). Fifteen (CTRL) and 23 (IUGR) miRNAs, were differentially expressed between males and females (p<0.05) suggesting sexual dimorphism, which can be at least partially explained by differential expression of upstream transcription factors (e.g. HNF4α, and NFκB p50). Lipidomics analysis of fetal cardiac tissue exhibited a net increase in diacylglycerol and plasmalogens and a decrease in triglycerides and phosphatidylcholines. In summary, IUGR resulting from decreased maternal nutrition is associated with sex-dependent dysregulations in cardiac structure, miRNA expression, and lipid metabolism. If these changes persist postnatally, they may program offspring for higher later life cardiac risk.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390-9038, USA
| | - Cun Li
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Cameron P Casey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Peter W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Alina Maloyan
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
41
|
de Sousa SM, Braz GRF, Freitas CDM, de Santana DF, Sellitti DF, Fernandes MP, Lagranha CJ. Oxidative injuries induced by maternal low-protein diet in female brainstem. Nutr Neurosci 2017; 21:580-588. [PMID: 28494696 DOI: 10.1080/1028415x.2017.1325974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many studies have shown that a maternal low-protein diet increases the susceptibility of offspring to cardiovascular disease in later-life. Moreover, a lower incidence of cardiovascular disease in females than in males is understood to be largely due to the protective effect of high levels of estrogens throughout a woman's reproductive life. However, to our knowledge, the role of estradiol in moderating the later-life susceptibility of offspring of nutrient-deprived mothers to cardiovascular disease is not fully understood. The present study is aimed at investigating whether oxidative stress in the brainstem caused by a maternal low-protein diet administered during a critical period of fetal/neonatal brain development (i.e during gestation and lactation) is affected by estradiol levels. Female Wistar rat offspring were divided into four groups according to their mothers' diets and to the serum estradiol levels of the offspring at the time of testing: (1) 22 days of age/control diet: (2) 22 days of age/low-protein diet; (3) 122 days of age/control diet: (4) 122 days of age/low-protein diet. Undernutrition in the context of low serum estradiol compared to undernutrition in a higher estradiol context resulted in increased levels of oxidative stress biomarkers and a reduction in enzymatic and non-enzymatic antioxidant defenses. Total global oxy-score showed oxidative damage in 22-day-old rats whose mothers had received a low-protein diet. In the 122-day-old group, we observed a decrease in oxidative stress biomarkers, increased enzymatic antioxidant activity, and a positive oxy-score when compared to control. We conclude from these results that following a protein deficiency in the maternal diet during early development of the offspring, estrogens present at high levels at reproductive age may confer resistance to the oxidative damage in the brainstem that is very apparent in pre-pubertal rats.
Collapse
Affiliation(s)
- Shirley Maria de Sousa
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | - Glauber Rudá F Braz
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | - Cristiane de Moura Freitas
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | - David Filipe de Santana
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | | | - Mariana P Fernandes
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | - Claudia J Lagranha
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| |
Collapse
|
42
|
Abderrahim M, Arribas SM, Condezo-Hoyos L. A novel pyrogallol red-based assay to assess catalase activity: Optimization by response surface methodology. Talanta 2017; 166:349-356. [DOI: 10.1016/j.talanta.2017.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 01/15/2023]
|
43
|
Maternal low-protein diet in female rat heart: possible protective effect of estradiol. J Dev Orig Health Dis 2017; 8:322-330. [DOI: 10.1017/s2040174417000058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several studies have shown that maternal low-protein (LP) diet induces detrimental effects in cardiovascular system and oxidative stress in male animals. Additional studies suggested that female has lower incidence of cardiovascular disease. However until present data, the possible effects of estradiol on the undernutrition during gestational and lactation periods are not discussed. The present study was conducted to evaluate the effects of a maternal LP diet during gestational and lactation period on oxidative balance in the female rat hearts ventricles at two ages. Dams were fed with normal protein (NP) or a LP diet during the gestational and lactation period, and their female offspring were divided into age groups (22 or 122 days, corresponding to a low or high estrogen level) composing four experimental groups. Evaluating the nutritional effect showed an increase in oxidative stress biomarkers and decrease in enzymatic defense in LP-22D compared with NP-22D. In contrast, no changes were observed in malondialdehyde and carbonyls, but an increase in glutathione-S-transferase (GST) activity in the LP-122D compared with NP-122D. The global oxy-score in the LP-22D group indicated a predominance of oxidative damage when compared with NP-22D, while in LP-122D group the global oxy-score was restored to NP-122D levels. Evaluating the estradiol effect, our data show a significant decrease in oxidative stress with increase in CAT and GST activity, associated with increase in intracellular thiols. Our data suggest that in situation with low levels of estradiol, hypoproteic diet during gestation and lactation period has detrimental effects on heart, however when estradiol levels raise, the detrimental effects induced are mitigated.
