1
|
Marco-Benedí V, Cenarro A, Laclaustra M, Calmarza P, Bea AM, Vila À, Morillas-Ariño C, Puzo J, Mediavilla Garcia JD, Fernández Alamán AI, Suárez Tembra M, Civeira F. Influence of triglyceride concentration in lipoprotein (a) as a function of dyslipidemia. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:71-77. [PMID: 38161102 DOI: 10.1016/j.arteri.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Recently, an inverse relationship between the blood concentration of lipoprotein(a) (Lp(a)) and triglycerides (TG) has been demonstrated. The larger the VLDL particle size, the greater the presence of VLDL rich in apoliprotein E and in subjects with the apoE2/E2 genotype, the lower Lp(a) concentration. The mechanism of this inverse association is unknown. The objective of this analysis was to evaluate the Lp(a)-TG association in patients treated at the lipid units included in the registry of the Spanish Society of Atherosclerosis (SEA) by comparing the different dyslipidemias. PATIENTS AND METHODS Five thousand two hundred and seventy-five subjects ≥18 years of age registered in the registry before March 31, 2023, with Lp(a) concentration data and complete lipid profile information without treatment were included. RESULTS The mean age was 53.0 ± 14.0 years, with 48% women. The 9.5% of subjects (n = 502) had diabetes and the 22.4% (n = 1184) were obese. The median TG level was 130 mg/dL (IQR 88.0-210) and Lp(a) 55.0 nmol/L (IQR 17.9-156). Lp(a) concentration showed a negative association with TG concentration when TG values exceeded 300 mg/dL. Subjects with TG > 1000 mg/dL showed the lowest level of Lp(a), 17.9 nmol/L, and subjects with TG < 300 mg/dL had a mean Lp(a) concentration of 60.1 nmol/L. In subjects without diabetes or obesity, the inverse association of Lp(a)-TG was especially important (p < 0.001). The median Lp(a) was 58.3 nmol/L in those with TG < 300 mg/dL and 22.0 nmol/L if TG > 1000 mg/dL. No association was found between TG and Lp(a) in subjects with diabetes and obesity, nor in subjects with familial hypercholesterolemia. In subjects with multifactorial combined hyperlipemia with TG < 300 mg/dL, Lp(a) was 64.6 nmol/L; in the range of 300-399 mg/dL of TG, Lp(a) decreased to 38. 8 nmol/L, and up to 22.3 nmol/L when TG > 1000 mg/dL. CONCLUSIONS Our results show an inverse Lp(a)-TG relationship in TG concentrations > 300 mg/dL in subjects without diabetes, obesity and without familial hypercholesterolemia. Our results suggest that, in those hypertriglyceridemias due to hepatic overproduction of VLDL, the formation of Lp(a) is reduced, unlike those in which the peripheral catabolism of TG-rich lipoproteins is reduced.
Collapse
Affiliation(s)
- Victoria Marco-Benedí
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, España; Universidad de Zaragoza, Zaragoza, España.
