1
|
Caira S, Troise AD, Picariello G, De Pascale S, Pinto G, Pesce M, Marino F, Sarnelli G, Scaloni A, Addeo F. Beyond the gut: Investigating the mechanism of formation of β-casomorphins in human blood. Food Chem 2024; 460:140477. [PMID: 39047470 DOI: 10.1016/j.foodchem.2024.140477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
To evaluate the potential differences in the propensity of β-casein A1 (β-CNA1) and A2 (β-CNA2) from bovine milk to release health-relevant β-casomorphins (BCMs), food-derived peptides were monitored over time in the blood of eight human volunteers who consumed milk containing both protein variants. Liquid chromatography coupled with high resolution tandem mass spectrometry revealed interindividual variability of milk peptidomic profiles in human blood. BCMs were not detected, whereas BCM precursors originating from both β-CNA1 and β-CNA2 were ascertained, with β-CNA2-derived peptides showing a slightly greater susceptibility to proteolysis. Ten synthetic peptides mimicking circulating BCM precursors from β-CNA1 and β-CNA2, which were incubated ex vivo with the blood of two volunteers, showed comparable potential to generate BCMs. The formation of BCMs seemed to depend mainly on the size of the BCM precursors and less on the presence of His67 or Pro67. These findings challenge the belief that BCMs are released exclusively from β-CNA1 and support the nutritional safety of conventional milk, informing health policies regarding milk consumption.
Collapse
Affiliation(s)
- Simonetta Caira
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy.
| | - Antonio Dario Troise
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Sabrina De Pascale
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples "Federico II", 80131 Naples, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy.
| | - Francesco Addeo
- Department of Agriculture, University of Naples "Federico II", 80055 Portici, Italy
| |
Collapse
|
2
|
McDonough J, Singhal NK, Getsy PM, Knies K, Knauss ZT, Mueller D, Bates JN, Damron DS, Lewis SJ. The epigenetic signatures of opioid addiction and physical dependence are prevented by D-cysteine ethyl ester and betaine. Front Pharmacol 2024; 15:1416701. [PMID: 39281282 PMCID: PMC11392886 DOI: 10.3389/fphar.2024.1416701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
We have reported that D,L-thiol esters, including D-cysteine ethyl ester (D-CYSee), are effective at overcoming opioid-induced respiratory depression (OIRD) in rats. Our on-going studies reveal that co-injections of D-CYSee with multi-day morphine injections markedly diminish spontaneous withdrawal that usually occurs after cessation of multiple injections of morphine in rats. Chronically administered opioids are known (1) to alter cellular redox status, thus inducing an oxidative state, and (2) for an overall decrease in DNA methylation, therefore resulting in the transcriptional activation of previously silenced long interspersed elements (LINE-1) retrotransposon genes. The first objective of the present study was to determine whether D-CYSee and the one carbon metabolism with the methyl donor, betaine, would maintain redox control and normal DNA methylation levels in human neuroblastoma cell cultures (SH-SY5Y) under overnight challenge with morphine (100 nM). The second objective was to determine whether D-CYSee and/or betaine could diminish the degree of physical dependence to morphine in male Sprague Dawley rats. Our data showed that overnight treatment with morphine reduced cellular GSH levels, induced mitochondrial damage, decreased global DNA methylation, and increased LINE-1 mRNA expression. These adverse effects by morphine, which diminished the reducing capacity and compromised the maintenance of the membrane potential of SH-SY5Y cells, was prevented by concurrent application of D-CYSee (100 µM) or betaine (300 µM). Furthermore, our data demonstrated that co-injections of D-CYSee (250 μmol/kg, IV) and to a lesser extent, betaine (250 μmol/kg, IV), markedly diminished the development of physical dependence induced by multi-day morphine injections (escalating daily doses of 10-30 mg/kg, IV), as assessed by the lesser number of withdrawal phenomena elicited by the injection of the opioid receptor antagonist, naloxone (1.5 mg/kg, IV). These findings provide evidence that D-CYSee and betaine prevent the appearance of redox alterations and epigenetic signatures commonly seen in neural cells involved in opioid physical dependence/addiction, and lessen development of physical dependence to morphine.
