1
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Gonçalves M, Vale N, Silva P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants (Basel) 2024; 13:762. [PMID: 39061831 PMCID: PMC11274152 DOI: 10.3390/antiox13070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are a significant challenge to global healthcare, and oxidative stress plays a crucial role in their development. This paper presents a comprehensive analysis of the neuroprotective potential of olive oil, with a primary focus on its antioxidant properties. The chemical composition of olive oil, including key antioxidants, such as oleuropein, hydroxytyrosol, and oleocanthal, is systematically examined. The mechanisms by which these compounds provide neuroprotection, including counteracting oxidative damage and modulating neuroprotective pathways, are explored. The neuroprotective efficacy of olive oil is evaluated by synthesizing findings from various sources, including in vitro studies, animal models, and clinical trials. The integration of olive oil into dietary patterns, particularly its role in the Mediterranean diet, and its broader implications in neurodegenerative disease prevention are also discussed. The challenges in translating preclinical findings to clinical applications are acknowledged and future research directions are proposed to better understand the potential of olive oil in mitigating the risk of neurodegenerative conditions. This review highlights olive oil not only as a dietary component, but also as a promising candidate in preventive neurology, advocating for further investigation in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
3
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Tsolis T, Kyriakou D, Sifnaiou E, Thomos D, Glykos D, Tsiafoulis CG, Garoufis A. NMR Analysis of Extra Virgin Olive Oil of the Epirus Region of Greece with Emphasis on Selected Phenolic Compounds. Molecules 2024; 29:1111. [PMID: 38474623 DOI: 10.3390/molecules29051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Extra virgin olive oil (EVOO) is recognized for its numerous health benefits, attributed to its rich phenolic components. NMR has emerged as a prevalent technique for precisely identifying these compounds. Among Mediterranean countries, Greece stands as the third-largest producer of olives, with the Epirus region notably advancing in olive cultivation, contributing significantly to the dynamic growth of the region. In this study, an NMR method was employed based on the acquisition of a 1H NMR spectrum along with multiple resonant suppression in order to increase the sensitivity. Using the above method, 198 samples of extra virgin olive oil, primarily sourced from the Epirus region, were analyzed, and both the qualitative and quantitative aspects of the phenolic compounds were obtained. In addition, we examined the effects of various factors such as variety, harvest month, and region origin on the phenolic compounds' concentration. The results revealed an average total phenolic content of 246 mg/kg, closely approaching the EU health claim limit of 250 mg/kg. Approximately 15% of the samples were confidently characterized as high-phenolic olive oil. The highest concentrations were observed in the Thesprotia samples, with several Lianolia varieties exceeding the total phenolic content of 400 mg/kg. Statistical tests demonstrated a significant influence of the olive variety and the month of fruit harvest on phenolic component concentration, followed by the region of origin. A very strong correlation was noted between the total phenolics content and the levels of oleocanthal and oleacein, with a correlation coefficient (r) of 0.924. Upon optimization of all factors affecting olive oil quality, the majority of the EVOOs from the Epirus region have the potential to be characterized as high in phenolic content.
Collapse
Affiliation(s)
- Theodoros Tsolis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Kyriakou
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Sifnaiou
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Thomos
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Glykos
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Constantinos G Tsiafoulis
- NMR Centre, Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- School of Science & Technology, Hellenic Open University, 26335 Patras, Greece
| | - Achilleas Garoufis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- NMR Centre, Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Centre of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
5
|
Alkhalifa AE, Al-Ghraiybah NF, Kaddoumi A. Extra-Virgin Olive Oil in Alzheimer's Disease: A Comprehensive Review of Cellular, Animal, and Clinical Studies. Int J Mol Sci 2024; 25:1914. [PMID: 38339193 PMCID: PMC10856527 DOI: 10.3390/ijms25031914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by several pathological hallmarks, including the deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, increased oxidative stress, and neuroinflammation. Current treatment options include monoclonal antibody drugs, acetylcholinesterase, and n-methyl-d-aspartate (NMDA) antagonists. Although those treatments provide some improvements in patients' quality of life, they fail to prevent or cure AD. Current research aims to identify novel targets and tools for AD prevention and modification. In this context, several studies showed the beneficial effect of the Mediterranean diet in the prevention and treatment of AD. One integral component of the Mediterranean diet is olive oil and extra-virgin olive oil (EVOO), which is high in phenolic compounds. EVOO and other olive-related phenolic compounds have been shown to reduce the risk of developing mild cognitive impairment (MCI) and AD. In this review, we discuss the mechanisms by which EVOO and phenolic compounds exert neuroprotective effects, including modulation of AD pathologies and promotion of cognitive health. Findings indicate that EVOO and its phenolic constituents influence key pathological processes of AD, such as Aβ aggregation, tau phosphorylation, and neuroinflammation, while also enhancing BBB integrity and reducing oxidative stress. The human studies cited reveal a consistent trend where the consumption of olive oil is associated with cognitive benefits and a decreased risk of AD and related dementias. In conclusion, EVOO and its phenolic compounds hold promising potential for the prevention and treatment of AD, representing a significant shift towards more effective strategies against this complex neurodegenerative disorder.
