1
|
Li S, Wang Z, Liu G, Chen M. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress. Front Nutr 2024; 11:1425839. [PMID: 39149548 PMCID: PMC11326534 DOI: 10.3389/fnut.2024.1425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Catechins, a class of phytochemicals found in various fruits and tea leaves, have garnered attention for their diverse health-promoting properties, including their potential in combating neurodegenerative diseases. Among these catechins, (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, has emerged as a promising therapeutic agent due to its potent antioxidant and anti-inflammatory effects. Chronic neuroinflammation and oxidative stress are key pathological mechanisms in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). EGCG has neuroprotective efficacy due to scavenging free radicals, reducing oxidative stress and attenuating neuroinflammatory processes. This review discusses the molecular mechanisms of EGCG's anti-oxidative stress and chronic neuroinflammation, emphasizing its effects on autoimmune responses, neuroimmune system interactions, and focusing on the related effects on AD and PD. By elucidating EGCG's mechanisms of action and its impact on neurodegenerative processes, this review underscores the potential of EGCG as a therapeutic intervention for AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges as a promising natural compound for combating chronic neuroinflammation and oxidative stress, offering novel avenues for neuroprotective strategies in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Siying Li
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zaoyi Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Meixia Chen
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
3
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
4
|
Mladenov M, Lubomirov L, Grisk O, Avtanski D, Mitrokhin V, Sazdova I, Keremidarska-Markova M, Danailova Y, Nikolaev G, Konakchieva R, Gagov H. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants (Basel) 2023; 12:antiox12051126. [PMID: 37237992 DOI: 10.3390/antiox12051126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins β-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, "Ss. Cyril and Methodius" University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Lubomir Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10003, USA
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Yana Danailova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Munguía L, Ortiz M, González C, Portilla A, Meaney E, Villarreal F, Nájera N, Ceballos G. Beneficial Effects of Flavonoids on Skeletal Muscle Health: A Systematic Review and Meta-Analysis. J Med Food 2022; 25:465-486. [PMID: 35394826 DOI: 10.1089/jmf.2021.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle (SkM) is a highly dynamic tissue that responds to physiological adaptations or pathological conditions, and SkM mitochondria play a major role in bioenergetics, regulation of intracellular calcium homeostasis, pro-oxidant/antioxidant balance, and apoptosis. Flavonoids are polyphenolic compounds with the ability to modulate molecular pathways implicated in the development of mitochondrial myopathy. Therefore, it is pertinent to explore its potential application in conditions such as aging, disuse, denervation, diabetes, obesity, and cancer. To evaluate preclinical and clinical effects of flavonoids on SkM structure and function. We performed a systematic review of published studies, with no date restrictions applied, using PubMed and Scopus. The following search terms were used: "flavonoids" OR "flavanols" OR "flavones" OR "anthocyanidins" OR "flavanones" OR "flavan-3-ols" OR "catechins" OR "epicatechin" OR "(-)-epicatechin" AND "skeletal muscle." The studies included in this review were preclinical studies, clinical trials, controlled clinical trials, and randomized-controlled trials that investigated the influence of flavonoids on SkM health. Three authors, independently, assessed trials for the review. Any disagreement was resolved by consensus. The use of flavonoids could be a potential tool for the prevention of muscle loss. Their effects on metabolism and on mitochondria function suggest their use as muscle regulators.