Collapse
Affiliation(s)
- Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Naveen K Singhal
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Knies
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Zackery T Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Derek S Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J Lewis
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Patel K, Mani A. Food-derived Peptides as Promising Neuroprotective Agents: Mechanism and Therapeutic Potential. Curr Top Med Chem 2024; 24:1212-1229. [PMID: 38551052 DOI: 10.2174/0115680266289248240322061723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024]
Abstract
Many food-derived peptides have the potential to improve brain health and slow down neurodegeneration. Peptides are produced by the enzymatic hydrolysis of proteins from different food sources. These peptides have been shown to be involved in antioxidant and anti-inflammatory activity, neuro-transmission modulation, and gene expression regulation. Although few peptides directly affect chromatin remodeling and histone alterations, others indirectly affect the neuroprotection process by interfering with epigenetic changes. Fish-derived peptides have shown neuroprotective properties that reduce oxidative stress and improve motor dysfunction in Parkinson's disease models. Peptides from milk and eggs have been found to have anti-inflammatory properties that reduce inflammation and improve cognitive function in Alzheimer's disease models. These peptides are potential therapeutics for neurodegenerative diseases, but more study is required to assess their efficacy and the underlying neuroprotective benefits. Consequently, this review concentrated on each mechanism of action used by food-derived peptides that have neuroprotective advantages and applications in treating neurodegenerative diseases. This article highlights various pathways, such as inflammatory pathways, major oxidant pathways, apoptotic pathways, neurotransmitter modulation, and gene regulation through which food-derived peptides interact at the cellular level.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| |
Collapse
|
4
|
Gupta JK, Singh K. Pharmacological Potential of Bioactive Peptides for the Treatment of Diseases Associated with Alzheimer's and Brain Disorders. Curr Mol Med 2024; 24:962-979. [PMID: 37691200 DOI: 10.2174/1566524023666230907115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Bioactive peptides are a promising class of therapeutics for the treatment of diseases associated with Alzheimer's and brain disorders. These peptides are derived from naturally occurring proteins and have been shown to possess a variety of beneficial properties. They may modulate neurotransmitter systems, reduce inflammation, and improve cognitive performance. In addition, bioactive peptides have the potential to target specific molecular pathways involved in the pathogenesis of Alzheimer's and brain disorders. For example, peptides have been shown to interact with amyloid-beta, a major component of amyloid plaques found in Alzheimer's disease, and have been shown to reduce its accumulation in the brain. Furthermore, peptides have been found to modulate the activity of glutamate receptors, which are important for memory and learning, as well as to inhibit the activity of enzymes involved in the formation of toxic amyloid-beta aggregates. Finally, bioactive peptides have the potential to reduce oxidative stress and inflammation, two major components of many neurological disorders. These peptides could be used alone or in combination with traditional pharmacological treatments to improve the management of diseases associated with Alzheimer's and brain disorders.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
5
|
Sundar V, Ramasamy T, Doke M, Samikkannu T. Psychostimulants influence oxidative stress and redox signatures: the role of DNA methylation. Redox Rep 2022; 27:53-59. [PMID: 35227168 PMCID: PMC8890556 DOI: 10.1080/13510002.2022.2043224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Objective: Psychostimulant use induces oxidative stress and alters redox imbalance, influencing epigenetic signatures in the central nervous system (CNS). Among the various epigenetic changes, DNA methylation is directly linked to oxidative stress metabolism via critical redox intermediates such as NAD+, S-adenosylmethionine (SAM), and 2-oxoglutarate. Fluctuations in these intermediates directly influence epigenetic signatures, which leads to detectable alterations in gene expression and protein modification. This review focuses on recent advances in the impact of psychostimulant use on redox-imbalance-induced DNA methylation to develop novel epigenetics-based early interventions. Methods: This review is based on collective research data obtained from the PubMed, Science Direct, and Medline databases. The keywords used in the electronic search in these databases were redox, substance use disorder, psychostimulants, DNA methylation, and neurological diseases. Results: Instability in DNA methylation levels and redox expression effects are reported in various behavioral models stimulated by psychostimulants and opioids, indicating the widespread involvement of epigenetic changes in DNA methylation signatures in neurological disorders. Discussion: This review summarizes the need for more studies and experimental evaluations of DNA-methylation-based strategies that may help to understand the association between psychostimulant use and oxidative stress or redox-linked metabolic recalibration influencing neuronal impairments.