Collapse
Affiliation(s)
| | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.)
| |
Collapse
|
6
|
Filardo S, Roberto M, Di Risola D, Mosca L, Di Pietro M, Sessa R. Olea europaea L-derived secoiridoids: Beneficial health effects and potential therapeutic approaches. Pharmacol Ther 2024; 254:108595. [PMID: 38301769 DOI: 10.1016/j.pharmthera.2024.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Over the years, health challenges have become increasingly complex and global and, at the beginning of the 21st century, chronic diseases, including cardiovascular, neurological, and chronic respiratory diseases, as well as cancer and diabetes, have been identified by World Health Organization as one of the biggest threats to human health. Recently, antimicrobial resistance has also emerged as a growing problem of public health for the management of infectious diseases. In this scenario, the exploration of natural products as supplementation or alternative therapeutic options is acquiring great importance, and, among them, the olive tree, Olea europaea L, specifically leaves, fruits, and oil, has been increasingly investigated for its health promoting properties. Traditionally, these properties have been largely attributed to the high concentration of monounsaturated fatty acids, although, in recent years, beneficial effects have also been associated to other components, particularly polyphenols. Among them, the most interesting group is represented by Olea europaea L secoiridoids, comprising oleuropein, oleocanthal, oleacein, and ligstroside, which display anti-inflammatory, antioxidant, cardioprotective, neuroprotective and anticancer activities. This review provides an overview of the multiple health beneficial effects, the molecular mechanisms, and the potential applications of secoiridoids from Olea europaea L.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Mattioli Roberto
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Daniel Di Risola
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Li JG, Mutreja Y, Servili M, Leone A, Praticò D. The Anti-Neuroinflammatory Effect of Extra-Virgin Olive Oil in the Triple Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 100:119-126. [PMID: 38848192 DOI: 10.3233/jad-240374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Chronic intake of extra virgin olive oil is beneficial for brain health and protects from age-related cognitive decline and dementia, whose most common clinical manifestation is Alzheimer's disease. Besides the classical pathologic deposits of amyloid beta peptides and phosphorylated tau proteins, another frequent feature of the Alzheimer's brain is neuroinflammation. Objective In the current study, we assessed the effect that extra virgin olive oil has on neuroinflammation when administered to a mouse model of the disease. Methods Triple transgenic mice were randomized to receive a diet enriched with extra virgin olive oil or regular diet for 8 weeks. At the end of this treatment period the expression level of several inflammatory biomarkers was assessed in the central nervous system. Results Among the 79 biomarkers measured, compared with the control group, mice receiving the extra virgin olive oil had a significant reduction in MIP-2, IL-17E, IL-23, and IL-12p70, but an increase in IL-5. To validate these results, specific ELISA kits were used for each of them. Confirmatory results were obtained for MIP-2, IL-17E, IL-23, and IL-12-p70. No significant differences between the two groups were observed for IL-5. Conclusions Our results demonstrate that chronic administration of extra virgin olive oil has a potent anti-neuroinflammatory action in a model of Alzheimer's disease. They provide additional pre-clinical support and novel mechanistic insights for the beneficial effect that this dietary intervention has on brain health and dementia.
Collapse
Affiliation(s)
- Jian-Guo Li
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yamini Mutreja
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Alessandro Leone
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Yang E, Wang J, Woodie LN, Greene MW, Kaddoumi A. Oleocanthal Ameliorates Metabolic and Behavioral Phenotypes in a Mouse Model of Alzheimer's Disease. Molecules 2023; 28:5592. [PMID: 37513464 PMCID: PMC10385639 DOI: 10.3390/molecules28145592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is a major risk factor for Alzheimer's disease (AD). AD mouse models are frequently used to assess pathology, behavior, and memory in AD research. While the pathological characteristics of AD are well established, our understanding of the changes in the metabolic phenotypes with age and pathology is limited. In this work, we used the Promethion cage systems® to monitor changes in physiological metabolic and behavioral parameters with age and pathology in wild-type and 5xFAD mouse models. Then, we assessed whether these parameters could be altered by treatment with oleocanthal, a phenolic compound with neuroprotective properties. Findings demonstrated metabolic parameters such as body weight, food and water intake, energy expenditure, dehydration, and respiratory exchange rate, and the behavioral parameters of sleep patterns and anxiety-like behavior are altered by age and pathology. However, the effect of pathology on these parameters was significantly greater than normal aging, which could be linked to amyloid-β deposition and blood-brain barrier (BBB) disruption. In addition, and for the first time, our findings suggest an inverse correlation between sleep hours and BBB breakdown. Treatment with oleocanthal improved the assessed parameters and reduced anxiety-like behavior symptoms and sleep disturbances. In conclusion, aging and AD are associated with metabolism and behavior changes, with the changes being greater with the latter, which were rectified by oleocanthal. In addition, our findings suggest that monitoring changes in metabolic and behavioral phenotypes could provide a valuable tool to assess disease severity and treatment efficacy in AD mouse models.
