1
|
Chen H, Shen H, Han J, Wang P, Song D, Shen H, Wei X, Yang B, Li J. Performance of ATT and UDFF in the diagnosis of non-alcoholic fatty liver: An animal experiment. Heliyon 2024; 10:e27993. [PMID: 38560108 PMCID: PMC10981026 DOI: 10.1016/j.heliyon.2024.e27993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To establish a Bama minipigs model with Non-Alcoholic Fatty Liver (NAFL) induced by a high-fat diet and investigate the application of attenuation coefficient (ATT) and ultrasound-derived fat fraction (UDFF) in the diagnosis of NAFL. Methods Six-month-old male Bama minipigs were randomly divided into normal control and high-fat groups (n = 3 pigs per group), and fed with a control diet and high-fat diet for 32 weeks. Weight and body length were measured every four weeks, followed by quantitative ultrasound imaging (ATT and UDFF), blood biochemical markers, and liver biopsies on the same day. Using the Non-Alcoholic Fatty Liver Disease (NAFLD) Activity Score (NAS) as a reference, we analyzed the correlation between ATT, UDFF, and their score results. Results Compared with the normal control group, the body weight, body mass index (BMI), and serum levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in the High-fat group were significantly different at Week 12 (P < 0.05). Spearman correlation analysis showed that the ATT value was significantly correlated with NAS score (r = 0.76, P < 0.001), and the UDFF value was significantly correlated with NAS score (r = 0.80, P < 0.001). The optimal cut-off value of ATT and UDFF were 0.59 dB/cm/MHz and 5.5%, respectively. These values are optimal for diagnosis of NAFL in Bama minipig model. Conclusion ATT and UDFF have a high correlation with steatosis, and can be used as a non-invasive method for early screening of hepatic steatosis, which can dynamically monitor the change of disease course.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Huiming Shen
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jiahao Han
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Pingping Wang
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Danlei Song
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Hongyuan Shen
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaoying Wei
- Department of Pathology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Bingjie Yang
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jia Li
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| |
Collapse
|
2
|
Dong T, Li J, Liu Y, Zhou S, Wei X, Hua H, Tang K, Zhang X, Wang Y, Wu Z, Gao C, Zhang H. Roles of immune dysregulation in MASLD. Biomed Pharmacother 2024; 170:116069. [PMID: 38147736 DOI: 10.1016/j.biopha.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide. Its occurrence and progression involve the process from simple hepatic steatosis to metabolic dysfunction associated steatohepatitis (MASH), which could develop into advanced liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Growing evidences support that the pathogenesis and progression of MASLD are closely related to immune system dysfunction. This review aims to summarize the association of MASLD with immune disorders and the prospect of using immunotherapy for MASLD.
Collapse
Affiliation(s)
- Tingyu Dong
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Jiajin Li
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuqing Liu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Shikai Zhou
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yiming Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zhen Wu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Chien MJ, Li SJ, Wong SC, Chiang CH, Lin YY, Mersmann HJ, Chen CY. Determination of mitochondrial functions and damage in kidney in female LeeSung minipigs with a high-fat diet-induced obesity. Arch Physiol Biochem 2023; 129:1289-1297. [PMID: 34338085 DOI: 10.1080/13813455.2021.1949022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to investigate the nexus between mitochondrial function and kidney injury by using a dietary-induced obese minipig model. Female Lee-Sung minipigs feeding a high-fat diet (HFD) for 6 months exhibited obesity, hyperglycaemia and dyslipidemia. HFD elevated the levels of plasma biomarkers related to renal injury, including symmetric dimethylarginine, creatinine and urea nitrogen. An extensive structural change in tubules and glomeruli was observed in HFD-fed pigs. A great amount of triacylglycerol was accumulated in HFD kidney compared to control kidney, whereas a reduction of ATP level and antioxidant capacity were exhibited in HFD kidney. Moreover, HFD altered the expressions of mitochondrial-related protein in renal cortex. To conclude, long-term HFD feeding to Lee-Sung minipigs induced obesity and kidney injury accompanied by abnormal mitochondrial functions in the renal cortex, suggesting an interrelationship with renal disease progression.