Collapse
Affiliation(s)
- Vaishnavi Sundar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Tamizhselvi Ramasamy
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| |
Collapse
|
6
|
A2 Milk: New Perspectives for Food Technology and Human Health. Foods 2022; 11:foods11162387. [PMID: 36010390 PMCID: PMC9407547 DOI: 10.3390/foods11162387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Although milk consumption is increasing worldwide, in some geographical regions, its consumption has persistently declined in recent decades. This fact, together with the increase in milk production prices, has caused both milk producers and the dairy industry to be immersed in a major crisis. Some possible solutions to this problem are to get people who do not currently consume milk to start drinking it again, or to market milk and dairy products with a higher added value. In this context, a type of milk called A2 has recently received attention from the industry. This type of milk, characterized by a difference in an amino acid at position 67 of the β-casein polypeptide chain, releases much smaller amounts of bioactive opioid peptide β-casomorphin 7 upon digestion, which has been linked to harmful effects on human health. Additionally, A2 milk has been attributed worse technological properties in the production of some dairy products. Thus, doubts exist about the convenience for the dairy industry to bet on this product. The aim of this review is to provide an update on the effects on human health of A2 milk, as well as its different technological properties to produce dairy products.
Collapse
|
7
|
Anticholinesterase Inhibition, Drug-Likeness Assessment, and Molecular Docking Evaluation of Milk Protein-Derived Opioid Peptides for the Control of Alzheimer’s Disease. DAIRY 2022. [DOI: 10.3390/dairy3030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The drug-likeness and pharmacokinetic properties of 23 dairy-protein-derived opioid peptides were studied using SwissADME and ADMETlab in silico tools. All the opioid peptides had poor drug-like properties based on violations of Lipinski’s rule-of-five. Moreover, prediction of their pharmacokinetic properties showed that the peptides had poor intestinal absorption and bioavailability. Following this, two well-known opioid peptides (βb-casomorphin-5, βb-casomorphin-7) from A1 bovine milk and caffeine (positive control) were selected for in silico molecular docking and in vitro inhibition study with two cholinesterase enzyme receptors important for the pathogenesis of Alzheimer’s disease. Both peptides showed higher binding free energies and inhibitory activities to butyrylcholinesterase (BChE) than caffeine, but in vitro binding energy values were lower than those from the docking model. Moreover, the two casomorphins had lower inhibitory properties against acetylcholinesterase (AChE) than caffeine, although the docking model predicted the opposite. At 1 mg/mL concentrations, βb-casomorphin-5 and βb-casomorphin-7 showed promising results in inhibiting both cholinesterases (i.e., respectively 34% and 43% inhibition of AChE, and 67% and 81% inhibition of BChE). These dairy-derived opioid peptides have the potential to treat Alzheimer’s disease via cholinesterase inhibition. However, appropriate derivatization may be required to improve their poor predicted intestinal absorption and bioavailability.
Collapse
|
8
|
Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int J Mol Sci 2022; 23:ijms23073819. [PMID: 35409178 PMCID: PMC8998234 DOI: 10.3390/ijms23073819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids’ ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia–reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.
Collapse
|
9
|
Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022; 373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023]
Abstract
The current health scenarios describe growing public health problems, such as diabetes, hypertension and cancer. Therefore, researchers focused on studying these health issues are interested in exploring bioactive compounds from different food sources. Among them, bioactive peptides have garnered huge scientific interest because of their multifunctional biological activities such as antioxidative, antimicrobial, antihypertensive, anticancer, antidiabetic, immunomodulatory effect. They can be used as food and pharmaceutical ingredients with a great potential against disease targets. This review covers methods of production in general for several peptides obtained from various food sources including seed, milk and meat, and described their biological activities. Particular focus was given to bioinformatic tools to advance quantification, detection and characterize each peptide sequence obtained from different protein sources with predicted biological activity. Besides, various in vivo studies have been discussed to provide a better understanding of their physiological functions, which altogether could provide valuable information for their commercialization in future foods.