Collapse
Affiliation(s)
- Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Lauren N Woodie
- Department of Nutrition, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael W Greene
- Department of Nutrition, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
9
|
Hashempour-Baltork F, Farshi P, Mirza Alizadeh A, Eskandarzadeh S, Abedinzadeh S, Azadmard-Damirchi S, Torbati M. Effect of Refined Edible Oils on Neurodegenerative Disorders. Adv Pharm Bull 2023; 13:461-468. [PMID: 37646051 PMCID: PMC10460797 DOI: 10.34172/apb.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/01/2023] Open
Abstract
Neurodegenerative diseases are comprise a prominent class of neurological diseases. Generally, neurodegenerative diseases cannot be cured, and the available treatments can only regulate the symptoms or delay the disease progression. Among the several factors which could clarify the possible pathogenesis of neurodegenerative diseases, next to aging as the main risk, the dietary related diseases are the most important. Vegetable oils, which are composed of triacyclglycerols as the main components and several other components in a trace amount, are the main part of our diet. This review aims to study the effect of refined or unrefined vegetable oil consumption as a preventive or aiding strategy to slow or halt the progression of neurodegenerative diseases. In the refining process, owing to the chemical materials or severe temperatures of the refining process, removal of the desirable minor components is sometimes unavoidable and thus a worrisome issue affecting physical and neurological health.
Collapse
Affiliation(s)
- Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Adel Mirza Alizadeh
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sevda Eskandarzadeh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Comparison of Oleocanthal-Low EVOO and Oleocanthal against Amyloid-β and Related Pathology in a Mouse Model of Alzheimer's Disease. Molecules 2023; 28:molecules28031249. [PMID: 36770920 PMCID: PMC9921117 DOI: 10.3390/molecules28031249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by several pathological hallmarks, including the deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, and neuroinflammation. Growing evidence support the neuroprotective effects of extra-virgin olive oil (EVOO) and oleocanthal (OC). In this work, we aimed to evaluate and compare the beneficial effects of equivalent doses of OC-low EVOO (0.5 mg total phenolic content/kg) and OC (0.5 mg OC/kg) on Aβ and related pathology and to assess their effect on neuroinflammation in a 5xFAD mouse model with advanced pathology. Homozygous 5xFAD mice were fed with refined olive oil (ROO), OC-low EVOO, or OC for 3 months starting at the age of 3 months. Our findings demonstrated that a low dose of 0.5 mg/kg EVOO-phenols and OC reduced brain Aβ levels and neuroinflammation by suppressing the nuclear factor-κB (NF-κB) pathway and reducing the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. On the other hand, only OC suppressed the receptor for advanced glycation endproducts/high-mobility group box 1 (RAGE/HMGB1) pathway. In conclusion, our results indicated that while OC-low EVOO demonstrated a beneficial effect against Aβ-related pathology in 5xFAD mice, EVOO rich with OC could provide a higher anti-inflammatory effect by targeting multiple mechanisms. Collectively, diet supplementation with EVOO or OC could prevent, halt progression, and treat AD.
Collapse
|
11
|
Extra-Virgin Olive Oil Enhances the Blood-Brain Barrier Function in Mild Cognitive Impairment: A Randomized Controlled Trial. Nutrients 2022; 14:nu14235102. [PMID: 36501136 PMCID: PMC9736478 DOI: 10.3390/nu14235102] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mild cognitive impairment (MCI) and early Alzheimer's disease (AD) are characterized by blood-brain barrier (BBB) breakdown leading to abnormal BBB permeability ahead of brain atrophy or dementia. Previous findings in AD mouse models have reported the beneficial effect of extra-virgin olive oil (EVOO) against AD, which improved BBB and memory functions and reduced brain amyloid-β (Aβ) and related pathology. This work aimed to translate these preclinical findings to humans in individuals with MCI. We examined the effect of daily consumption of refined olive oil (ROO) and EVOO for 6 months in MCI subjects on BBB permeability (assessed by contrast-enhanced MRI), and brain function (assessed using functional-MRI) as the primary outcomes. Cognitive function and AD blood biomarkers were also assessed as the secondary outcomes. Twenty-six participants with MCI were randomized with 25 participants completed the study. EVOO significantly improved clinical dementia rating (CDR) and behavioral scores. EVOO also reduced BBB permeability and enhanced functional connectivity. While ROO consumption did not alter BBB permeability or brain connectivity, it improved CDR scores and increased functional brain activation to a memory task in cortical regions involved in perception and cognition. Moreover, EVOO and ROO significantly reduced blood Aβ42/Aβ40 and p-tau/t-tau ratios, suggesting that both altered the processing and clearance of Aβ. In conclusion, EVOO and ROO improved CDR and behavioral scores; only EVOO enhanced brain connectivity and reduced BBB permeability, suggesting EVOO biophenols contributed to such an effect. This proof-of-concept study justifies further clinical trials to assess olive oil's protective effects against AD and its potential role in preventing MCI conversion to AD and related dementias.
