1
|
Josse M, Rigal E, Rosenblatt-Velin N, Collin B, Dogon G, Rochette L, Zeller M, Vergely C. Postnatally overfed mice display cardiac function alteration following myocardial infarction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167516. [PMID: 39304090 DOI: 10.1016/j.bbadis.2024.167516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cardiovascular (CV) pathologies remain a leading cause of death worldwide, often associated with common comorbidities such as overweight, obesity, type 2 diabetes or hypertension. An innovative mouse model of metabolic syndrome induced by postnatal overfeeding (PNOF) through litter size reduction after birth was developed experimentally. This study aimed to evaluate the impact of PNOF on cardiac remodelling and the development of heart failure following myocardial infarction. METHODS C57BL/6 male mice were raised in litter adjusted to 9 or 3 pups for normally-fed (NF) control and PNOF group respectively. After weaning, all mice had free access to standard diet and water. At 4 months, mice were subjected to myocardial infarction (MI). Echocardiographic follows-up were performed up to 6-months post-surgery and biomolecular analyses were carried-out after heart collection. FINDINGS At 4 months, PNOF mice exhibited a significant increase in body weight, along with a basal reduction in left ventricular ejection fraction (LVEF) and an increase in left ventricular end-systolic area (LVESA), compared to NF mice. Following MI, PNOF mice demonstrated a significant decrease in stroke volume and an increased heart rate compared to their respective initial values, as well as a notable reduction in cardiac output 4-months after MI. After 6-months, left ventricle and lung masses, fibrosis staining, and mRNA expression were all similar in the NF-MI and PNOF-MI groups. INTERPRETATION After MI, PNOF mice display signs of cardiac function worsening as evidenced by a decrease in cardiac output, which could indicate an early sign of heart failure decompensation.
Collapse
Affiliation(s)
- Marie Josse
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Eve Rigal
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Nathalie Rosenblatt-Velin
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland.
| | - Bertrand Collin
- Preclinical Imaging and Radiotherapy Platform, Centre Georges-François Leclerc and Radiopharmaceutiques, Imagerie, Théranostiques et Multimodalité (RITM) Team, Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB - UMR CNRS 6302), France.
| | - Geoffrey Dogon
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| | - Luc Rochette
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Marianne Zeller
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France; Service de Cardiologie, CHU Dijon Bourgogne, France.
| | - Catherine Vergely
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| |
Collapse
|
2
|
Tejera-Muñoz A, Guerra-Menéndez L, Amor S, González-Hedström D, García-Villalón ÁL, Granado M. Postnatal Overfeeding during Lactation Induces Endothelial Dysfunction and Cardiac Insulin Resistance in Adult Rats. Int J Mol Sci 2023; 24:14443. [PMID: 37833890 PMCID: PMC10572650 DOI: 10.3390/ijms241914443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Early overnutrition is associated with cardiometabolic alterations in adulthood, likely attributed to reduced insulin sensitivity due to its crucial role in the cardiovascular system. This study aimed to assess the long-term effects of early overnutrition on the development of cardiovascular insulin resistance. An experimental childhood obesity model was established using male Sprague Dawley rats. Rats were organized into litters of 12 pups/mother (L12-Controls) or 3 pups/mother (L3-Overfed) at birth. After weaning, animals from L12 and L3 were housed three per cage and provided ad libitum access to food for 6 months. L3 rats exhibited elevated body weight, along with increased visceral, subcutaneous, and perivascular fat accumulation. However, heart weight at sacrifice was reduced in L3 rats. Furthermore, L3 rats displayed elevated serum levels of glucose, leptin, adiponectin, total lipids, and triglycerides compared to control rats. In the myocardium, overfed rats showed decreased IL-10 mRNA levels and alterations in contractility and heart rate in response to insulin. Similarly, aortic tissue exhibited modified gene expression of TNFα, iNOS, and IL-6. Additionally, L3 aortas exhibited endothelial dysfunction in response to acetylcholine, although insulin-induced relaxation remained unchanged compared to controls. At the molecular level, L3 rats displayed reduced Akt phosphorylation in response to insulin, both in myocardial and aortic tissues, whereas MAPK phosphorylation was elevated solely in the myocardium. Overfeeding during lactation in rats induces endothelial dysfunction and cardiac insulin resistance in adulthood, potentially contributing to the cardiovascular alterations observed in this experimental model.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Research Support Unit, Hospital General La Mancha Centro, 13600 Alcázar de San Juan, Spain;
- Instituto de Investigación de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Lucía Guerra-Menéndez
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain;
| | - Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.A.); (D.G.-H.); (Á.L.G.-V.)