Collapse
|
10
|
Osman A, Zuffa S, Walton G, Fagbodun E, Zanos P, Georgiou P, Kitchen I, Swann J, Bailey A. Post-weaning A1/A2 β-casein milk intake modulates depressive-like behavior, brain μ-opioid receptors, and the metabolome of rats. iScience 2021; 24:103048. [PMID: 34585111 PMCID: PMC8450247 DOI: 10.1016/j.isci.2021.103048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
The postnatal period is critical for brain and behavioral development and is sensitive to environmental stimuli, such as nutrition. Prevention of weaning from maternal milk was previously shown to cause depressive-like behavior in rats. Additionally, loss of dietary casein was found to act as a developmental trigger for a population of brain opioid receptors. Here, we explore the effect of exposure to milk containing A1 and A2 β-casein beyond weaning. A1 but not A2 β-casein milk significantly increased stress-induced immobility in rats, concomitant with an increased abundance of Clostridium histolyticum bacterial group in the caecum and colon of A1 β-casein fed animals, brain region-specific alterations of μ-opioid and oxytocin receptors, and modifications in urinary biochemical profiles. Moreover, urinary gut microbial metabolites strongly correlated with altered brain metabolites. These findings suggest that consumption of milk containing A1 β-casein beyond weaning age may affect mood via a possible gut-brain axis mechanism. Postnatal brain development is sensitive to nutritional exposures Consumption of A1 but not A2 β-casein milk post-weaning affects mood in rats Gut microbial, biochemical, and neurochemical changes accompany mood alterations Urinary gut microbial metabolites correlate with brain metabolites
Collapse
Affiliation(s)
- Aya Osman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gemma Walton
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Elizabeth Fagbodun
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Panos Zanos
- Department of Psychology, University of Cyprus, 1 University Avenue, 2109 Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ian Kitchen
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.,School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| |
Collapse
|
11
|
Woodford KB. Casomorphins and Gliadorphins Have Diverse Systemic Effects Spanning Gut, Brain and Internal Organs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157911. [PMID: 34360205 PMCID: PMC8345738 DOI: 10.3390/ijerph18157911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Food-derived opioid peptides include digestive products derived from cereal and dairy diets. If these opioid peptides breach the intestinal barrier, typically linked to permeability and constrained biosynthesis of dipeptidyl peptidase-4 (DPP4), they can attach to opioid receptors. The widespread presence of opioid receptors spanning gut, brain, and internal organs is fundamental to the diverse and systemic effects of food-derived opioids, with effects being evidential across many health conditions. However, manifestation delays following low-intensity long-term exposure create major challenges for clinical trials. Accordingly, it has been easiest to demonstrate causal relationships in digestion-based research where some impacts occur rapidly. Within this environment, the role of the microbiome is evidential but challenging to further elucidate, with microbiome effects ranging across gut-condition indicators and modulators, and potentially as systemic causal factors. Elucidation requires a systemic framework that acknowledges that public-health effects of food-derived opioids are complex with varying genetic susceptibility and confounding factors, together with system-wide interactions and feedbacks. The specific role of the microbiome within this puzzle remains a medical frontier. The easiest albeit challenging nutritional strategy to modify risk is reduced intake of foods containing embedded opioids. In future, constituent modification within specific foods to reduce embedded opioids may become feasible.
Collapse
|
12
|
Abbott LC, Nigussie F. Mercury Toxicity and Neurogenesis in the Mammalian Brain. Int J Mol Sci 2021; 22:ijms22147520. [PMID: 34299140 PMCID: PMC8305137 DOI: 10.3390/ijms22147520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
The mammalian brain is formed from billions of cells that include a wide array of neuronal and glial subtypes. Neural progenitor cells give rise to the vast majority of these cells during embryonic, fetal, and early postnatal developmental periods. The process of embryonic neurogenesis includes proliferation, differentiation, migration, the programmed death of some newly formed cells, and the final integration of differentiated neurons into neural networks. Adult neurogenesis also occurs in the mammalian brain, but adult neurogenesis is beyond the scope of this review. Developing embryonic neurons are particularly susceptible to neurotoxicants and especially mercury toxicity. This review focused on observations concerning how mercury, and in particular, methylmercury, affects neurogenesis in the developing mammalian brain. We summarized information on models used to study developmental mercury toxicity, theories of pathogenesis, and treatments that could be used to reduce the toxic effects of mercury on developing neurons.
Collapse
Affiliation(s)
- Louise C. Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
- Correspondence: ; Tel.: +1-541-254-0779
| | - Fikru Nigussie
- College of Veterinary Medicine, Oregon State University, 700 SW 30th Street, Corvallis, OR 97331, USA;
| |
Collapse
|
13
|
Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, Dotto GL. Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36453-36463. [PMID: 33694109 DOI: 10.1007/s11356-021-12813-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In this work, peanut (Arachis hypogaea) skin, a by-product generated by the agricultural production of its seeds, was employed as a precursor in the preparation of an adsorbent for the 2,4-D removal in water. The skins were treated with sulfuric acid and characterized by different techniques. The adsorption was favored at acid pH = 2 with pHpzc = 6. The dosage of 0.9 g L-1 was considered ideal, obtaining satisfactory indications of removal and capacity. The kinetic curves were well represented by the general order model, with the equilibrium reached quickly in the first 30 min for all concentrations. Adsorption isotherm studies showed that the increase in temperature negatively affected the herbicide adsorption, obtaining a maximum capacity of 246.72 mg g-1, by the Langmuir isotherm at 298 K. The remarkable adsorption efficiency presented by the adsorbent can be associated with the presence of new functional groups on the adsorbent surface generated after the acid treatment. Thermodynamic parameters confirmed the exothermic nature of the adsorptive system. In the treatment of synthetic wastewater consisting of a mixture of herbicides and salts, a high removal efficiency (72%) of herbicides was obtained. Therefore, the development of an adsorbent derived from peanut (Arachis hypogaea) skin treated with sulfuric acid is an excellent alternative, generating remarkable removal results towards 2,4-D herbicide.