Collapse
|
12
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
13
|
Chen SY, Weng MH, Li ZY, Wang GY, Yen GC. Protective effects of camellia and olive oils against cognitive impairment via gut microbiota-brain communication in rats. Food Funct 2022; 13:7168-7180. [PMID: 35699196 DOI: 10.1039/d1fo04418d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food intake influences neurofunction via the gut microbiota-brain axis. Monounsaturated fatty acid (MUFA) consumption is highly associated with neuroprotection; the mechanism behind the effects of olive oil and camellia oil on gut microbiota remains unclear. In this study, the objective was to compare the neuroprotective role of oleic acid-rich camellia oil and olive oil against AlCl3-induced mild cognitive impairment (MCI) in rats. Morris water maze tests revealed that learning and memory capacities improved in AlCl3-induced rats subjected to camellia oil administration better than olive oil treatment. Moreover, the results showed that the camellia oil- and olive oil-treated AlCl3-induced rat groups had significantly reduced oxidative stress and inflammatory cytokines. Notably, Spearman correlation analysis indicated that the inflammatory cytokines negatively correlated with the microbial strains (Bacteroides pectinophilus_group and Blautia) in response to camellia oil administration. Furthermore, Ruminococcaceae_UCG014 abundance was significantly enhanced by camellia oil intake, which was highly positively associated with antioxidant activity expression. In conclusion, the novel data suggest that the outcomes of camellia oil consumption were superior to those of olive oil intake as camellia oil may have a beneficial effect on MCI protection and improvement through the gut microbiota-brain communication.
Collapse
Affiliation(s)
- Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Ming-Hung Weng
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Zih-Ying Li
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Guan-Yu Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| |
Collapse
|
14
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Abdallah IM, Al-Shami KM, Yang E, Wang J, Guillaume C, Kaddoumi A. Oleuropein-Rich Olive Leaf Extract Attenuates Neuroinflammation in the Alzheimer's Disease Mouse Model. ACS Chem Neurosci 2022; 13:1002-1013. [PMID: 35263086 DOI: 10.1021/acschemneuro.2c00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among several neurodegenerative disorders afflicting the elderly. AD is characterized by the deposition of extracellular amyloid-β (Aβ) plaques, disrupted blood-brain barrier (BBB), and neuroinflammation. Several studies have demonstrated the health benefits of olive oil and olive leaf extract (OLE) due to their polyphenolic content. The main phenolic compound in OLE is glycosylated oleuropein (OLG), while the aglycon form of oleuropein (OLA) exists in much lower amounts. This work aimed to evaluate the effect of a low dose of OLG-rich OLE and the mechanism(s) that contributed to the observed beneficial effects against Aβ pathology in the homozygous 5xFAD mouse model. Mice were fed with OLE-enriched diet (695 μg/kg body weight/day) for 3 months, starting at 3 months old. Overall findings demonstrated that OLE reduced neuroinflammation by inhibiting the NF-κB pathway and suppressing the activation of NLRP3 inflammasomes and RAGE/HMGB1 pathways. In addition, OLE reduced total Aβ brain levels due to increased clearance and reduced production of Aβ and enhanced BBB integrity and function, which collectively improved the memory function. Thus, the consumption of OLE as a dietary supplement is expected to stop and/or slow the progression of AD.