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, España; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, España
| | - Martín Laclaustra
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, España; Universidad de Zaragoza, Zaragoza, España
| | - Pilar Calmarza
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, España
| | - Ana M Bea
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, España
| | - Àlex Vila
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital de Figueres, Figueres, España
| | - Carlos Morillas-Ariño
- Sección de Endocrinología y Nutrición, Hospital Universitario Dr. Peset, Valencia, España; Departamento de Medicina, Universidad de Valencia, Valencia, España
| | - José Puzo
- Unidad de Lípidos, Servicio de Análisis y Bioquímica Clínica, Hospital San Jorge, Huesca, España
| | | | | | - Manuel Suárez Tembra
- Unidad de Lípidos y Riesgo Cardiovascular, Servicio de Medicina Interna, Hospital San Rafael, A Coruña, España
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, España; Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
2
|
Decker NS, Johnson T, Le Cornet C, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Associations between lifestyle, health, and clinical characteristics and circulating oxysterols and cholesterol precursors in women diagnosed with breast cancer: a cross-sectional study. Sci Rep 2024; 14:4977. [PMID: 38424253 PMCID: PMC10904394 DOI: 10.1038/s41598-024-55316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Despite increasing evidence that cholesterol precursors and oxysterols, oxidized cholesterol metabolites, play a role in numerous pathological processes and diseases including breast cancer, little is known about correlates of these sterols in women with breast cancer. In this study, 2282 women with breast cancer and blood draw post diagnosis were included and cross-sectional associations between circulating levels of 15 sterols/oxysterols and (a) lifestyle, anthropometric, reproductive characteristics, (b) comorbidities and medication use, and (c) breast cancer tumor and treatment characteristics were calculated using generalized linear models. Obesity was strongly associated with circulating levels of 7-dehydrocholesterol (DC) (body mass index ≥ 30 vs. 18.5-24.9 kg/m2: 51.7% difference) and 7-ketocholesterol (KC) (40.0% difference). After adjustment for BMI, comorbidities such as cardiovascular disease were associated with higher levels of 7-DC (26.1% difference) and lower levels of desmosterol (- 16.4% difference). Breast cancer tumor characteristics including hormone receptor status, tumor stage, and endocrine therapy were associated with lanosterol, 24-DHLan, 7b-HC, and THC (e.g., THC; tumor stage IIIa vs. I: 36.9% difference). Weaker associations were observed for lifestyle characteristics and for any of the other oxysterols. The findings of this study suggest that cholesterol precursors are strongly associated with metabolic factors, while oxysterols are associated with breast cancer tumor characteristics, warranting further investigation into the role of cholesterol precursors and oxysterols in women with breast cancer and other populations.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charlotte Le Cornet
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Occupational and Maritime Medicine Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
3
|
Baila-Rueda L, Cenarro A, Lamiquiz-Moneo I, Marco-Benedi V, Gracia-Rubio I, Casamayor-Franco MC, Arbones-Mainar JM, Civeira F, Laclaustra M. Association of Cholesterol and Oxysterols in Adipose Tissue With Obesity and Metabolic Syndrome Traits. J Clin Endocrinol Metab 2022; 107:e3929-e3936. [PMID: 35453148 DOI: 10.1210/clinem/dgac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Adipose tissue stores a substantial amount of body cholesterol in humans. Obesity is associated with decreased concentrations of serum cholesterol. During weight gain, adipose tissue dysfunction might be one of the causes of metabolic syndrome. The aim of this study is to evaluate cholesterol storage and oxidized metabolites in adipose tissue and their relationship with metabolic clinical characteristics. METHODS Concentrations of cholesterol and oxysterols (27-hydroxycholesterol and 24S-hydroxycholesterol) in subcutaneous and visceral adipose tissue were determined by high-performance liquid chromatography with tandem mass spectrometry in 19 adult women with body mass index between 23 and 40 kg/m2 from the FAT expandability (FATe) study. Tissue concentration values were correlated with biochemical and clinical characteristics using nonparametric statistics. RESULTS Insulin correlated directly with 24S-hydroxycholesterol in both adipose tissues and with 27-hydroxycholesterol in visceral tissue. Leptin correlated directly with 24S-hydroxycholesterol in subcutaneous adipose tissue. Tissue cholesterol correlated directly with 27-hydroxycholesterol in both adipose tissues and with 24S-hydroxycholesterol in visceral tissue, where cholesterol correlation with 24S-hydroxycholesterol was higher than with 27-hydroxycholesterol. In addition, some tendencies were observed: serum high-density lipoprotein cholesterol tended to be inversely correlated with visceral adipose tissue cholesterol; high-sensitivity C-reactive protein tended to be correlated directly with subcutaneous adipose 24S-hydroxycholesterol and inversely with visceral 27-hydroxycholesterol. CONCLUSIONS Adipose tissue oxysterols are associated with blood insulin and insulin resistance. Tissue cholesterol correlated more with 27-hydroxycholesterol in subcutaneous adipose tissue and with 24S-hydroxycholesterol in visceral adipose tissue. Levels of adipose 24S-hydroxycholesterol seem to be correlated with some metabolic syndrome symptoms and inflammation while adipose 27-hydroxycholesterol could represent some protection against them.