Collapse
Affiliation(s)
- Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Daniel G A Piccilli
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson Luiz Foletto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
14
|
Hayes M. Bioactive Peptides in Preventative Healthcare: An Overview of Bioactivities and Suggested Methods to Assess Potential Applications. Curr Pharm Des 2021; 27:1332-1341. [PMID: 33550961 DOI: 10.2174/1381612827666210125155048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Food derived bioactive peptides can be generated from various protein sources and usually consist of between 2-30 amino acids with bulky, side-chain aromatic amino acids preferred in the ultimate and penultimate positions at the C-terminal end of the amino acid chain. They are reported to impart a myriad of preventative health beneficial effects to the consumer once ingested and these include heart health benefits through inhibition of enzymes including renin (EC 3.4.23.15) and angiotensin- I-converting enzyme (ACE-1; EC 3.4.15.1) within the renin angiotensin aldosterone system (RAAS) anti-inflammatory (due to inhibition of ACE-I and other enzymes) and anti-cancer benefits, prevention of type-2 diabetes through inhibition of dipeptidyl peptidase IV (DPP-IV), bone and dental strength, antimicrobial and immunomodulatory effects and several others. Peptides have also reported health benefits in the treatment of asthma, neuropathic pain, HIV and wound healing. However, the structure, amino acid composition and length of these peptides, along with the quantity of peptide that can pass through the gastrointestinal tract and often the blood-brain barrier (BBB), intact and reach the target organ, are important for the realisation of these health effects in an in vivo setting. This paper aims to collate recent important research concerning the generation and detection of peptides in the laboratory. It discusses products currently available as preventative healthcare peptide options and relevant legislation barriers to place a food peptide product on the market. The review also highlights useful in silico computer- based methods and analysis that may be used to generate specific peptide sequences from proteins whose amino acid sequences are known and also to determine if the peptides generated are unique and bioactive. The topic of food-derived bioactive peptides for health is of great interest to scientific research and industry due to evolving drivers in food product innovation, including health and wellness for the elderly, infant nutrition and optimum nutrition for sports athletes and the humanisation of pets. This paper provides an overview of what is required to generate bioactive peptide containing hydrolysates, what methods should be used in order to characterise the beneficial health effects of these hydrolysates and the active peptide sequences, potential applications of bioactive peptides and legislative requirements in Europe and the United States. It also highlights success stories and barriers to the development of peptide-containing food products that currently exist.
Collapse
Affiliation(s)
- Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
15
|
Kay SIS, Delgado S, Mittal J, Eshraghi RS, Mittal R, Eshraghi AA. Beneficial Effects of Milk Having A2 β-Casein Protein: Myth or Reality? J Nutr 2021; 151:1061-1072. [PMID: 33693747 DOI: 10.1093/jn/nxaa454] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023] Open
Abstract
Diet has been shown to play an important role in maintaining normal homeostasis in the human body. Milk and milk products are a major component of the Western diet, but their consumption may predispose sensitive individuals to adverse health outcomes. Current literature about milk products recognizes various bioactive components including lactate, whey protein, and β-casein protein. Specifically, cow milk has 2 major subvariants of its β-casein protein, A1 and A2, due to a single nucleotide difference that changes the codon at position 67. Whereas the A2 polymorphism is unlikely to undergo enzymatic cleavage during digestion, the A1 polymorphism is more likely to undergo enzymatic cleavage resulting in the product peptide β-casomorphin-7, a known μ-opioid receptor agonist. The objective of this article is to review the current understanding of the 2 major β-casein subvariants and their effects on various organ systems that may have an impact on the health of an individual. Synthesis of the current existing literature on this topic is relevant given the increased association of milk consumption with adverse effects in susceptible individuals resulting in a rising interest in consuming milk alternatives. We discuss the influence of the β-casein protein on the gastrointestinal system, endocrine system, nervous system, and cardiovascular system as well as its role in antioxidants and methylation. A1 milk consumption has been associated with enhanced inflammatory markers. It has also been reported to have an opioid-like response that can lead to manifestations of clinical symptoms of neurological disorders such as autism spectrum disorder. On the other hand, A2 milk consumption has been associated with beneficial effects and is easier to digest in sensitive individuals. Further research is warranted to investigate the short- and long-term effects of consumption of A1 β-casein in comparison with milk with A2 β-casein proteins.