Collapse
Affiliation(s)
- Miao-Ju Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sin-Jin Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shiu-Chung Wong
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Goutchtat R, Quenon A, Clarisse M, Delalleau N, Coddeville A, Gobert M, Gmyr V, Kerr-Conte J, Pattou F, Hubert T. Effects of subtotal pancreatectomy and long-term glucose and lipid overload on insulin secretion and glucose homeostasis in minipigs. Endocrinol Diabetes Metab 2023:e425. [PMID: 37144278 DOI: 10.1002/edm2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
INTRODUCTION Nowadays, there are no strong diabetic pig models, yet they are required for various types of diabetes research. Using cutting-edge techniques, we attempted to develop a type 2 diabetic minipig model in this study by combining a partial pancreatectomy (Px) with an energetic overload administered either orally or parenterally. METHODS Different groups of minipigs, including Göttingen-like (GL, n = 17) and Ossabaw (O, n = 4), were developed. Prior to and following each intervention, metabolic assessments were conducted. First, the metabolic responses of the Göttingen-like (n = 3) and Ossabaw (n = 4) strains to a 2-month High-Fat, High-Sucrose diet (HFHSD) were compared. Then, other groups of GL minipigs were established: with a single Px (n = 10), a Px combined with a 2-month HFHSD (n = 6), and long-term intraportal glucose and lipid infusions that were either preceded by a Px (n = 4) or not (n = 4). RESULTS After the 2-month HFHSD, there was no discernible change between the GL and O minipigs. The pancreatectomized group in GL minipigs showed a significantly lower Acute Insulin Response (AIR) (18.3 ± 10.0 IU/mL after Px vs. 34.9 ± 13.7 IU/mL before, p < .0005). In both long-term intraportal infusion groups, an increase in the Insulinogenic (IGI) and Hepatic Insulin Resistance Indexes (HIRI) was found with a decrease in the AIR, especially in the pancreatectomized group (IGI: 4.2 ± 1.9 after vs. 1.5 ± 0.8 before, p < .05; HIRI (×10-5 ): 12.6 ± 7.9 after vs. 3.8 ± 4.3 before, p < .05; AIR: 24.4 ± 13.7 µIU/mL after vs. 43.9 ± 14.5 µIU/mL before, p < .005). Regardless of the group, there was no fasting hyperglycemia. CONCLUSIONS In this study, we used pancreatectomy followed by long-term intraportal glucose and lipid infusions to develop an original minipig model with metabolic syndrome and early signs of glucose intolerance. We reaffirm the pig's usefulness as a preclinical model for the metabolic syndrome but without the fasting hyperglycemia that characterizes diabetes mellitus.
Collapse
Affiliation(s)
- Rébecca Goutchtat
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Audrey Quenon
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
- Univ. Lille, CHU Lille, UFR3S, Département Hospitalo-Universitaire de Recherche et d'Enseignement (Dhure), Lille, France
| | | | - Nathalie Delalleau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Anaïs Coddeville
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Mathilde Gobert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Valéry Gmyr
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Julie Kerr-Conte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Thomas Hubert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
- Univ. Lille, CHU Lille, UFR3S, Département Hospitalo-Universitaire de Recherche et d'Enseignement (Dhure), Lille, France
| |
Collapse
|
5
|
Venkat P, Gao H, Findeis EL, Chen Z, Zacharek A, Landschoot-Ward J, Powell B, Lu M, Liu Z, Zhang Z, Chopp M. Therapeutic effects of CD133 + Exosomes on liver function after stroke in type 2 diabetic mice. Front Neurosci 2023; 17:1061485. [PMID: 36968490 PMCID: PMC10033607 DOI: 10.3389/fnins.2023.1061485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background and purpose Non-alcoholic fatty liver disease (NAFLD) is known to adversely affect stroke recovery. However, few studies investigate how stroke elicits liver dysfunction, particularly, how stroke in type 2 diabetes mellitus (T2DM) exacerbates progression of NAFLD. In this study, we test whether exosomes harvested from human umbilical cord blood (HUCBC) derived CD133 + cells (CD133 + Exo) improves neuro-cognitive outcome as well as reduces liver dysfunction in T2DM female mice. Methods Female, adult non-DM and T2DM mice subjected to stroke presence or absence were considered. T2DM-stroke mice were randomly assigned to receive PBS or Exosome treatment group. CD133 + Exo (20 μg/200 μl PBS, i.v.) was administered once at 3 days after stroke. Evaluation of neurological (mNSS, adhesive removal test) and cognitive function [novel object recognition (NOR) test, odor test] was performed. Mice were sacrificed at 28 days after stroke and brain, liver, and serum were harvested. Results Stroke induces severe and significant short-term and long-term neurological and cognitive deficits which were worse in T2DM mice compared to non-DM mice. CD133 + Exo treatment of T2DM-stroke mice significantly improved neurological function and cognitive outcome indicated by improved discrimination index in the NOR and odor tests compared to control T2DM-stroke mice. CD133 + Exo treatment of T2DM stroke significantly increased vascular and white matter/axon remodeling in