Collapse
Affiliation(s)
- Levy Munguía
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Miguel Ortiz
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Cristian González
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Andrés Portilla
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Eduardo Meaney
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Nayelli Nájera
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Guillermo Ceballos
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| |
Collapse
|
6
|
Din USU, Sian TS, Deane CS, Smith K, Gates A, Lund JN, Williams JP, Rueda R, Pereira SL, Atherton PJ, Phillips BE. Green Tea Extract Concurrent with an Oral Nutritional Supplement Acutely Enhances Muscle Microvascular Blood Flow without Altering Leg Glucose Uptake in Healthy Older Adults. Nutrients 2021; 13:nu13113895. [PMID: 34836149 PMCID: PMC8619110 DOI: 10.3390/nu13113895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Postprandial macro- and microvascular blood flow and metabolic dysfunction manifest with advancing age, so vascular transmuting interventions are desirable. In this randomised, single-blind, placebo-controlled, crossover trial, we investigated the impact of the acute administration of green tea extract (GTE; containing ~500 mg epigallocatechin-3-gallate) versus placebo (CON), alongside an oral nutritional supplement (ONS), on muscle macro- and microvascular, cerebral macrovascular (via ultrasound) and leg glucose/insulin metabolic responses (via arterialised/venous blood samples) in twelve healthy older adults (42% male, 74 ± 1 y). GTE increased m. vastus lateralis microvascular blood volume (MBV) at 180 and 240 min after ONS (baseline: 1.0 vs. 180 min: 1.11 ± 0.02 vs. 240 min: 1.08 ± 0.04, both p < 0.005), with MBV significantly higher than CON at 180 min (p < 0.05). Neither the ONS nor the GTE impacted m. tibialis anterior perfusion (p > 0.05). Leg blood flow and vascular conductance increased, and vascular resistance decreased similarly in both conditions (p < 0.05). Small non-significant increases in brachial artery flow-mediated dilation were observed in the GTE only and middle cerebral artery blood flow did not change in response to GTE or CON (p > 0.05). Glucose uptake increased with the GTE only (0 min: 0.03 ± 0.01 vs. 35 min: 0.11 ± 0.02 mmol/min/leg, p = 0.007); however, glucose area under the curve and insulin kinetics were similar between conditions (p > 0.05). Acute GTE supplementation enhances MBV beyond the effects of an oral mixed meal, but this improved perfusion does not translate to increased leg muscle glucose uptake in healthy older adults.
Collapse
Affiliation(s)
- Ushnah S. U. Din
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Tanvir S. Sian
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Colleen S. Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Amanda Gates
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
| | - Jonathan N. Lund
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - John P. Williams
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Ricardo Rueda
- Research and Development, Abbott Nutrition, 18004 Granada, Spain;
| | | | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (P.J.A.); (B.E.P.)
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (U.S.U.D.); (T.S.S.); (K.S.); (A.G.); (J.N.L.); (J.P.W.)
- Correspondence: (P.J.A.); (B.E.P.)
| |
Collapse
|
7
|
Flemming J, Meyer-Probst CT, Speer K, Kölling-Speer I, Hannig C, Hannig M. Preventive Applications of Polyphenols in Dentistry-A Review. Int J Mol Sci 2021; 22:4892. [PMID: 34063086 PMCID: PMC8124254 DOI: 10.3390/ijms22094892] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Polyphenols are natural substances that have been shown to provide various health benefits. Antioxidant, anti-inflammatory, and anti-carcinogenic effects have been described. At the same time, they inhibit the actions of bacteria, viruses, and fungi. Thus, studies have also examined their effects within the oral cavity. This review provides an overview on the different polyphenols, and their structure and interactions with the tooth surface and the pellicle. In particular, the effects of various tea polyphenols on bioadhesion and erosion have been reviewed. The current research confirms that polyphenols can reduce the growth of cariogenic bacteria. Furthermore, they can decrease the adherence of bacteria to the tooth surface and improve the erosion-protective properties of the acquired enamel pellicle. Tea polyphenols, especially, have the potential to contribute to an oral health-related diet. However, in vitro studies have mainly been conducted. In situ studies and clinical studies need to be extended and supplemented in order to significantly contribute to additive prevention measures in caries prophylaxis.
Collapse
Affiliation(s)
- Jasmin Flemming
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Clara Theres Meyer-Probst
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Karl Speer
- Special Food Chemistry and Food Production, TU Dresden, Bergstraße 66, D-01069 Dresden, Germany; (K.S.); (I.K.-S.)
| | - Isabelle Kölling-Speer
- Special Food Chemistry and Food Production, TU Dresden, Bergstraße 66, D-01069 Dresden, Germany; (K.S.); (I.K.-S.)