Collapse
Affiliation(s)
- Sae-In S Kay
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Stefanie Delgado
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rebecca S Eshraghi
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
16
|
Daniloski D, Cunha NM, McCarthy NA, O'Callaghan TF, McParland S, Vasiljevic T. Health-related outcomes of genetic polymorphism of bovine β-casein variants: A systematic review of randomised controlled trials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Muñoa-Hoyos I, Halsall JA, Araolaza M, Ward C, Garcia I, Urizar-Arenaza I, Gianzo M, Garcia P, Turner B, Subirán N. Morphine leads to global genome changes in H3K27me3 levels via a Polycomb Repressive Complex 2 (PRC2) self-regulatory mechanism in mESCs. Clin Epigenetics 2020; 12:170. [PMID: 33168052 PMCID: PMC7654014 DOI: 10.1186/s13148-020-00955-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Environmentally induced epigenetic changes can lead to health problems or disease, but the mechanisms involved remain unclear. Morphine can pass through the placental barrier leading to abnormal embryo development. However, the mechanism by which morphine causes these effects and how they sometimes persist into adulthood is not well known. To unravel the morphine-induced chromatin alterations involved in aberrant embryo development, we explored the role of the H3K27me3/PRC2 repressive complex in gene expression and its transmission across cellular generations in response to morphine. Results Using mouse embryonic stem cells as a model system, we found that chronic morphine treatment induces a global downregulation of the histone modification H3K27me3. Conversely, ChIP-Seq showed a remarkable increase in H3K27me3 levels at specific genomic sites, particularly promoters, disrupting selective target genes related to embryo development, cell cycle and metabolism. Through a self-regulatory mechanism, morphine downregulated the transcription of PRC2 components responsible for H3K27me3 by enriching high H3K27me3 levels at the promoter region. Downregulation of PRC2 components persisted for at least 48 h (4 cell cycles) following morphine removal, though promoter H3K27me3 levels returned to control levels.
Conclusions Morphine induces targeting of the PRC2 complex to selected promoters, including those of PRC2 components, leading to characteristic changes in gene expression and a global reduction in H3K27me3. Following morphine removal, enhanced promoter H3K27me3 levels revert to normal sooner than global H3K27me3 or PRC2 component transcript levels. We suggest that H3K27me3 is involved in initiating morphine-induced changes in gene expression, but not in their maintenance. Graphic abstract Model of Polycomb repressive complex 2 (PRC2) and H3K27me3 alterations induced by chronic morphine exposure. Morphine induces H3K27me3 enrichment at promoters of genes encoding core members of the PRC2 complex and is associated with their transcriptional downregulation.![]()
Collapse
Affiliation(s)
- Iraia Muñoa-Hoyos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain.,Innovation in Assisted Reproduction Group, Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - John A Halsall
- Chromatin and Gene Expression Group, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Manu Araolaza
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Carl Ward
- Stem Cell Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Idoia Garcia
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain.,Biodonostia Health Research Institute, 2009 San Sebastian, Gipuzkoa, Spain
| | - Itziar Urizar-Arenaza
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain.,Innovation in Assisted Reproduction Group, Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Marta Gianzo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Paloma Garcia
- Stem Cell Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bryan Turner
- Chromatin and Gene Expression Group, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain. .,Innovation in Assisted Reproduction Group, Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain.