Collapse
Affiliation(s)
- Ihab M. Abdallah
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, Alabama 36849, United States
| | - Kamal M. Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, Alabama 36849, United States
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, Alabama 36849, United States
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, Alabama 36849, United States
| | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, Alabama 36849, United States
| |
Collapse
|
16
|
Lozano‐Castellón J, López‐Yerena A, Domínguez‐López I, Siscart‐Serra A, Fraga N, Sámano S, López‐Sabater C, Lamuela‐Raventós RM, Vallverdú‐Queralt A, Pérez M. Extra virgin olive oil: A comprehensive review of efforts to ensure its authenticity, traceability, and safety. Compr Rev Food Sci Food Saf 2022; 21:2639-2664. [DOI: 10.1111/1541-4337.12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Julián Lozano‐Castellón
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Anallely López‐Yerena
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
| | - Inés Domínguez‐López
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Aina Siscart‐Serra
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
| | - Nathalia Fraga
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
| | - Samantha Sámano
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
| | - Carmen López‐Sabater
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Rosa M Lamuela‐Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Anna Vallverdú‐Queralt
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences Institute of Nutrition and Food Safety (INSA‐UB) University of Barcelona Barcelona Spain
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
| |
Collapse
|
17
|
Costanzo P, Oliverio M, Maiuolo J, Bonacci S, De Luca G, Masullo M, Arcone R, Procopio A. Novel Hydroxytyrosol-Donepezil Hybrids as Potential Antioxidant and Neuroprotective Agents. Front Chem 2021; 9:741444. [PMID: 34738004 PMCID: PMC8560896 DOI: 10.3389/fchem.2021.741444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
It is well-accepted that the endogenous antioxidant protection system progressively decays in elderly people, and that the oxidative stress contributes to different neurodegenerative disorders such as Alzheimer’s Diseases (AD). The lower incidence of AD in countries which feature the Mediterranean Diet was associated to the high consumption of extra virgin olive oil and its polyphenolic fraction, in particular hydroxytyrosol. The protective role of these bio-phenols against oxidative stress, suggested that we combine their antioxidant/free radical scavenging activity with donepezil, an active ingredient which has just been approved for the treatment of AD. Different synthetic strategies were tested to conjugate the two different synthons in good yields. Additionally, a nitro-hydroxytyrosol derivative was synthesized to extend the application to other neurodegeneration inflammatory models. Then, their bioactivity was measured in different chemical and biological tests on a human neuroblastoma cell line (SHSY-5Y). Remarkable results on cell viability and the regulation of the redox state of cells were obtained. All hybrids showed negligible cell death under 1 μM and are stable and non toxic. Reactive oxygen species (ROS) measurements showed that the nitro-hybrid was the more effective one at reducing the ROS amount to physiological values. Then, in light of the bio-metal hypothesis of diverse neurodegenerative disorders, we tested these new compounds on the chelation properties of redox-active metals. The nitro-hybrid was able to chelate all of the tested metal cations, suggesting that we propose it as potential lead compound for a new class of neuroprotective antioxidant agents.
Collapse
Affiliation(s)
- Paola Costanzo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Manuela Oliverio
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Sonia Bonacci
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Giuseppina De Luca
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Mariorosario Masullo
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Napoli, Italy.,CEINGE Biotecnologie Avanzate S.C.a R.L., Napoli, Italy
| | - Rosaria Arcone
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Napoli, Italy.,CEINGE Biotecnologie Avanzate S.C.a R.L., Napoli, Italy
| | - Antonio Procopio
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Catanzaro, Italy
| |
Collapse
|
18
|
Yang Z, Zhou DD, Huang SY, Fang AP, Li HB, Zhu HL. Effects and mechanisms of natural products on Alzheimer's disease. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34613845 DOI: 10.1080/10408398.2021.1985428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elderly people with a high incidence rate and complicated pathogenesis, and causes progressive cognitive deficit and memory impairment. Some natural products and bioactive compounds from natural sources show great potential in the prevention and treatment of AD, such as apple, blueberries, grapes, chili pepper, Monsonia angustifolia, cruciferous vegetables, Herba epimedii, Angelica tenuissima, Embelia ribes, sea cucumber, Cucumaria frondosa, green tea, Puer tea, Amanita caesarea and Inonotus obliquus, via reducing amyloid beta (Aβ) deposition, decreasing Tau hyperphosphorylation, regulating cholinergic system, reducing oxidative stress, inhibiting apoptosis and ameliorating inflammation. This review mainly summarizes the effects of some natural products and their bioactive compounds on AD with the potential molecular mechanisms.
Collapse
Affiliation(s)
- Zhijun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ai-Ping Fang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Shenzhiling oral solution promotes myelin repair through PI3K/Akt-mTOR pathway in STZ-induced SAD mice. 3 Biotech 2021; 11:361. [PMID: 34295606 DOI: 10.1007/s13205-021-02900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Most forms of Alzheimer's disease are sporadic. A model of sporadic Alzheimer's disease induced with bilateral intraventricular injection of streptozotocin leads to insulin resistance in the brain accompanied by memory decline, synaptic dysfunction, amyloid plaque deposition, oxidative stress, and neuronal apoptosis, all of which mimic the pathologies associated with sporadic Alzheimer's disease. Myelin injury is an essential component of Alzheimer's disease, playing a key role in early cognitive impairment. Our previously research found that sporadic Alzheimer's disease model showed myelin injury and that Shenzheling oral solution improved mild-to-moderate Alzheimer's disease; therefore, the protective effect of Shenzheling oral solution on myelin injury in early cognitive impairment is worth attention. In this study, the Morris water maze test results showed impairments in the learning and memory functions of mice in the model group, whereas the learning and memory function significantly improved after drug intervention. Immunohistochemistry showed increased β-amyloid plaques in the model group and decreased amounts in the drug group. Moreover, results of electron microscopy, western blot, and polymerase chain reaction showed that Shenzhiling oral solution improved early cognitive impairment and repaired myelin sheath damage; the potential mechanism of these effects may relate to the PI3K/Akt-mTOR signaling pathway. These findings support the application and promotion of Shenzhiling oral solution to treat sporadic Alzheimer's disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02900-x.