Collapse
|
44
|
Rodríguez-Rodríguez P, López de Pablo AL, García-Prieto CF, Somoza B, Quintana-Villamandos B, Gómez de Diego JJ, Gutierrez-Arzapalo PY, Ramiro-Cortijo D, González MC, Arribas SM. Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress. PLoS One 2017; 12:e0171544. [PMID: 28212445 PMCID: PMC5315302 DOI: 10.1371/journal.pone.0171544] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Background and aims Fetal undernutrition is a risk factor for heart disease in both genders, despite the protection of women against hypertension development. Using a rat model of maternal undernutrition (MUN) we aimed to assess possible sex differences in the development of cardiac alterations and the implication of hypertension and cardiac oxidative stress. Methods Male and female offspring from rats fed ad libitum (control) or with 50% of the normal daily intake during the second half of gestation (MUN) were used. Heart weight/body weight ratio (HW/BW), hemodynamic parameters (anaesthetized rats) and plasma brain natriuretic peptide (BNP, ELISA) were assessed in 21-day, 6-month and 22-month old rats. Plasma testosterone (ELISA) and cardiac protein expression of enzymes related to reactive oxygen species synthesis (p22phox, xanthine-oxidase) and degradation (catalase, Cu/Zn-SOD, Mn-SOD, Ec-SOD) were evaluated in 21-day and 6-month old rats (Western Blot). Heart structure and function was studied at the age of 22 months (echocardiography). Results At the age of 21 days MUN males exhibited significantly larger HW/BW and cardiac p22phox expression while females had reduced p22phox expression, compared to their respective sex-matched controls. At the age of 6-months, MUN males showed significantly larger blood pressure and cardiac xanthine-oxidase expression; MUN females were normotensive and had a lower cardiac expression of antioxidant enzymes, compared to their respective sex-matched controls. At the age of 22 months, both MUN males and females showed larger HW/BW and left ventricular mass and lower ejection fraction compared to sex-matched controls; only MUN males exhibited hypertension and a larger plasma BNP compared to aged male controls. Conclusions 1) During perinatal life females exposed to fetal undernutrition are protected from cardiac alterations, but in ageing they exhibit ventricular hypertrophy and functional loss, like MUN males; 2) cardiac oxidative stress might be implicated in the observed heart alterations in both sexes and 3) the severity of cardiac damage might be greater in males due to hypertension.
Collapse
Affiliation(s)
| | - Angel L. López de Pablo
- Departamento de Fisiología, Facultad de Medicina; Universidad Autónoma de Madrid, Madrid, Spain
| | - Concha F. García-Prieto
- Departamento de Ciencias Experimentales y de la Salud; Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Experimentales y de la Salud; Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Begoña Quintana-Villamandos
- Departamento de Anestesiología y Reanimación; Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina; Universidad Autónoma de Madrid, Madrid, Spain
| | - M. Carmen González
- Departamento de Fisiología, Facultad de Medicina; Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M. Arribas
- Departamento de Fisiología, Facultad de Medicina; Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Rodrigo S, Rodríguez L, Otero P, Panadero MI, García A, Barbas C, Roglans N, Ramos S, Goya L, Laguna JC, Álvarez-Millán JJ, Bocos C. Fructose during pregnancy provokes fetal oxidative stress: The key role of the placental heme oxygenase-1. Mol Nutr Food Res 2016; 60:2700-2711. [PMID: 27545118 DOI: 10.1002/mnfr.201600193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
SCOPE One of the features of metabolic syndrome caused by liquid fructose intake is an impairment of redox status. We have investigated whether maternal fructose ingestion modifies the redox status in pregnant rats and their fetuses. METHODS AND RESULTS Fructose (10% wt/vol) in the drinking water of rats throughout gestation, leads to maternal hepatic oxidative stress. However, this change was also observed in glucose-fed rats and, in fact, both carbohydrates produced a decrease in antioxidant enzyme activity. Surprisingly, mothers fed carbohydrates displayed low plasma lipid oxidation. In contrast, fetuses from fructose-fed mothers showed elevated levels of plasma lipoperoxides versus fetuses from control or glucose-fed mothers. Interestingly, a clearly augmented oxidative stress was observed in placenta of fructose-fed mothers, accompanied by a lower expression of the transcription factor Nuclear factor-erythroid 2-related factor-2 (Nrf2) and its target gene, heme oxygenase-1 (HO-1), a potent antioxidant molecule. Moreover, histone deacetylase 3 (HDAC3) that has been proposed to upregulate HO-1 expression by stabilizing Nrf2, exhibited a diminished expression in placenta of fructose-supplemented mothers. CONCLUSIONS Maternal fructose intake provoked an imbalanced redox status in placenta and a clear diminution of HO-1 expression, which could be responsible for the augmented oxidative stress found in their fetuses.