the ischemic brain compared to T2DM-stroke mice. However, there were no differences in the lesion volume between non-DM stroke, T2DM-stroke and CD133 + Exo treated T2DM-stroke mice. In T2DM mice, stroke induced earlier and higher TLR4, NLRP3, and cytokine expression (SAA, IL1β, IL6, TNFα) in the liver compared to heart and kidney, as measured by Western blot. T2DM-stroke mice exhibited worse NAFLD progression with increased liver steatosis, hepatocellular ballooning, fibrosis, serum ALT activity, and higher NAFLD Activity Score compared to T2DM mice and non-DM-stroke mice, while CD133 + Exo treatment significantly attenuated the progression of NAFLD in T2DM stroke mice. Conclusion Treatment of female T2DM-stroke mice with CD133 + Exo significantly reduces the progression of NAFLD/NASH and improves neurological and cognitive function compared to control T2DM-stroke mice.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Poornima Venkat,
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| |
Collapse
|
6
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Zhang C, Wang T, Cui T, Liu S, Zhang B, Li X, Tang J, Wang P, Guo Y, Wang Z. Genome-Wide Phylogenetic Analysis, Expression Pattern, and Transcriptional Regulatory Network of the Pig C/EBP Gene Family. Evol Bioinform Online 2021; 17:11769343211041382. [PMID: 34471342 PMCID: PMC8404664 DOI: 10.1177/11769343211041382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The CCAAT/enhancer binding protein (C/EBP) transcription factors (TFs) regulate many important biological processes, such as energy metabolism, inflammation, cell proliferation etc. A genome-wide gene identification revealed the presence of a total of 99 C/EBP genes in pig and 19 eukaryote genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into 6 subgroups named C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ, and C/EBPζ. Gene expression analysis showed that the C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPζ genes were expressed ubiquitously with inconsistent expression patterns in various pig tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs and miRNAs. A total of 27 feed-forward loop (FFL) motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to FFL sub-network were analyzed in 27 adult pig tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.
Collapse
Affiliation(s)
- Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tongyan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Bing Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Xue Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Jian Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Peng Wang
- HeiLongJiang provincial Husbandry Dapartment, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- DaBeiNong Group, Beijing, China
| |
Collapse
|
8
|
Cirera S, Taşöz E, Juul Jacobsen M, Schumacher-Petersen C, Østergaard Christoffersen B, Kaae Kirk R, Pagh Ludvigsen T, Hvid H, Duelund Pedersen H, Høier Olsen L, Fredholm M. The expression signatures in liver and adipose tissue from obese Göttingen Minipigs reveal a predisposition for healthy fat accumulation. Nutr Diabetes 2020; 10:9. [PMID: 32205840 PMCID: PMC7090036 DOI: 10.1038/s41387-020-0112-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Model animals are valuable resources for dissecting basic aspects of the regulation of obesity and metabolism. The translatability of results relies on understanding comparative aspects of molecular pathophysiology. Several studies have shown that despite the presence of overt obesity and dyslipidemia in the pig key human pathological hepatic findings such as hepatocellular ballooning and abundant steatosis are lacking in the model. OBJECTIVES The aim of this study was to elucidate why these histopathological characteristics did not occur in a high fat, fructose and cholesterol (FFC) diet-induced obese Göttingen Minipig model. METHODS High-throughput expression profiling of more than 90 metabolically relevant genes was performed in liver, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of male minipigs diet fed: standard chow (SD, n = 7); FFC diet (n = 14); FFC diet in streptozotocin-induced diabetic pigs (FFCDIA, n = 8). Moreover, histopathological assessment of SAT and VAT was performed. RESULTS 12, 4 and 1 genes were highly significantly differentially expressed in liver, SAT and VAT when comparing the FFC and SD groups whereas the corresponding numbers were 15, 2, and 1 when comparing the FFCDIA and SD groups. Although the minipigs in both FFC groups developed sever obesity and dyslipidemia, the insulin-signaling pathways were not affected. Notably, four genes involved in lipid acquisition and removal, were highly deregulated in the liver: PPARG, LPL, CD36 and FABP4. These genes have been reported to play a major role in promoting hepatic steatosis in rodents and humans. Since very little macrophage-associated pro-inflammatory response was detected in the adipose tissues the expansion appears to have no adverse impact on adipose tissue metabolism. CONCLUSION The study shows that morbidly obese Göttingen Minipigs are protected against many of the metabolic and hepatic abnormalities associated with obesity due to a remarkable ability to expand the adipose compartments to accommodate excess calories.