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D-66421 Homburg, Germany;
| |
Collapse
|
8
|
Fox CD, Garner CT, Mumford PW, Beck DT, Roberts MD. Higher doses of a green tea-based supplement increase post-exercise blood flow following an acute resistance exercise bout in recreationally resistance-trained college-aged men. J Int Soc Sports Nutr 2020; 17:27. [PMID: 32460790 PMCID: PMC7254661 DOI: 10.1186/s12970-020-00358-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are animal data suggesting green tea can enhance blood flow. However, human data are lacking. Thus, the purpose of this study was to examine the acute effects of low and high doses of a green tea-based supplement (GBS) on brachial artery blood flow before and following a resistance exercise bout. METHODS In this, double-blinded placebo-controlled trial, college-aged males (n = 18) who self-reported recreationally resistance training for the previous 6 ± 3 years were assigned to one of two studies including a low (300 mg serving) (n = 9) or high dose (600 mg serving) (n = 8; 1 drop) GBS study. During testing sessions, participants reported to the laboratory following an overnight fast and rested in a supine position for 15 min. Thereafter, baseline measurements for resting heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), brachial artery diameter (BAD) and blood flow (BBF) were obtained (PRE). Participants then consumed either their respective GBS dose or a similar placebo dose (microcrystalline cellulose) in a supine resting state. HR, SBP, DBP, BAD and BBF were measured 45 min after placebo or GBS ingestion (PRE2). Participants were then placed in a recumbent position and performed 4 sets of 10 arm curl repetitions using an 11 kg dumbbell. Participants returned to a supine position and HR, SBP, DBP, BAD and BBF were obtained within the first 3 min following exercise (POST), 15 min after exercise (15POST), and 45 min after exercise (45POST). Participants returned to the laboratory 24-48 h later to repeat the same protocol with either GBS or the placebo depending on randomization. Two-way (supplement x time) repeated measures ANOVAs were used to compare dependent variables between testing sessions for Study 1 (300 mg of GBS and placebo) and Study 2 (600 mg of GBS and placebo), and statistical significance was set at p < 0.05. No statistical comparisons were made between studies. RESULTS As expected, exercise increased BAD and BBF compared to resting baseline measured irrespective of supplementation. In addition, BAD and BBF did not differ between GBS and placebo at any time point after exercise in Study 1. In study 2, however, 600 mg GBS increased baseline-normalized BBF at immediately post exercise compared to placebo (placebo = 211 ± 155% increase, GBS = 349 ± 156% increase; p = 0.012) but not BAD. CONCLUSIONS These data suggest a higher dose of GBS can enhance localized blood flow acutely following a resistance exercise bout. However, the long-term implications of these data are unclear, and more well-powered studies are needed to validate efficacy and elucidate potential mechanisms.
Collapse
Affiliation(s)
- Carlton D Fox
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Christian T Garner
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Petey W Mumford
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO, USA
| | - Darren T Beck
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA.,Edward Via College of Osteopathic Medicine Auburn, Auburn, AL, USA
| | - Michael D Roberts
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA. .,Edward Via College of Osteopathic Medicine Auburn, Auburn, AL, USA.