Collapse
Affiliation(s)
- Lucia Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Itziar Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Universidad de Zaragoza, Zaragoza, Spain
| | - Victoria Marco-Benedi
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Gracia-Rubio
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Maria Carmen Casamayor-Franco
- Servicio de Cirugía General y Aparato Digestivo, Unidad de Cirugía Endocrina, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Universidad de Zaragoza, Zaragoza, Spain
| | - Martin Laclaustra
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Cholesterol Metabolic Markers for Differential Evaluation of Patients with Hyperlipidemia and Familial Hypercholesterolemia. DISEASE MARKERS 2022; 2022:2008556. [PMID: 35493299 PMCID: PMC9050270 DOI: 10.1155/2022/2008556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
The cholesterol metabolism in humans can be indirectly reflected by measuring cholesterol metabolism marker levels. We aimed to investigate the association of cholesterol homeostasis markers on standard lipid profiling components in familial hypercholesteremia and hyperlipidemia patients. A total of 69 hyperlipidemia patients, 25 familial hypercholesteremia (FHC) patients, and 64 healthy controls were enrolled in this study. We performed routine testing of blood lipid water. Gas chromatography was used to determine the changes in the concentration of cholesterol synthesis (squalene, desmosterol, and lathosterol) and absorption markers (campesterol, sitosterol, and stigmasterol) in the blood. Baseline hyperlipidemia patients displayed significantly higher total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels in comparison to the control group, which was reflected in the increased levels of squalene, desmosterol, campesterol, and sitosterol observed (P < 0.05) in the hyperlipidemia patients. The desmosterol, lathosterol, campesterol, stigmasterol, and sitosterol were statistically different in the FHC group than the hyperlipidemic group (P < 0.05). The proportions of squalene/cholesterol, lathosterol/cholesterol, stigmasterol/cholesterol, and sitosterol/cholesterol in the FHC group were lower than those in the hyperlipidemic group; only desmosterol/cholesterol was higher than that in the hyperlipidemic group. Correlation studies between lipid metabolic factors showed that the proportion of moderate and strong correlations was much higher in the FHC group than in the other two groups (76.92% vs. 32.50% and 31.25%). Logistic regression analysis showed that the concentrations of glucose, LDL-C, lactosterol, and sitosterol were all independent risk factors for developing hyperlipidemia. This result was further confirmed by the ROC curve. These results indicated that the study of cholesterol synthesis and decomposition markers can serve as a reference index for related diseases caused by changes in its concentration.
Collapse
|
5
|
Li ZZ, Wang QH, Liu Y, Wang L, Yu ZQ, Huang Q, Zhang J. Gas Chromatography and Flame-Ionization Detection of Non-Cholesterol Sterols as Indicators of Cholesterol Absorption and Synthesis in 158 Chinese Individuals with Normolipidemia, Hyperlipidemia, and Familial Hypercholesterolemia. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e934471. [PMID: 35152260 PMCID: PMC8851888 DOI: 10.12659/msm.934471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background There are limited studies on the effects of cholesterol homeostasis in populations at high risk for cardiovascular disease. We aimed to use gas chromatography and flame-ionization detection (GC-FID) of non-cholesterol sterols as indicators of cholesterol absorption and synthesis. Sterol indicators of cholesterol absorption included campesterol, stigmasterol, and sitosterol. Sterol indicators of cholesterol synthesis included squalene, 7-lathosterol, and desmosterol. Material/Methods A total of 158 participants were enrolled in 3 groups: healthy control (n=64), hyperlipidemia (n=69), and familial hypercholesterolemia (FH, n=25). Age, sex, blood pressure, blood glucose, and lipoprotein were collected, and cholesterol absorption and synthesis markers were determined by GC-FID. Results All 6 cholesterol concentration indicators, except squalene, were significantly different among the 3 groups (all P<0.05); whereas in the ratio to cholesterol (%, sterols/cholesterol), only desmosterol and lathosterol were significantly different (P<0.05). Multifactorial regression analysis showed that triglycerides, total cholesterol, and desmosterol were independent risk factors affecting the development of hyperlipidemia (P<0.05). The efficacy of the ROC curve for the diagnosis of dyslipidemia was also higher for all 3 indices (Model 1, AUC=0.960). Model 1 was superior to Model 2 for the 6 indicators of cholesterol. For the FH and dyslipidemia groups, the 6-indicator model (Model 3) was shown to have a good diagnostic value (AUC=1.000). Conclusions The 6 sterol indicators of cholesterol absorption and synthesis had a dynamic course in all study participants. Desmosterol was an indicator of dyslipidemia. The combined use of the 6 sterol indicators differentiated between healthy individuals and patients with dyslipidemia and FH.