Collapse
Affiliation(s)
- Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Emirhan Taşöz
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Mette Juul Jacobsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Camilla Schumacher-Petersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | | | - Rikke Kaae Kirk
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Henrik Duelund Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
- Ellegaard Gottingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
9
|
Cai Z, Yu C, Fu D, Pan Y, Huang J, Rong Y, Deng L, Chen J, Chen M. Differential metabolic and hepatic transcriptome responses of two miniature pig breeds to high dietary cholesterol. Life Sci 2020; 250:117514. [PMID: 32145306 DOI: 10.1016/j.lfs.2020.117514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
AIMS Pigs are increasingly used as human metabolic disease models; however, there is insufficient research on breed-related genetic background differences. This study aimed to investigate the differential metabolic responses to high-fat and high-cholesterol (HFC) diet-induced non-alcoholic fatty liver disease (NAFLD) of two miniature pig breeds and explore the molecular mechanisms involved. MAIN METHODS Male Wuzhishan (WZSP) and Tibetan pigs (TP) were randomly fed either a standard or an HFC diet for 24 weeks. Weight, serum lipids, bile acid, insulin resistance, liver function, liver histology, and hepatic lipid deposition were determined. RNA-Seq was used to detect the hepatic gene expression profiles. Western blot, immunohistochemistry, and qRT-PCR were used to detect the lipid and glucose metabolism-related gene expressions. KEY FINDINGS The HFC diet caused obesity, hypertension, severe hypercholesterolemia, liver injury, increased hepatocellular steatosis and inflammation, and significantly increased serum insulin levels in both pig breeds. This diet led to higher serum and hepatic cholesterol level concentrations in WZSP and elevated fasting glucose levels in TP. Transcriptome analysis revealed that the genes controlling hepatic cholesterol metabolism and the inflammatory response were consistently regulated; lipid metabolism and insulin signaling related genes were uniquely regulated by the HFC diet in the WZSP and TP, respectively. SIGNIFICANCE Our study demonstrated that the genetic background affects profoundly pigs' metabolic and hepatic responses to an HFC diet. These results deepened our understanding of the molecular mechanisms of HFC diet-induced NAFLD and provided a foundation for selecting the appropriate pig breeds for metabolic studies in the future.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chen Yu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Danting Fu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongming Pan
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junjie Huang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yili Rong
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liqun Deng
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiaojiao Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Minli Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
10
|
Chen CY, Li SJ, Wang CY, Mersmann HJ, Ding ST. The impact of DRP1 on myocardial fibrosis in the obese minipig. Eur J Clin Invest 2020; 50:e13204. [PMID: 31990365 DOI: 10.1111/eci.13204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The heart is a highly oxidative tissue, thus mitochondria play a major role in maintaining optimal cardiac function. Our previous study established a dietary-induced obese minipig with cardiac fibrosis. The aim of this study was to elucidate the role of mitochondrial dynamics in cardiac fibrosis of obese minipigs. DESIGN Four-month-old Lee-Sung minipigs were randomly divided into two groups: a control group (C) and an obese group (O) by feeding a control diet or a high-fat diet (HFD) for 6 months. Exposure of H9c2 cardiomyoblasts to palmitate was used to explore the effects of high-fat on induction of myocardial injury in vitro. RESULTS The O pigs displayed greater heart weight and cardiac collagen accumulation. Obese pigs exhibited a lower antioxidant capacity, ATP concentration, and higher oxidative stress in the left ventricle (LV). The HFD caused downregulation in protein expression of PGC-1α and OPA1, and upregulation of DRP1, FIS1, and PINK1 in the LV of O compared to C pigs. Furthermore, palmitate induced apoptosis and decreased ATP content in H9c2 cells. Palmitate elevated the protein expression of DRP1 and PINK1 in these cells. Inhibition of DRP1 protein expression by siDRP1 in H9c2 cells resulted in enhanced ATP and decreased palmitate-induced apoptosis. CONCLUSIONS These results suggest that mitochondrial dynamics were linked to the progression of obesity-related cardiac injury. Inhibition of DRP1 after palmitate exposure in H9c2 cells resulted in improved ATP level and decreased apoptosis in vitro suggesting that mitochondrial fission serves a key role in progression of obesity-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sin-Jin Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yu Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Challenges and opportunities in drug development for nonalcoholic steatohepatitis. Eur J Pharmacol 2020; 870:172913. [PMID: 31926994 DOI: 10.1016/j.ejphar.2020.172913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are considered major global medical burdens with high prevalence and steeply rising incidence. Despite the characterization of numerous pathophysiologic pathways leading to metabolic disorder, lipid accumulation, inflammation, fibrosis, and ultimately end-stage liver disease or liver cancer formation, so far no causal pharmacological therapy is available. Drug development for NAFLD and NASH is limited by long disease duration and slow progression and the need for sequential biopsies to monitor the disease stage. Additional non-invasive biomarkers could therefore improve design and feasibility of such. Here, the current concepts on preclinical models, biomarkers and clinical endpoints and trial designs are briefly reviewed.