| |
Collapse
|
18
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
19
|
Hansen JM, Jones DP, Harris C. The Redox Theory of Development. Antioxid Redox Signal 2020; 32:715-740. [PMID: 31891515 PMCID: PMC7047088 DOI: 10.1089/ars.2019.7976] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: The geological record shows that as atmospheric O2 levels increased, it concomitantly coincided with the evolution of metazoans. More complex, higher organisms contain a more cysteine-rich proteome, potentially as a means to regulate homeostatic responses in a more O2-rich environment. Regulation of redox-sensitive processes to control development is likely to be evolutionarily conserved. Recent Advances: During early embryonic development, the conceptus is exposed to varying levels of O2. Oxygen and redox-sensitive elements can be regulated to promote normal development, defined as changes to cellular mass, morphology, biochemistry, and function, suggesting that O2 is a developmental morphogen. During periods of O2 fluctuation, embryos are "reprogrammed," on the genomic and metabolic levels. Reprogramming imparts changes to particular redox couples (nodes) that would support specific post-translational modifications (PTMs), targeting the cysteine proteome to regulate protein function and development. Critical Issues: Major developmental events such as stem cell expansion, proliferation, differentiation, migration, and cell fate decisions are controlled through oxidative PTMs of cysteine-based redox nodes. As such, timely coordinated redox regulation of these events yields normal developmental outcomes and viable species reproduction. Disruption of normal redox signaling can produce adverse developmental outcomes. Future Directions: Furthering our understanding of the redox-sensitive processes/pathways, the nature of the regulatory PTMs involved in development and periods of activation/sensitivity to specific developmental pathways would greatly support the theory of redox regulation of development, and would also provide rationale and direction to more fully comprehend poor developmental outcomes, such as dysmorphogenesis, functional deficits, and preterm embryonic death.
Collapse
Affiliation(s)
- Jason M. Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Dean P. Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Craig Harris
- Toxicology Program, Department of Environmental Sciences, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Summer A, Di Frangia F, Ajmone Marsan P, De Noni I, Malacarne M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit Rev Food Sci Nutr 2020; 60:3705-3723. [PMID: 32033519 DOI: 10.1080/10408398.2019.1707157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genetic variant A1 of bovine β-casein (β-Cn) presents a His residue at a position 67 of the mature protein. This feature makes the Ile66-His67 bond more vulnerable to enzymatic cleavage, determining the release of the peptide β-Cn f(60-66), named β-casomorphin 7 (BCM7). BCM7 is an opioid-agonist for μ receptors, and it has been hypothesized to be involved in the development of different non-transmissible diseases in humans. In the last decade, studies have provided additional results on the potential health impact of β-Cn A1 and BCM7. These studies, here reviewed, highlighted a relation between the consumption of β-Cn A1 (and its derivative BCM7) and the increase of inflammatory response as well as discomfort at the gastrointestinal level. Conversely, the role of BCM7 and the effects of ingestion of β-Cn A1 on the onset or worsening of other non-transmissible diseases as caused or favored by still need proof of evidence. Overall, the reviewed literature demonstrates that the "β-Cn A1/BCM7 issue" remains an intriguing but not exhaustively explained topic in human nutrition. On this basis, policies in favor of breeding for β-Cn variants not releasing BCM7 and consumption of "A1-like" milk appear not yet sound for a healthier and safer nutrition.
Collapse
Affiliation(s)
- Andrea Summer
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| | | | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA) and Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Massimo Malacarne
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| |
Collapse
|
21
|
Janssens Y, Wynendaele E, Vanden Berghe W, De Spiegeleer B. Peptides as epigenetic modulators: therapeutic implications. Clin Epigenetics 2019; 11:101. [PMID: 31300053 PMCID: PMC6624906 DOI: 10.1186/s13148-019-0700-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Peptides originating from different sources (endogenous, food derived, environmental, and synthetic) are able to influence different aspects of epigenetic regulation. Endogenous short peptides, resulting from proteolytic cleavage of proteins or upon translation of non-annotated out of frame transcripts, can block DNA methylation and hereby regulate gene expression. Peptides entering the body by digestion of food-related proteins can modulate DNA methylation and/or histone acetylation while environmental peptides, synthesized by bacteria, fungi, and marine sponges, mainly inhibit histone deacetylation. In addition, synthetic peptides that reverse or inhibit different epigenetic modifications of both histones and the DNA can be developed as well. Next to these DNA and histone modifications, peptides can also influence the expression of non-coding RNAs such as lncRNAs and the maturation of miRNAs. Seen the advantages over small molecules, the development of peptide therapeutics is an interesting approach to treat diseases with a strong epigenetic basis like cancer and Alzheimer’s disease. To date, only a limited number of drugs with a proven epigenetic mechanism of action have been approved by the FDA of which two (romidepsin and nesiritide) are peptides. A large knowledge gap concerning epigenetic effects of peptides is present, and this class of molecules deserves more attention in the development as epigenetic modulators. In addition, none of the currently approved peptide drugs are under investigation for their potential effects on epigenetics, hampering drug repositioning of these peptides to other indications with an epigenetic etiology.