Collapse
Affiliation(s)
- Zhi-Zhao Li
- Department of Cardiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China (mainland)
| | - Qi-Hui Wang
- Department of Research, Beijing Center for Physical and Chemical Analysis, Beijing, China (mainland)
| | - Yang Liu
- Department of Research, Beijing Center for Physical and Chemical Analysis, Beijing, China (mainland)
| | - Lvya Wang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Zhen-Qiu Yu
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Qiong Huang
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, China (mainland)
| | - Jing Zhang
- Department of Research, Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| |
Collapse
|
6
|
Bea AM, Franco-Marín E, Marco-Benedí V, Jarauta E, Gracia-Rubio I, Cenarro A, Civeira F, Lamiquiz-Moneo I. ANGPTL3 gene variants in subjects with familial combined hyperlipidemia. Sci Rep 2021; 11:7002. [PMID: 33772079 PMCID: PMC7997994 DOI: 10.1038/s41598-021-86384-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) plays an important role in lipid metabolism in humans. Loss-of-function variants in ANGPTL3 cause a monogenic disease named familial combined hypolipidemia. However, the potential contribution of ANGPTL3 gene in subjects with familial combined hyperlipidemia (FCHL) has not been studied. For that reason, the aim of this work was to investigate the potential contribution of ANGPTL3 in the aetiology of FCHL by identifying gain-of-function (GOF) genetic variants in the ANGPTL3 gene in FCHL subjects. ANGPTL3 gene was sequenced in 162 unrelated subjects with severe FCHL and 165 normolipemic controls. Pathogenicity of genetic variants was predicted with PredictSNP2 and FruitFly. Frequency of identified variants in FCHL was compared with that of normolipemic controls and that described in the 1000 Genomes Project. No GOF mutations in ANGPTL3 were present in subjects with FCHL. Four variants were identified in FCHL subjects, showing a different frequency from that observed in normolipemic controls: c.607-109T>C, c.607-47_607-46delGT, c.835+41C>A and c.*52_*60del. This last variant, c.*52_*60del, is a microRNA associated sequence in the 3′UTR of ANGPTL3, and it was present 2.7 times more frequently in normolipemic controls than in FCHL subjects. Our research shows that no GOF mutations in ANGPTL3 were found in a large group of unrelated subjects with FCHL.
Collapse
Affiliation(s)
- A M Bea
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - E Franco-Marín
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - V Marco-Benedí
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| | - E Jarauta
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| | - I Gracia-Rubio
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - A Cenarro
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain. .,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain.
| | - F Civeira
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| | - I Lamiquiz-Moneo
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Shaker MA, Elbadawy HM, Al Thagfan SS, Shaker MA. Enhancement of atorvastatin oral bioavailability via encapsulation in polymeric nanoparticles. Int J Pharm 2020; 592:120077. [PMID: 33246047 DOI: 10.1016/j.ijpharm.2020.120077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 01/08/2023]
Abstract
Despite the fact that atrovastatin (At) is being one of the bestselling statins used to prevent complicated cardiovascular diseases, its low oral bioavailability decreases its clinical relevance. Herein, incorporation of At into ethylcellulose nanoparticles (At-NPs) was executed to test if it would enhance its oral bioavailability. The emulsification-evaporation method was used to prepare the At-NPs. The prepared nanoparticles were characterized by measuring the particle size, zeta potential as well as using FTIR, DSC, and XRD examination. The entrapment efficiency, drug content, and the in vitro release behavior of At-NPs were also examined. The in vivo oral bioavailability of the selected At-NPs formula was tested after being given orally to New Zealand rabbits. The nanoparticles obtained had a high drug content and a distinct spherical shape but with varying sizes. No physical or chemical interactions were detected between At and the nanoparticles as confirmed by FTIR, DSC, and XRD. The in vitro release study of At from the prepared At-NPs has shown nanoparticles size-dependent release behavior. The in vivo oral absorption testing confirmed the bioavailability of the prepared At-NPs to be as follows: (Cmax = 940 ng/ml and AUC0-12 = 8759 ng.h/ml) > Lipitor® (Cmax = 635 ng/ml and AUC0-12 = 4367 ng.h/ml) > At (Cmax = 515 ng/ml and AUC0-12 = 2517 ng.h/ml). These results revealed that the oral formula of At-NPs increases the bioavailability of At 3.87 times. This makes ethylcellulose nanoparticles an esteemed candidate nano-vehicle for At, increasing its bioavailability and thus improving its clinical relevance.