Collapse
|
12
|
Schumacher-Petersen C, Christoffersen BØ, Kirk RK, Ludvigsen TP, Zois NE, Pedersen HD, Vyberg M, Olsen LH. Experimental non-alcoholic steatohepatitis in Göttingen Minipigs: consequences of high fat-fructose-cholesterol diet and diabetes. J Transl Med 2019; 17:110. [PMID: 30943987 PMCID: PMC6448276 DOI: 10.1186/s12967-019-1854-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in humans, and ranges from steatosis to non-alcoholic steatohepatitis (NASH), the latter with risk of progression to cirrhosis. The Göttingen Minipig has been used in studies of obesity and diabetes, but liver changes have not been described. The aim of this study was to characterize hepatic changes in Göttingen Minipigs with or without diabetes, fed a diet high in fat, fructose, and cholesterol to see if liver alterations resemble features of human NAFLD/NASH. METHODS Fifty-four male castrated minipigs (age 6 to 7 months) were distributed into four groups and diet-fed for 13 months. Groups were: lean controls fed standard diet (SD, n = 8), a group fed high fat/fructose/cholesterol diet (FFC, n = 16), a group fed high fat/fructose/cholesterol diet but changed to standard diet after 7 months (diet normalization, FFC/SD, n = 16), and a streptozotocin-induced diabetic group fed high fat/fructose/cholesterol diet (FFCDIA, n = 14). At termination, blood samples for analyses of circulating biomarkers and liver tissue for histopathological assessment and analyses of lipids and glycogen content were collected. RESULTS In comparison with SD and FFC/SD, FFC and FFCDIA pigs developed hepatomegaly with increased content of cholesterol, whereas no difference in triglyceride content was found. FFC and FFCDIA groups had increased values of circulating total cholesterol and triglycerides and the hepatic circulating markers alkaline phosphatase and glutamate dehydrogenase. In the histopathological evaluation, fibrosis (mainly located periportally) and inflammation along with cytoplasmic alterations (characterized by hepatocytes with pale, granulated cytoplasm) were found in FFC and FFCDIA groups compared to SD and FFC/SD. Interestingly, FFC/SD also had fibrosis, a feature not seen in SD. Only two FFC and three FFCDIA pigs had > 5% steatosis, and no hepatocellular ballooning or Mallory-Denk bodies were found in any of the pigs. CONCLUSIONS Fibrosis, inflammation and cytoplasmic alterations were characteristic features in the livers of FCC and FFCDIA pigs. Overall, diabetes did not exacerbate the hepatic changes compared to FFC. The limited presence of the key human-relevant pathological hepatic findings of steatosis and hepatocellular ballooning and the variation in the model, limits its use in preclinical research without further optimisation.
Collapse
Affiliation(s)
- Camilla Schumacher-Petersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark
| | | | - Rikke Kaae Kirk
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Trine Pagh Ludvigsen
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Nora Elisabeth Zois
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,In Vivo Pharmacology, Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Henrik Duelund Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark.,Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Mogens Vyberg
- Institute of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Soendre Skovvej 15, 9000, Aalborg, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 2., 1870, Frederiksberg, Denmark.