| | - Daniel González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.A.); (D.G.-H.); (Á.L.G.-V.)
| | - Ángel Luis García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.A.); (D.G.-H.); (Á.L.G.-V.)
| | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.A.); (D.G.-H.); (Á.L.G.-V.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Sun KX, Chen YY, Li Z, Zheng SJ, Wan WJ, Ji Y, Hu K. Genipin relieves diabetic retinopathy by down-regulation of advanced glycation end products via the mitochondrial metabolism related signaling pathway. World J Diabetes 2023; 14:1349-1368. [PMID: 37771331 PMCID: PMC10523227 DOI: 10.4239/wjd.v14.i9.1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Glycation is an important step in aging and oxidative stress, which can lead to endothelial dysfunction and cause severe damage to the eyes or kidneys of diabetics. Inhibition of the formation of advanced glycation end products (AGEs) and their cell toxicity can be a useful therapeutic strategy in the prevention of diabetic retinopathy (DR). Gardenia jasminoides Ellis (GJE) fruit is a selective inhibitor of AGEs. Genipin is an active compound of GJE fruit, which can be employed to treat diabetes. AIM To confirm the effect of genipin, a vital component of GJE fruit, in preventing human retinal microvascular endothelial cells (hRMECs) from AGEs damage in DR, to investigate the effect of genipin in the down-regulation of AGEs expression, and to explore the role of the CHGA/UCP2/glucose transporter 1 (GLUT1) signal pathway in this process. METHODS In vitro, cell viability was tested to determine the effects of different doses of glucose and genipin in hRMECs. Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, immunofluorescence, wound healing assay, transwell assay, and tube-forming assay were used to detect the effect of genipin on hRMECs cultured in high glucose conditions. In vivo, streptozotocin (STZ) induced mice were used, and genipin was administered by intraocular injection (IOI). To explore the effect and mechanism of genipin in diabetic-induced retinal dysfunction, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assays were performed to explore energy metabolism and oxidative stress damage in high glucose-induced hRMECs and STZ mouse retinas. Immunofluorescence and Western blot were used to investigate the expression of inflammatory cytokines [vascular endothelial growth factor (VEGF), SCG3, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-18, and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3 (NLRP3)]. The protein expression of the receptor of AGEs (RAGE) and the mitochondria-related signal molecules CHGA, GLUT1, and UCP2 in high glucose-induced hRMECs and STZ mouse retinas were measured and compared with the genipin-treated group. RESULTS The results of CCK-8 and colony formation assay showed that genipin promoted cell viability in high glucose (30 mmol/L D-Glucose)-induced hRMECs, especially at a 0.4 μmol/L dose for 7 d. Flow cytometry results showed that high glucose can increase apoptosis rate by 30%, and genipin alleviated cell apoptosis in AGEs-induced hRMECs. A high glucose environment promoted ATP, ROS, MMP, and 2-NBDG levels, while genipin inhibited these phenotypic abnormalities in AGEs-induced hRMECs. Furthermore, genipin remarkably reduced the levels of the pro-inflammatory cytokines TNF-α, IL-1β, IL-18, and NLRP3 and impeded the expression of VEGF and SCG3 in AGEs-damaged hRMECs. These results showed that genipin can reverse high glucose induced damage with regard to cell proliferation and apoptosis in vitro, while reducing energy metabolism, oxidative stress, and inflammatory injury caused by high glucose. In addition, ROS levels and glucose uptake levels were higher in the retina from the untreated eye than in the genipin-treated eye of STZ mice. The expression of inflammatory cytokines and pathway protein in the untreated eye compared with the genipin-treated eye was significantly increased, as measured by Western blot. These results showed that IOI of genipin reduced the expression of CHGA, UCP2, and GLUT1, maintained the retinal structure, and decreased ROS, glucose uptake, and inflammation levels in vivo. In addition, we found that SCG3 expression might have a higher sensitivity in DR than VEGF as a diagnostic marker at the protein level. CONCLUSION Our study suggested that genipin ameliorates AGEs-induced hRMECs proliferation, apoptosis, energy metabolism, oxidative stress, and inflammatory injury, partially via the CHGA/UCP2/GLUT1 pathway. Control of advanced glycation by IOI of genipin may represent a strategy to prevent severe retinopathy and vision loss.