Collapse
Affiliation(s)
- Yorick Janssens
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Wim Vanden Berghe
- Protein Science, Proteomics and Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
22
|
O'Sullivan SM, O'Callaghan YC, O'Keeffe MB, FitzGerald RJ, O'Brien NM. Immunomodulatory activity of 5 kDa permeate fractions of casein hydrolysates generated using a range of enzymes in Jurkat T cells and RAW264.7 macrophages. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Sub-Nanomolar Methylmercury Exposure Promotes Premature Differentiation of Murine Embryonic Neural Precursor at the Expense of Their Proliferation. TOXICS 2018; 6:toxics6040061. [PMID: 30308979 PMCID: PMC6315723 DOI: 10.3390/toxics6040061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental pollutant that is known to be neurotoxic, particularly during fetal development. However, the mechanisms responsible for MeHg-induced changes in adult neuronal function, when their exposure occurred primarily during fetal development, are not yet understood. We hypothesized that fetal MeHg exposure could affect neural precursor development leading to long-term neurotoxic effects. Primary cortical precursor cultures obtained from embryonic day 12 were exposed to 0 µM, 0.25 µM, 0.5 µM, 2.5 µM, and 5 µM MeHg for 48 or 72 h. All of the concentrations tested in the study did not affect cell viability. Intriguingly, we observed that cortical precursor exposed to 0.25 µM MeHg showed increased neuronal differentiation, while its proliferation was inhibited. Reduced neuronal differentiation, however, was observed in the higher dose groups. Our results suggest that micromolar MeHg exposure may deplete the pool of neural precursors by increasing premature neuronal differentiation, which can lead to long-term neurological effects in adulthood as opposed to the higher MeHg doses that cause more immediate toxicity during infant development.
Collapse
|
24
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
25
|
Protein and Peptides for Elderly Health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:265-308. [DOI: 10.1016/bs.apcsb.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 2017; 123:77-91. [PMID: 28161683 DOI: 10.1016/j.biomaterials.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
The discovery of adult neurogenesis drastically changed the therapeutic approaches of central nervous system regenerative medicine. The stimulation of this physiologic process can increase memory and motor performances in patients affected by neurodegenerative diseases. Neural stem cells contribute to the neurogenesis process through their differentiation into specialized neuronal cells. In this review, we describe the most important methods developed to restore neurological functions via neural stem cell differentiation. In particular, we focused on the role of nanomedicine. The application of nanostructured scaffolds, nanoparticulate drug delivery systems, and nanotechnology-based real-time imaging has significantly improved the safety and the efficacy of neural stem cell-based treatments. This review provides a comprehensive background on the contribution of nanomedicine to the modulation of neurogenesis via neural stem cell differentiation.
Collapse
|
27
|
Deth R, Clarke A, Ni J, Trivedi M. Clinical evaluation of glutathione concentrations after consumption of milk containing different subtypes of β-casein: results from a randomized, cross-over clinical trial. Nutr J 2016; 15:82. [PMID: 27680716 PMCID: PMC5041571 DOI: 10.1186/s12937-016-0201-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022] Open
Abstract
Abstract This study reports the plasma glutathione concentrations in a double-blind, randomized, controlled, 2 × 2 cross-over study in which healthy participants consumed conventional milk (2 × 250 mL per day) containing both A1 and A2 types of β-casein, or milk containing only A2 type β-casein. Beta-casomorphin-7 (BCM-7), a peptide uniquely derived from the A1 type of β-casein, was previously reported to downregulate glutathione expression in human gut epithelial and neuronal cell lines by limiting cysteine uptake. The current human study demonstrates that consumption of milk containing only A2 β-casein was associated with a greater increase in plasma glutathione concentrations compared with the consumption of milk containing both β-casein types, and did not increase plasma BCM-7 concentrations compared with the washout diet in the study participants. Thus, milk containing only A2 β-casein and not A1 β-casein has the potential to promote the production of the antioxidant glutathione in humans. Clinical Trial Registration ClinicalTrials.gov; identifier: NCT02406469 Electronic supplementary material The online version of this article (doi:10.1186/s12937-016-0201-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Rm # 1382, Terry Building, Fort Lauderdale, FL, 33317, USA
| | | | - Jiayi Ni
- S.P.R.I.M. China (Shanghai) Consulting Co., Ltd., Shanghai, China
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Rm # 1382, Terry Building, Fort Lauderdale, FL, 33317, USA.
| |
Collapse
|