| |
Collapse
|
13
|
Cox LA, Olivier M, Spradling-Reeves K, Karere GM, Comuzzie AG, VandeBerg JL. Nonhuman Primates and Translational Research-Cardiovascular Disease. ILAR J 2018; 58:235-250. [PMID: 28985395 DOI: 10.1093/ilar/ilx025] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Human epidemiological studies provide challenges for understanding mechanisms that regulate initiation and progression of CVD due to variation in lifestyle, diet, and other environmental factors. Studies describing metabolic and physiologic aspects of CVD, and those investigating genetic and epigenetic mechanisms influencing CVD initiation and progression, have been conducted in multiple Old World nonhuman primate (NHP) species. Major advantages of NHPs as models for understanding CVD are their genetic, metabolic, and physiologic similarities with humans, and the ability to control diet, environment, and breeding. These NHP species are also genetically and phenotypically heterogeneous, providing opportunities to study gene by environment interactions that are not feasible in inbred animal models. Each Old World NHP species included in this review brings unique strengths as models to better understand human CVD. All develop CVD without genetic manipulation providing multiple models to discover genetic variants that influence CVD risk. In addition, as each of these NHP species age, their age-related comorbidities such as dyslipidemia and diabetes are accelerated proportionally 3 to 4 times faster than in humans.In this review, we discuss current CVD-related research in NHPs focusing on selected aspects of CVD for which nonprimate model organism studies have left gaps in our understanding of human disease. We include studies on current knowledge of genetics, epigenetics, calorie restriction, maternal calorie restriction and offspring health, maternal obesity and offspring health, nonalcoholic steatohepatitis and steatosis, Chagas disease, microbiome, stem cells, and prevention of CVD.
Collapse
Affiliation(s)
- Laura A Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | | | - Genesio M Karere
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - John L VandeBerg
- South Texas Diabetes and Obesity Center, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, Texas
| |
Collapse
|
14
|
Wang CY, Li SJ, Wu TW, Lin HJ, Chen JW, Mersmann HJ, Ding ST, Chen CY. The role of pericardial adipose tissue in the heart of obese minipigs. Eur J Clin Invest 2018; 48:e12942. [PMID: 29682734 DOI: 10.1111/eci.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Pericardial adipose tissue (PAT) volume is highly associated with the presence and severity of cardiometabolic diseases, but the underlying mechanism is unknown. We previously demonstrated that a high-fat diet (HFD) induced metabolic dysregulation, cardiac fibrosis and accumulation of more PAT in minipigs. This study used our obese minipig model to investigate the characteristics of PAT and omental visceral fat (VAT) induced by a HFD, and the potential link between PAT and HFD-related myocardial fibrosis. MATERIALS AND METHODS Five-month-old Lee-Sung minipigs were made obese by feeding a HFD for 6 months. RESULTS The HFD induced dyslipidemia, cardiac fibrosis and more fat accumulation in the visceral and pericardial depots. The HFD changes the fatty acid composition in the adipose tissue by decreasing the portion of linoleic acid in the VAT and PAT. No arachidonic acid was detected in the VAT and PAT of control pigs, whereas it existed in the same tissues of obese pigs fed the HFD. Compared with the control pigs, elevated levels of malondialdehyde and TNFα were exhibited in the plasma and PAT of obese pigs. HFD induced greater size of adipocytes in VAT and PAT. Higher levels of GH, leptin, OPG, PDGF, resistin, SAA and TGFβ were observed in obese pig PAT compared to VAT. CONCLUSION This study demonstrated the similarities and dissimilarities between PAT and VAT under HFD stimulus. In addition, this study suggested that alteration in PAT contributed to the myocardial damage.
Collapse
Affiliation(s)
- Chia-Yu Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sin-Jin Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Twin-Way Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Han-Jen Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jyun-Wei Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Lascala A, Martino C, Parafati M, Salerno R, Oliverio M, Pellegrino D, Mollace V, Janda E. Analysis of proautophagic activities of Citrus flavonoids in liver cells reveals the superiority of a natural polyphenol mixture over pure flavones. J Nutr Biochem 2018; 58:119-130. [PMID: 29890411 DOI: 10.1016/j.jnutbio.2018.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/21/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
Autophagy dysfunction has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Natural compounds present in bergamot polyphenol fraction (BPF) prevent NAFLD and induce autophagy in rat livers. Here, we employed HepG2 cells expressing DsRed-LC3-GFP, a highly sensitive model system to screen for proautophagic compounds present in BPF. BPF induced autophagy in a time- and dose-dependent fashion and the effect was amplified in cells loaded with palmitic acid. Autophagy was mediated by the hydrophobic fraction of acid-hydrolyzed BPF (A-BPF), containing six flavanone and flavone aglycones as identified by liquid chromatography-high-resolution mass spectrometry. Among them, naringenin, hesperitin, eriodictyol and diosmetin were weak inducers of autophagy. Apigenin showed the strongest and dose-dependent proautophagic activity at early time points (6 h). Luteolin induced a biphasic autophagic response, strong at low doses and inhibitory at higher doses. Both flavones were toxic in HepG2 cells and in differentiated human liver progenitors HepaRG upon longer treatments (24 h). In contrast, BPF and A-BPF did not show any toxicity, but induced a persistent increase in autophagic flux. A mixture of six synthetic aglycones mimicking A-BPF was sufficient to induce a similar autophagic response, but it was mildly cytotoxic. Thus, while six main BPF flavonoids fully account for its proautophagic activity, their combined effect is not sufficient to abrogate cytotoxicity of individual compounds. This suggests that a natural polyphenol phytocomplex, such as BPF, is a safer and more effective strategy for the treatment of NAFLD than the use of pure flavonoids.