| |
Collapse
|
9
|
Premilovac D, Blackwood SJ, Ramsay CJ, Keske MA, Howells DW, Sutherland BA. Transcranial contrast-enhanced ultrasound in the rat brain reveals substantial hyperperfusion acutely post-stroke. J Cereb Blood Flow Metab 2020; 40:939-953. [PMID: 32063081 PMCID: PMC7181087 DOI: 10.1177/0271678x20905493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Direct and real-time assessment of cerebral hemodynamics is key to improving our understanding of cerebral blood flow regulation in health and disease states such as stroke. While a number of sophisticated imaging platforms enable assessment of cerebral perfusion, most are limited either spatially or temporally. Here, we applied transcranial contrast-enhanced ultrasound (CEU) to measure cerebral perfusion in real-time through the intact rat skull before, during and after ischemic stroke, induced by intraluminal filament middle cerebral artery occlusion (MCAO). We demonstrate expected decreases in cortical and striatal blood volume, flow velocity and perfusion during MCAO. After filament retraction, blood volume and perfusion increased two-fold above baseline, indicative of acute hyperperfusion. Adjacent brain regions to the ischemic area and the contralateral hemisphere had increased blood volume during MCAO. We assessed our data using wavelet analysis to demonstrate striking vasomotion changes in the ischemic and contralateral cortices during MCAO and reperfusion. In conclusion, we demonstrate the application of CEU for real-time assessment of cerebral hemodynamics and show that the ischemic regions exhibit striking hyperemia post-MCAO. Whether this post-stoke hyperperfusion is sustained long-term and contributes to stroke severity is not known.
Collapse
Affiliation(s)
- Dino Premilovac
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Sarah J Blackwood
- Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Ciaran J Ramsay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - David W Howells
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad A Sutherland
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
10
|
Aboulwafa MM, Youssef FS, Gad HA, Altyar AE, Al-Azizi MM, Ashour ML. A Comprehensive Insight on the Health Benefits and Phytoconstituents of Camellia sinensis and Recent Approaches for Its Quality Control. Antioxidants (Basel) 2019; 8:E455. [PMID: 31590466 PMCID: PMC6826564 DOI: 10.3390/antiox8100455] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Tea, Camellia sinensis, which belongs to the family Theaceae, is a shrub or evergreen tree up to 16 m in height. Green tea is very popular because of its marked health benefits comprising its anticancer, anti-oxidant, and antimicrobial activities, as well as its effectiveness in reducing body weight. Additionally, it was recognized by Chinese people as an effective traditional drink required for the prophylaxis against many health ailments. This is due to the complex chemical composition of green tea, which comprises different classes of chemical compounds, such as polyphenols, alkaloids, proteins, minerals, vitamins, amino acids, and others. The beneficial health effects of green tea ultimately led to its great consumption and increase its liability to be adulterated by either low-quality or non-green tea products with concomitant decrease in activity. Thus, in this review, green tea was selected to highlight its health benefits and phytoconstituents, as well as recent approaches for its quality-control monitoring that guarantee its incorporation in many pharmaceutical industries. More research is needed to find out other more biological activities, active constituents, and other simple and cheap techniques for its quality assurance that ascertain the prevention of its adulteration.
Collapse
Affiliation(s)
- Maram M Aboulwafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo-11566, Egypt.
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo-11566, Egypt.
| | - Haidy A Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo-11566, Egypt.
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260 Jeddah-21589, Saudi Arabia.
| | - Mohamed M Al-Azizi
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo-11566, Egypt.
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo-11566, Egypt.
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah-21442, Saudi Arabia.
| |
Collapse
|
11
|
Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res Int 2018; 111:451-471. [DOI: 10.1016/j.foodres.2018.05.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
12
|
Yang CS, Wang H, Sheridan ZP. Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. J Food Drug Anal 2017; 26:1-13. [PMID: 29389543 PMCID: PMC9332647 DOI: 10.1016/j.jfda.2017.10.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Tea, a popular beverage made from leaves of the plant Camellia sinensis, has been studied extensively in recent decades for its beneficial health effects in the prevention of obesity, metabolic syndrome, diabetes, cancer, and other diseases. Whereas these beneficial effects have been convincingly demonstrated in most laboratory studies, results from human studies have not been consistent. Some studies demonstrated that weight reduction, alleviation of metabolic syndrome and risk reduction in diabetes were only observed in individuals who consume 3-4 cups of tea (600-900 mg tea catechins) or more daily. This chapter reviews some of these studies, the possible mechanisms of actions of tea constituents, and the challenges in extrapolating laboratory studies to human situations.
Collapse
Affiliation(s)
- Chung Shu Yang
- Corresponding author. Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA. Fax: +1 732 445 0687. E-mail address: (C.S. Yang)
| | | | | |
Collapse
|