Collapse
Affiliation(s)
- Ke-Xin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan-Yi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhen Li
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan 400000, Sichuan Province, China
| | - Shi-Jie Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen-Juan Wan
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Ji
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Hu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Liu K, Chen B, Zeng F, Wang G, Wu X, Liu Y, Li G, Yan J, Zhang S. ApoE/ NOS3 Knockout Mice as a Novel Cardiovascular Disease Model of Hypertension and Atherosclerosis. Genes (Basel) 2022; 13:1998. [PMID: 36360235 PMCID: PMC9690224 DOI: 10.3390/genes13111998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 09/27/2024] Open
Abstract
Hypertension is an independent risk factor for atherosclerosis. However, few models of hypertensive atherosclerosis have been established in medical research. In this study, we crossed the ApoE knockout (ApoE-KO; ApoE-/-) atherosclerotic mouse model with the NOS3 knockout (NOS3-KO; NOS3-/-) hypertensive mouse model to establish an ApoE/NOS3 double knockout (ApoE/NOS3-KO; ApoE/NOS3-/-) hypertensive atherosclerosis mouse model. We found that ApoE/NOS3-/- mice reproduced normally, had a blood pressure of 133.00 ± 3.85 mmHg, and developed hypertensive fundus retinopathy and hypertensive nephropathy. In addition, serum total cholesterol (TC) and low-density lipoprotein (LDL) levels in the blood were abnormally elevated, steatosis was observed in the liver cells, and atherosclerotic lesions were observed in the aortic vessels in ApoE/NOS3-/- adult mice. In conclusion, ApoE/NOS3-/- adult mice are a satisfactory model of hypertension and atherosclerosis and can be utilized for studies on cardiovascular diseases.
Collapse
Affiliation(s)
- Ke Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Medical Laboratory Animal Center, Foshan 528248, China
| | - Bangzhu Chen
- Guangdong Medical Laboratory Animal Center, Foshan 528248, China
| | - Fanwen Zeng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gang Wang
- Guangdong Medical Laboratory Animal Center, Foshan 528248, China
| | - Xin Wu
- Guangdong Medical Laboratory Animal Center, Foshan 528248, China
| | - Yueshu Liu
- Guangdong Medical Laboratory Animal Center, Foshan 528248, China
| | - Guiling Li
- Guangdong Medical Laboratory Animal Center, Foshan 528248, China
| | - Jiarong Yan
- Guangdong Medical Laboratory Animal Center, Foshan 528248, China
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Kutsche HS, Schreckenberg R, Schlüter KD. Uncoupling Proteins in Striated Muscle Tissue: Known Facts and Open Questions. Antioxid Redox Signal 2022; 37:324-335. [PMID: 35044239 DOI: 10.1089/ars.2021.0258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.
Collapse
Affiliation(s)
| | - Rolf Schreckenberg
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
6
|
Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. Int J Mol Sci 2020; 21:ijms21249427. [PMID: 33322275 PMCID: PMC7763005 DOI: 10.3390/ijms21249427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Nutritional environment in the perinatal period has a great influence on health and diseases in adulthood. In rodents, litter size reduction reproduces the effects of postnatal overnutrition in infants and reveals that postnatal overfeeding (PNOF) not only permanently increases body weight but also affects the cardiovascular function in the short- and long-term. In addition to increased adiposity, the metabolic status of PNOF rodents is altered, with increased plasma insulin and leptin levels, associated with resistance to these hormones, changed profiles and levels of circulating lipids. PNOF animals present elevated arterial blood pressure with altered vascular responsiveness to vasoactive substances. The hearts of overfed rodents exhibit hypertrophy and elevated collagen content. PNOF also induces a disturbance of cardiac mitochondrial respiration and produces an imbalance between oxidants and antioxidants. A modification of the expression of crucial genes and epigenetic alterations is reported in hearts of PNOF animals. In vivo, a decreased ventricular contractile function is observed during adulthood in PNOF hearts. All these alterations ultimately lead to an increased sensitivity to cardiac pathologic challenges such as ischemia-reperfusion injury. Nevertheless, caloric restriction and physical exercise were shown to improve PNOF-induced cardiac dysfunction and metabolic abnormalities, drawing a path to the potential therapeutic correction of early nutritional programming.