Collapse
Affiliation(s)
- Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Concetta Martino
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| | - Raffaele Salerno
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy.
| |
Collapse
|
16
|
Al-Mashhadi AL, Poulsen CB, von Wachenfeldt K, Robertson AK, Bentzon JF, Nielsen LB, Thygesen J, Tolbod LP, Larsen JR, Moestrup SK, Frendéus B, Mortensen B, Drouet L, Al-Mashhadi RH, Falk E. Diet-Induced Abdominal Obesity, Metabolic Changes, and Atherosclerosis in Hypercholesterolemic Minipigs. J Diabetes Res 2018; 2018:6823193. [PMID: 29682581 PMCID: PMC5845503 DOI: 10.1155/2018/6823193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/13/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Obesity and metabolic syndrome (MetS) are major risk factors for atherosclerotic diseases; however, a causal link remains elusive. Animal models resembling human MetS and its complications, while important, are scarce. We aimed at developing a porcine model of human MetS. METHODS Forty pigs with familial hypercholesterolemia were fed a high fat + fructose diet for 30 weeks. Metabolic assessments and subcutaneous fat biopsies were obtained at 18 and 30 weeks, and fat distribution was assessed by CT-scans. Postmortem, macrophage density, and phenotype in fat tissues were quantified along with atherosclerotic burden. RESULTS During the experiment, we observed a >4-fold in body weight, a significant but small increase in fasting glucose (4.1 mmol/L), insulin (3.1 mU/L), triglycerides (0.5 mmol/L), and HDL cholesterol (2.6 mmol/L). Subcutaneous fat correlated with insulin resistance, but intra-abdominal fat correlated inversely with insulin resistance and LDL cholesterol. More inflammatory macrophages were found in visceral versus subcutaneous fat, and inflammation decreased in subcutaneous fat over time. CONCLUSIONS MetS based on human criteria was not achieved. Surprisingly, visceral fat seemed part of a healthier metabolic and inflammatory profile. These results differ from human findings, and further research is needed to understand the relationship between obesity and MetS in porcine models.
Collapse
Affiliation(s)
- Ahmed Ludvigsen Al-Mashhadi
- Department of Clinical Medicine, Aarhus University and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Bo Poulsen
- Department of Clinical Medicine, Aarhus University and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Jacob Fog Bentzon
- Department of Clinical Medicine, Aarhus University and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Bo Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Thygesen
- Department of Biomedical Engineering, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Rolighed Larsen
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Kragh Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Brynjulf Mortensen
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Ludovic Drouet
- Institute of Vessels and Blood, Hospital Lariboisiere, Paris, France
| | - Rozh H. Al-Mashhadi
- Department of Clinical Medicine, Aarhus University and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Erling Falk
- Department of Clinical Medicine, Aarhus University and Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Yamada S, Kawaguchi H, Yamada T, Guo X, Matsuo K, Hamada T, Miura N, Tasaki T, Tanimoto A. Cholic Acid Enhances Visceral Adiposity, Atherosclerosis and Nonalcoholic Fatty Liver Disease in Microminipigs. J Atheroscler Thromb 2017; 24:1150-1166. [PMID: 28496045 PMCID: PMC5684480 DOI: 10.5551/jat.39909] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/21/2017] [Indexed: 01/02/2023] Open
Abstract
AIM We have recently established a novel swine model for studies of atherosclerosis using MicrominipigsTM (µMPs) fed a high-fat/high-cholesterol diet (HcD). Using this swine model, we re-evaluated the effects of dietary cholic acid (CA) on serum lipid profile, atherosclerosis and hepatic injuries. METHODS The µMPs were fed HcD supplemented with 0.7% CA (HcD+CA) for eight weeks, and the effect of CA on serum lipoprotein levels, expression of oxidative stress markers, adiposity and lesion formation in the aorta, liver, and other organs was investigated. RESULTS The HcD+CA-fed group exhibited more visceral adiposity, progression of atherosclerosis and higher serum levels of oxidative stress markers than the HcD-fed group, even though they showed similar serum lipid levels. The liver