Collapse
|
20
|
Tajmim A, Cuevas-Ocampo AK, Siddique AB, Qusa MH, King JA, Abdelwahed KS, Sonju JJ, El Sayed KA. (-)-Oleocanthal Nutraceuticals for Alzheimer's Disease Amyloid Pathology: Novel Oral Formulations, Therapeutic, and Molecular Insights in 5xFAD Transgenic Mice Model. Nutrients 2021; 13:nu13051702. [PMID: 34069842 PMCID: PMC8157389 DOI: 10.3390/nu13051702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex progressive neurodegenerative disorder affecting humans mainly through the deposition of Aβ-amyloid (Aβ) fibrils and accumulation of neurofibrillary tangles in the brain. Currently available AD treatments only exhibit symptomatic relief but do not generally intervene with the amyloid and tau pathologies. The extra-virgin olive oil (EVOO) monophenolic secoiridoid S-(–)-oleocanthal (OC) showed anti-inflammatory activity through COX system inhibition with potency comparable to the standard non-steroidal anti-inflammatory drug (NSAID) like ibuprofen. OC also showed positive in vitro, in vivo, and clinical therapeutic effects against cardiovascular diseases, many malignancies, and AD. Due to its pungent, astringent, and irritant taste, OC should be formulated in acceptable dosage form before its oral use as a potential nutraceutical. The objective of this study is to develop new OC oral formulations, assess whether they maintained OC activity on the attenuation of β-amyloid pathology in a 5xFAD mouse model upon 4-month oral dosing use. Exploration of potential OC formulations underlying molecular mechanism is also within this study scope. OC powder formulation (OC-PF) and OC-solid dispersion formulation with erythritol (OC-SD) were prepared and characterized using FT-IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy (ScEM) analyses. Both formulations showed an improved OC dissolution profile. OC-PF and OC-SD improved memory deficits of 5xFAD mice in behavioral studies. OC-PF and OC-SD exhibited significant attenuation of the accumulation of Aβ plaques and tau phosphorylation in the brain of 5xFAD female mice. Both formulations markedly suppressed C3AR1 (complement component 3a receptor 1) activity by targeting the downstream marker STAT3. Collectively, these results demonstrate the potential for the application of OC-PF as a prospective nutraceutical or dietary supplement to control the progression of amyloid pathogenesis associated with AD.
Collapse
Affiliation(s)
- Afsana Tajmim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Areli K. Cuevas-Ocampo
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Judy Ann King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
- Correspondence: ; Tel.: +1-318-342-1725
| |
Collapse
|
21
|
Kheirouri S, Alizadeh M. MIND diet and cognitive performance in older adults: a systematic review. Crit Rev Food Sci Nutr 2021; 62:8059-8077. [PMID: 33989093 DOI: 10.1080/10408398.2021.1925220] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cognitive decline is a rapidly increasing public health concern. A healthy diet has potential in preserving brain and maintaining cognitive health. This systematic review was designed to evaluate the relationship between Mediterranean-DASH diet intervention for neurodegenerative delay (MIND) diet and cognitive functioning in older adults. PubMed, SCOPUS, Embase, Cochrane Library, and Google Scholar databases were searched to extract original studies on humans published until July 2020, without date restrictions. Articles that evaluated the association between MIND diet and cognitive performance in older adults were included. Duplicated and irrelevant studies were screened out and data were obtained through critical analysis. Quality of the articles and risk of bias was assessed by Newcastle-Ottawa and Cochrane Collaboration's quality assessment tools. Of the 135 studies retrieved, 13 articles (9 cohort, 3 cross-sectional, and 1 RCT studies) were included in the final review. All of the included studies indicated that adherence to the MIND diet was positively associated with specific domains, but not all, of cognition and global cognitive function (78% of the studies) in older adults. MIND diet was superior to other plant-rich diets including Mediterranean, Dietary Approaches to Stop Hypertension, Pro-Vegetarian and Baltic Sea diets, for improving cognition. Adherence to the MIND diet may possibly be associated with an improved cognitive function in older adults. MIND diet may be superior to other plant-rich diets for improving cognition.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Rong X, Jiang L, Qu M, Hassan SSU, Liu Z. Enhancing Therapeutic Efficacy of Donepezil by Combined Therapy: A Comprehensive Review. Curr Pharm Des 2021; 27:332-344. [PMID: 33100197 DOI: 10.2174/1381612826666201023144836] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
Combination therapy involving different therapeutic strategies mostly provides more rapid and effective results as compared to monotherapy in diverse areas of clinical practice. The most worldwide famous acetylcholinesterase inhibitor (AChEIs) donepezil for its dominant role in Alzheimer's disease (AD) has also attracted the attention of many pharmaceuticals due to its promising pharmacological potencies such as neuroprotective, muscle relaxant, and sleep inducer. Recently, a combination of donepezil with other agents has displayed better desirable results in managing several disorders, including the most common Alzheimer's disease (AD). This study involves all the data regarding the therapeutic effect of donepezil in its combination with other agents and explains its therapeutic targets and mode of action. Furthermore, this review also puts light on the current status of donepezil with other agents in clinical trials. The combination therapy of donepezil with symptomatic relief drugs and disease-modifying agents opens a new road for treating multiple pathological disorders. To the best of our knowledge, this is the first report encircling all the pharmacologic effects of donepezil in its combination therapy with other agents and their current status in clinical trials.