Collapse
Affiliation(s)
- Mohamed A Shaker
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, PO Box 30040, Taibah University, Al-Madina Al-Munawara, Saudi Arabia; Pharmaceutics Department, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt.
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawara, Saudi Arabia
| | - Sultan S Al Thagfan
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madina Al-Munawara, Saudi Arabia
| | - Mahmoud A Shaker
- Department of Pharmaceutics, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW With the exception of familial hypercholesterolaemia, the value of genetic testing for managing dyslipidaemias is not established. We review the genetics of major dyslipidaemias in context of clinical practice. RECENT FINDINGS Genetic testing for familial hypercholesterolaemia is valuable to enhance diagnostic precision, cascade testing, risk prediction and the use of new medications. Hypertriglyceridaemia may be caused by rare recessive monogenic, or by polygenic, gene variants; genetic testing may be useful in the former, for which antisense therapy targeting apoC-III has been approved. Familial high-density lipoprotein deficiency is caused by specific genetic mutations, but there is no effective therapy. Familial combined hyperlipidaemia (FCHL) is caused by polygenic variants for which there is no specific gene testing panel. Familial dysbetalipoproteinaemia is less frequent and commonly caused by APOE ε2ε2 homozygosity; as with FCHL, it is responsive to lifestyle modifications and statins or/and fibrates. Elevated lipoprotein(a) is a quantitative genetic trait whose value in risk prediction over-rides genetic testing; treatment relies on RNA therapeutics. SUMMARY Genetic testing is not at present commonly available for managing dyslipidaemias. Rapidly advancing technology may presage wider use, but its worth will require demonstration of cost-effectiveness and a healthcare workforce trained in genomic medicine.
Collapse
|
9
|
Quintão ECR. Plasma Non-cholesterol Sterols as Markers of Cholesterol Synthesis and Intestinal Absorption: A Critical Review. Curr Pharm Des 2020; 26:5152-5162. [PMID: 32744960 DOI: 10.2174/1381612826666200730220230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022]
Abstract
Plasma concentrations of phytosterols and non-cholesterol sterol precursors of cholesterol synthesis have been used as markers of intestinal cholesterol absorption and synthesis in inherited and secondary dyslipidemias and in population-based investigations to evaluate the risk for cardiovascular disease, respectively. The method aims at replacing initial research procedures such as the use of stable isotopes associated with fecal steroid balance, which are limited by the high cost and tedious procedures. However, we show in this review that numerous results obtained with serum sterol measurements are contradictory. In this regard, the following points are discussed: 1) how phytosterols relate to atherosclerosis considering that defects in biliary output or in the transport of phytosterols from the intestinal mucosa back into the intestinal lumen provide increased content of phytosterols and other sterols in plasma and tissues, thus not allowing to conclude that their presence in arteries and atheromas represents the etiology of atherosclerosis; 2) serum non-cholesterol sterols as markers of cholesterol synthesis and absorption, such as cholestanol, present discrepant results, rendering them often inadequate to identify cases of coronary artery disease as well as alterations in the whole body cholesterol metabolism; 3) such methods of measurement of cholesterol metabolism are confounded by factors like diabetes mellitus, body weight and other pathologies including considerable hereditary hyperlipidemias biological variabilities that influence the efficiency of synthesis and intestinal absorption of cholesterol.