Collapse
Affiliation(s)
- Silvia Rodrigo
- Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Antonia García
- Centre of Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Coral Barbas
- Centre of Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Núria Roglans
- Facultad de Farmacia, Universidad de Barcelona, CIBERobn, IBUB, Barcelona, Spain
| | - Sonia Ramos
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN/CSIC), Madrid, Spain
| | - Luis Goya
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN/CSIC), Madrid, Spain
| | - Juan C Laguna
- Facultad de Farmacia, Universidad de Barcelona, CIBERobn, IBUB, Barcelona, Spain
| | | | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
46
|
Ramiro-Cortijo D, Herrera T, Rodríguez-Rodríguez P, López De Pablo ÁL, De La Calle M, López-Giménez MR, Mora-Urda AI, Gutiérrez-Arzapalo PY, Gómez-Rioja R, Aguilera Y, Martín-Cabrejas MA, Condezo-Hoyos L, González MC, Montero P, Moreno-Jiménez B, Arribas SM. Maternal plasma antioxidant status in the first trimester of pregnancy and development of obstetric complications. Placenta 2016; 47:37-45. [PMID: 27780538 DOI: 10.1016/j.placenta.2016.08.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/22/2016] [Accepted: 08/27/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Oxidative stress is present in pregnancy complications. However, it is unknown if early maternal antioxidant status could influence later development of complications. The use of assisted reproduction techniques (ART) is rising due to the delay of first pregnancy and there is scarce information on its influence on oxidative balance. OBJECTIVE To assess the possible relationship between maternal plasma antioxidant status in first trimester of gestation with later development of pregnancy complications, evaluating the influence of ART and nutrition. METHODS Plasma from 98 healthy pregnant women was obtained at week 10, nutrition questionnaires filled and women were followed until delivery. We evaluated biomarkers of oxidative damage (carbonyls, malondialdehyde-MDA), antioxidants (thiols, reduced glutathione, phenolic compounds, catalase and superoxide dismutase activities) by spectrophotometry/fluorimetry and melatonin (ELISA). Antioxidant status score (Antiox-S) was calculated as the computation of antioxidants. Diet-antioxidants relationship was evaluated through multiple correspondence analysis. RESULTS Melatonin and carbonyls exhibited a negative correlation. No difference in oxidative damage was found between groups, but Antiox-S was significantly lower in women who developed complications. No differences in oxidative damage or Antiox-S were found between ART and no-ART pregnancies. High consumption of foods of vegetable origin cluster with high plasma levels of phenolic compounds and with high Antiox-S. CONCLUSIONS In early normal gestation, low plasma antioxidant status, assessed through a global score, associates with later development of pregnancy complications. Larger population studies could help to determine the value of Antiox-S as predictive tool and the relevance of nutrition on maternal antioxidant status.
Collapse
Affiliation(s)
- David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Teresa Herrera
- Department of Agricultural and Food Chemistry-CIAL, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | | | | | - María De La Calle
- Obstetrics and Gynecology Service, La Paz University Hospital, Universidad Autónoma de Madrid, Spain
| | - María R López-Giménez
- Department of Preventive Medicine, Public Health & Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Ana I Mora-Urda
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | | | - Rubén Gómez-Rioja
- Laboratory Medicine Service, La Paz University Hospital, Universidad Autónoma de Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural and Food Chemistry-CIAL, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural and Food Chemistry-CIAL, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | - Luis Condezo-Hoyos
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - M Carmen González
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Pilar Montero
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Spain
| | - Bernardo Moreno-Jiménez
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Spain
| | - Silvia M Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|