Collapse
Affiliation(s)
- Xi Rong
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liwei Jiang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Meijie Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongchao Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
23
|
Tzekaki EE, Tsolaki M, Pantazaki ΑA, Geromichalos G, Lazarou E, Kozori M, Sinakos Z. The pleiotropic beneficial intervention of olive oil intake on the Alzheimer's disease onset via fibrinolytic system. Exp Gerontol 2021; 150:111344. [PMID: 33836262 DOI: 10.1016/j.exger.2021.111344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
The daily consumption of Extra Virgin Olive Oil (EVOO) in Mediterranean nutrition is tightly associated with lower frequency of many diseases' appearance, including Alzheimer's disease (AD). Fibrinolytic system is already assumed to be involved in AD pathophysiology through various factors, especially plasminogen activator inhibitor-1 (PAI-1), a2-antiplasmin (α2ΑP) and tissue plasminogen activator (tPA). We, here, present a biochemical study, as a continuation of a clinical trial of a cohort of 84 participants, focusing on the pleiotropic effect of the annual EVOO consumption on the fibrinolytic factors of Mild Cognitive Impairment (MCI) patients. The levels of all these fibrinolytic factors, measured by Enzyme-Linked Immunosorbent Assay (ELISA) method, were reduced in the serum of MCI patients annually administered with EVOO, versus not treated MCI patients, as well as AD patients. The well-established AD hallmarks (Aβ1-40 and Aβ1-42 species, tau, and p-tau) of MCI patients' group, annually administered with EVOO, were restored to levels equal to those of the cognitively-healthy group; in contrast to those patients not being administered, and their AD hallmarks levels increased at the end of the year. Moreover, one of the EVOO annual consumption multimodal effects on the MCI patients focused on the levels of an oxidative stress trademark, malondialdehyde (MDA), which displayed also a visible quenching; On the other hand, an increase exhibited in the MCI patients not consuming EVOO one year after, was attributed to the lack of the EVOO anti-oxidative properties. These outcomes are exploitable towards the establishment of natural products like EVOO, as a preventive remedy fighting this neurodegenerative disorder, AD. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT03362996 MICOIL gov Identifier: NCT03362996.
Collapse
Affiliation(s)
- Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece
| | - Magda Tsolaki
- 1(st) Department of Neurology, Medical School, "AHEPA" General Hospital Medical School, Aristotle University of Thessaloniki, Faculty of Health Sciences, 54124 Thessaloniki, Makedonia, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece.
| | - Αnastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece.
| | - George Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece
| | - Eftychia Lazarou
- Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece
| | - Mahi Kozori
- Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece
| | - Zacharias Sinakos
- Emeritus Professor of Hematology, Medical School, Aristotle University of Thessaloniki, Faculty of Health Sciences, Greece
| |
Collapse
|
24
|
Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. Eur J Med Chem 2021; 216:113320. [PMID: 33652356 DOI: 10.1016/j.ejmech.2021.113320] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability development and interrupts neurocognitive function. This neuropathological condition is depicted by neurodegeneration, neural loss, and development of neurofibrillary tangles and Aβ plaques. There is also a greater risk of developing AD at a later age for people with cardiovascular diseases, hypertension and diabetes. In the biomedical sciences, effective treatment for Alzheimer's disease is a severe obstacle. There is no such treatment to cure Alzheimer's disease. The drug present in the market show only symptomatic relief. The cause of Alzheimer's disease is not fully understood and the blood-brain barrier restricts drug efficacy are two main factors that hamper research. Stem cell-based therapy has been seen as an effective, secure, and creative therapeutic solution to overcoming AD because of AD's multifactorial nature and inadequate care. Current developments in nanotechnology often offer possibilities for the delivery of active drug candidates to address certain limitations. The key nanoformulations being tested against AD include polymeric nanoparticles (NP), inorganic NPs and lipid-based NPs. Nano drug delivery systems are promising vehicles for targeting several therapeutic moieties by easing drug molecules' penetration across the CNS and improving their bioavailability. In this review, we focus on the causes of the AD and their treatment by different approaches.