Collapse
|
10
|
Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. MICROBIOME 2020; 8:36. [PMID: 32169105 PMCID: PMC7071638 DOI: 10.1186/s40168-020-00821-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada.
| |
Collapse
|
11
|
Shaker MA, Elbadawy HM, Shaker MA. Improved solubility, dissolution, and oral bioavailability for atorvastatin-Pluronic® solid dispersions. Int J Pharm 2020; 574:118891. [DOI: 10.1016/j.ijpharm.2019.118891] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/08/2023]
|
12
|
Hwang DI, Won KJ, Kim DY, Kim HB, Li Y, Lee HM. Chemical Composition of Patrinia scabiosifolia Flower Absolute and Its Migratory and Proliferative Activities in Human Keratinocytes. Chem Biodivers 2019; 16:e1900252. [PMID: 31250551 DOI: 10.1002/cbdv.201900252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 01/25/2023]
Abstract
Patrinia scabiosifolia (PS) has bioactivities such as antitumor and anti-inflammation effects. However, its effects on human skin physiological activities, such as skin regeneration and wound healing, remain unclear. In this study, we investigated the effects of absolute extracted from PS flower (PSF) on migration and proliferation of human dermal keratinocyte (HaCat). The yield of PSF absolute obtained by solvent extraction method was 0.105 % and its five constituents were found in GC/MS analysis. The PSF absolute induced the proliferation and migration of HaCats. The absolute increased the phosphorylation of serine/threonine-specific protein kinase (Akt) and extracellular signal-regulated kinase1/2 (Erk1/2) in HaCats. In addition, the absolute stimulated the outgrowth of collagen sprouting of HaCats. These results demonstrated, for the first time, that PSF absolute may have positive effects on skin regeneration and/or wound healing by inducing migration and proliferation of dermal keratinocytes via the Akt/Erk1/2 pathway. Therefore, PSF absolute may be a useful natural material for skin regeneration and/or wound healing.
Collapse
Affiliation(s)
- Dae Il Hwang
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, Asan, 336-795, Korea.,Institute of Jinan Red Ginseng, Jinan, 55442, Korea
| | - Kyung Jong Won
- Department of Physiology, School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Do-Yoon Kim
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, Asan, 336-795, Korea.,College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Ha Bin Kim
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, Asan, 336-795, Korea
| | - Yali Li
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, Asan, 336-795, Korea
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, Asan, 336-795, Korea
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To examine recent advances in our knowledge on the diagnosis of lipid disorders. RECENT FINDINGS Fasting values above the 99th percentile for direct LDL-cholesterol (LDL-C), lipoprotein(a), and triglycerides are greater than 225 mg/dl, greater than 160 mg/dl, and greater than 500 mg/dl (>5.82, >394, and >5.65 mmol/l), respectively, whereas such values for plasma lathosterol, β-sitosterol, and cholestanol are greater than 8.0, 8.0, and 5.0 mg/l (>0.021, 0.019, and 0.013 mmol/l), respectively. Values below the first percentile for LDL-C are less than 40 mg/dl (<1.03 mmol/l) and for HDL-cholesterol (HDL-C) less than 25 mg/dl (<0.65 mmol/l) in men and less than 30 mg/dl (<0.78 mmol/l) in women, respectively. The above values can predispose to premature CVD, pancreatitis, neurologic disease, and kidney failure, and may be associated with monogenic lipid disorders. In the absence of secondary causes including diabetes or kidney, liver, or thyroid disease, consideration should be given to sequencing the following genes: ABCA1, ABCG5, ABCG8, APOA1, APOA5, APOB, APOC2, APOE, CETP, CYP27A1, GPIHBP1, LCAT, LDLR, LDLRAP1, LIPA, LIPC, LMF1, LPL, MTTP, PCSK9, SCARB1, and STAP1. SUMMARY Recent data indicate that secondary causes and a wider range of conditions need to be considered in identifying the underlying causes of hypercholesterolemia, hypertriglyceridemia, hyperalphalipoproteinemia, hypobetalipoproteinemia, and HDL deficiency. Identifying such disorders allows for a more precise assessment of prognosis and the formulation of optimal therapy.
Collapse
Affiliation(s)
- Ernst J Schaefer
- Boston Heart Diagnostics, Framingham
- Dyslipidemia Foundation, Natick
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Andrew S Geller
- Boston Heart Diagnostics, Framingham
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | | |
Collapse
|