demonstrated increased lipid accumulation, higher expression of oxidative stress markers, accelerated activation of foamy Kupffer cells and stellate cells, and increased hepatocyte apoptosis, indicating non-alcoholic fatty liver disease (NAFLD). Intriguingly, foamy macrophage mobilization was observed in various organs, including the reticuloendothelial system, pulmonary capillary vessels and skin very often in HcD+CA-fed µMPs. CONCLUSION To our knowledge, this is the first large animal model, in which visceral obesity, NAFLD and atherosclerosis are concomitantly induced by dietary manipulation. These data suggest the detrimental effects of CA, potentially through local and systemic activation of oxidative stress-induced signaling to macrophage mobilization, on the acceleration of visceral adiposity, atherosclerosis and NAFLD.
Collapse
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Kawaguchi
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | - Xin Guo
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kei Matsuo
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takashi Tasaki
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
18
|
Huang CW, Chien YS, Chen YJ, Ajuwon KM, Mersmann HM, Ding ST. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans. Int J Mol Sci 2016; 17:ijms17101689. [PMID: 27735847 PMCID: PMC5085721 DOI: 10.3390/ijms17101689] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities.
Collapse
Affiliation(s)
- Chao-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Shan Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yu-Jen Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Kolapo M Ajuwon
- Department of Animal Science, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Harry M Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
19
|
Li SJ, Liu CH, Chu HP, Mersmann HJ, Ding ST, Chu CH, Wang CY, Chen CY. The high-fat diet induces myocardial fibrosis in the metabolically healthy obese minipigs-The role of ER stress and oxidative stress. Clin Nutr 2016; 36:760-767. [PMID: 27342749 DOI: 10.1016/j.clnu.2016.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/27/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cellular mechanisms of obesity-induced cardiomyopathy are multiple and not completely elucidated. The objective of this study was to differentiate two obesity-associated cardiomyopathy miniature pig models: one with the metabolic syndrome (MetS), and one with a metabolically healthy obesity (MHO). The cellular responses during the development of obesity-induced cardiomyopathy were investigated. METHODS Five-month-old Lee-Sung (MetS) and Lanyu (MHO) minipigs were made obese by feeding a high-fat diet (HFD) for 6 months. RESULTS Obese pigs exhibited a greater heart weight than control pigs. Interstitial and perivascular fibrosis developed in the myocardium of obese pigs. The HFD induced cardiac lipid accumulation and oxidative stress and also decreased the antioxidant defense in MetS pigs. This diet activated oxidative stress without changing cardiac antioxidant defense and lipid content in MHO pigs. The HFD upregulated the expression of Grp94, CHOP, caspase 12, p62, and LC3II, and increased the ratio of LC3II to LC3I in the left ventricle (LV) of MetS pigs. Compared to obese MetS pigs, less Grp94 and elevated CHOP expression was found in the obese MHO heart. The HFD did not change the ratio of LC3II to LC3I and p62 expression in obese MHO pigs. The obese MetS pigs had an extensive and greater inflammatory response in the plasma than the obese MHO pigs, which had a lesser and milder inflammation. CONCLUSION Oxidative stress and ER stress were involved in the progression of MHO-related cardiomyopathy. Inflammation, autophagy, ER stress, oxidative stress, and lipotoxicity participated in the pathological mechanism of MetS-related cardiomyopathy.
Collapse
Affiliation(s)
- Sin-Jin Li
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan
| | - Chia-Hsin Liu
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan
| | - Hsien-Pin Chu
- Taitung Animal Propagation Station, Livestock Research Institute Council of Agriculture, No. 30, Binlang Vil., Beinan Township, Taitung County, 95444, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan
| | - Chun-Han Chu
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan
| | - Chia-Yu Wang
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Sec 3, Keelung Rd, Taipei, 10672, Taiwan.
| |
Collapse
|