Collapse
|
7
|
Szibor M, Schreckenberg R, Gizatullina Z, Dufour E, Wiesnet M, Dhandapani PK, Debska-Vielhaber G, Heidler J, Wittig I, Nyman TA, Gärtner U, Hall AR, Pell V, Viscomi C, Krieg T, Murphy MP, Braun T, Gellerich FN, Schlüter KD, Jacobs HT. Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia. J Cell Mol Med 2020; 24:3534-3548. [PMID: 32040259 PMCID: PMC7131948 DOI: 10.1111/jcmm.15043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cardiac ischaemia-reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re-perfused post-ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post-anoxic heart mitochondria. However, post-ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up-regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro-fibrotic and pro-apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label-free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC-derived signals during cardiac adaptive remodelling and identified ROS as a possible effector.
Collapse
Affiliation(s)
- Marten Szibor
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Rolf Schreckenberg
- Department of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Eric Dufour
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marion Wiesnet
- Department Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Praveen K Dhandapani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Juliana Heidler
- Functional Proteomics, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andrew R Hall
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Victoria Pell
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Carlo Viscomi
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Thomas Braun
- Department Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Frank N Gellerich
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Junior MDF, Cavalcante KVN, Ferreira LA, Lopes PR, Pontes CNR, Bessa ADSMD, Neves ÂR, Francisco FA, Pedrino GR, Xavier CH, Mathias PCDF, Castro CHD, Gomes RM. Postnatal early overfeeding induces cardiovascular dysfunction by oxidative stress in adult male Wistar rats. Life Sci 2019; 226:173-184. [DOI: 10.1016/j.lfs.2019.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022]
|
9
|
de Moura Freitas C, Nascimento LCPD, Braz GRF, Andrade-Silva SC, Lima-Junior NC, de Araujo Silva T, Fernandes MP, Ferreira DJS, Lagranha CJ. Mitochondrial impairment following neonatal overfeeding: A comparison between normal and ischemic-reperfused hearts. J Cell Biochem 2019; 120:7341-7352. [PMID: 30368910 DOI: 10.1002/jcb.28009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Overweight and obesity are established factors underpin several metabolic impairments, including the cardiovascular. Although the diversity of factors involved in overweight/obesity-induced cardiovascular diseases, mitochondria has been highlighted due to its role in cardiac metabolism. As obesity can be originated in early postnatal life, the current study evaluates the effects of neonatal overfeeding on the cardiac mitochondrial bioenergetics and oxidative balance in rats that underwent an ischemia-reperfusion insult. Seventy-two hours after delivery, Wistar rat litters were randomly assigned into the control (C; nine pups per mother) and the Overfed (OF; three pups per mother) groups throughout the lactation period. At weaning, male offspring were fed with laboratory chow ad libitum until sacrifice at 30 and 60 days of life. Mitochondrial heart bioenergetics and oxidative balance showed to be deeply affected by neonatal overfeeding at both ages. Interestingly, after ischemia-reperfusion insult I/R (Langendorff or mineral oil incubation), most parameters evaluated in OF animals were not influenced by additional ischemic-reperfusion injury. Our findings demonstrated that suckling overfeeding deregulates cardiac mitochondrial alike to ischemia-reperfusion insult by disengaging electrical mitochondrial coupling and potentiate oxidative stress, wherein the neonatal overfeeding shows to be so detrimental as I/R. Our findings support the concept that nutritional insults in the critical development periods increase the risk for cardiovascular disease and mitochondria impairments throughout life while oxidative damage change between molecular targets.
Collapse
Affiliation(s)
- Cristiane de Moura Freitas
- Laboratory of Biochemistry and Exercise Biochemistry, Biochemistry and Physiology Graduate Program, CAV-Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Luciana Caroline Paulino do Nascimento
- Laboratory of Biochemistry and Exercise Biochemistry, Biochemistry and Physiology Graduate Program, CAV-Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Glauber Rudá Feitoza Braz
- Laboratory of Biochemistry and Exercise Biochemistry, Neuropsychiatry and Behavioral Science Graduate Program, CAV-Federal University of Pernambuco, Recife, Brazil
| | - Severina Cassia Andrade-Silva
- Laboratory of Biochemistry and Exercise Biochemistry, Biochemistry and Physiology Graduate Program, CAV-Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nelson C Lima-Junior
- Department of Physical Education and Sports Science, Laboratory of Biochemistry and Exercise Biochemistry, CAV- Federal University of Pernambuco, Brazil
| | - Tercya de Araujo Silva
- Laboratory of Biochemistry and Exercise Biochemistry, Neuropsychiatry and Behavioral Science Graduate Program, CAV-Federal University of Pernambuco, Recife, Brazil
| | - Mariana Pinheiro Fernandes
- Department of Physical Education and Sports Science, Laboratory of Biochemistry and Exercise Biochemistry, CAV- Federal University of Pernambuco, Brazil
| | | | - Claudia Jacques Lagranha
- Laboratory of Biochemistry and Exercise Biochemistry, Biochemistry and Physiology Graduate Program, CAV-Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Laboratory of Biochemistry and Exercise Biochemistry, Neuropsychiatry and Behavioral Science Graduate Program, CAV-Federal University of Pernambuco, Recife, Brazil.,Department of Physical Education and Sports Science, Laboratory of Biochemistry and Exercise Biochemistry, CAV- Federal University of Pernambuco, Brazil
| |
Collapse
|
10
|
Ellsworth L, Harman E, Padmanabhan V, Gregg B. Lactational programming of glucose homeostasis: a window of opportunity. Reproduction 2018; 156:R23-R42. [PMID: 29752297 PMCID: PMC6668618 DOI: 10.1530/rep-17-0780] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The window of lactation is a critical period during which nutritional and environmental exposures impact lifelong metabolic disease risk. Significant organ and tissue development, organ expansion and maturation of cellular functions occur during the lactation period, making this a vulnerable time during which transient insults can have lasting effects. This review will cover current literature on factors influencing lactational programming such as milk composition, maternal health status and environmental endocrine disruptors. The underlying mechanisms that have the potential to contribute to lactational programming of glucose homeostasis will also be addressed, as well as potential interventions to reduce offspring metabolic disease risk.
Collapse
Affiliation(s)
- Lindsay Ellsworth
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Emma Harman
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | | | - Brigid Gregg
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Effects of postnatal overfeeding and fish oil diet on energy expenditure in rats. Pediatr Res 2018; 83:156-163. [PMID: 28846671 DOI: 10.1038/pr.2017.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
BackgroudEarly life nutrition may have a role in the regulation of metabolism in adulthood. The present study aimed to evaluate the effects of postnatal overfeeding and a postweaning fish oil diet on energy expenditure.MethodsOn postnatal day 3, rat litters were adjusted to a litter size of three (small litters, SLs) or ten (normal litters, NLs). After weaning, SLs were fed the standard diet or a fish oil diet enriched with polyunsaturated fatty acids (SL-FOs) for 10 weeks. The metabolic parameters of rats were monitored using the TSE LabMaster at postnatal week 3 (W3) and postnatal week 13 (W13).ResultsAt W3, the O2 consumption and heat production in SLs were lower than those in NLs, while the respiratory exchange ratio (RER) was higher than NLs. SLs showed obesity, dyslipidemia, and impaired glucose tolerance at W13. The postweaning fish oil diet in SLs not only increased O2 consumption, CO2 production, heat production, and reduced the RER but it also reduced weight gain, serum triglycerides, and improved glucose tolerance at W13.ConclusionPostnatal overfeeding can decrease the level of body energy expenditure and induce obesity, but a fish oil diet can increase the energy expenditure and prevent the development of metabolic dysregulation in adults.
Collapse
|