Collapse
Affiliation(s)
- Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
25
|
Diamantakos P, Ioannidis K, Papanikolaou C, Tsolakou A, Rigakou A, Melliou E, Magiatis P. A New Definition of the Term "High-Phenolic Olive Oil" Based on Large Scale Statistical Data of Greek Olive Oils Analyzed by qNMR. Molecules 2021; 26:molecules26041115. [PMID: 33669887 PMCID: PMC7923275 DOI: 10.3390/molecules26041115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
In the last few years, a new term, “High-phenolic olive oil”, has appeared in scientific literature and in the market. However, there is no available definition of that term regarding the concentration limits of the phenolic ingredients of olive oil. For this purpose, we performed a large-scale screening and statistical evaluation of 5764 olive oil samples from Greece coming from >30 varieties for an eleven-year period with precisely measured phenolic content by qNMR. Although there is a large variation among the different cultivars, the mean concentration of total phenolic content was 483 mg/kg. The maximum concentration recorded in Greece reached 4003 mg/kg. We also observed a statistically significant correlation of the phenolic content with the harvest period and we also identified varieties affording olive oils with higher phenolic content. In addition, we performed a study of phenolic content loss during usual storage and we found an average loss of 46% in 12 months. We propose that the term high-phenolic should be used for olive oils with phenolic content > 500 mg/kg that will be able to retain the health claim limit (250 mg/kg) for at least 12 months after bottling. The term exceptionally high phenolic olive oil should be used for olive oil with phenolic content > 1200 mg/kg (top 5%).
Collapse
Affiliation(s)
- Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (P.D.); (C.P.); (A.T.); (A.R.); (E.M.)
| | - Kostas Ioannidis
- Laboratory of Sylviculture, Forest Genetics and Biotechnology, Institute of Mediterranean and Forest Ecosystems, Hellenic Agricultural Organization “Demeter”, Ilissia, 11528 Athens, Greece;
| | - Christos Papanikolaou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (P.D.); (C.P.); (A.T.); (A.R.); (E.M.)
| | - Annia Tsolakou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (P.D.); (C.P.); (A.T.); (A.R.); (E.M.)
| | - Aimilia Rigakou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (P.D.); (C.P.); (A.T.); (A.R.); (E.M.)
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (P.D.); (C.P.); (A.T.); (A.R.); (E.M.)
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (P.D.); (C.P.); (A.T.); (A.R.); (E.M.)
- Correspondence: ; Tel.: +30-210-727-4052
| |
Collapse
|
26
|
Darakjian LI, Rigakou A, Brannen A, Qusa MH, Tasiakou N, Diamantakos P, Reed MN, Panizzi P, Boersma MD, Melliou E, El Sayed KA, Magiatis P, Kaddoumi A. Spontaneous In Vitro and In Vivo Interaction of (-)-Oleocanthal with Glycine in Biological Fluids: Novel Pharmacokinetic Markers. ACS Pharmacol Transl Sci 2021; 4:179-192. [PMID: 33615171 PMCID: PMC7887843 DOI: 10.1021/acsptsci.0c00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Since the first discovery of its ibuprofen-like anti-inflammatory activity in 2005, the olive phenolic (-)-oleocanthal gained great scientific interest and popularity due to its reported health benefits. (-)-Oleocanthal is a monophenolic secoiridoid exclusively occurring in extra-virgin olive oil (EVOO). While several groups have investigated oleocanthal pharmacokinetics (PK) and disposition, none was able to detect oleocanthal in biological fluids or identify its PK profile that is essential for translational research studies. Besides, oleocanthal could not be detected following its addition to any fluid containing amino acids or proteins such as plasma or culture media, which could be attributed to its unique structure with two highly reactive aldehyde groups. Here, we demonstrate that oleocanthal spontaneously reacts with amino acids, with high preferential reactivity to glycine compared to other amino acids or proteins, affording two products: an unusual glycine derivative with a tetrahydropyridinium skeleton that is named oleoglycine, and our collective data supported the plausible formation of tyrosol acetate as the second product. Extensive studies were performed to validate and confirm oleocanthal reactivity, which were followed by PK disposition studies in mice, as well as cell culture transport studies to determine the ability of the formed derivatives to cross physiological barriers such as the blood-brain barrier. To the best of our knowledge, we are showing for the first time that (-)-oleocanthal is biochemically transformed to novel products in amino acids/glycine-containing fluids, which were successfully monitored in vitro and in vivo, creating a completely new perspective to understand the well-documented bioactivities of oleocanthal in humans.
Collapse
Affiliation(s)
- Lucy I. Darakjian
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Aimilia Rigakou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Andrew Brannen
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Mohammed H. Qusa
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Niki Tasiakou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Panagiotis Diamantakos
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Miranda N. Reed
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
- Center
for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| | - Peter Panizzi
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Melissa D. Boersma
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Eleni Melliou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Khalid A. El Sayed
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Prokopios Magiatis
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Amal Kaddoumi
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
- Center
for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
27
|
Influence of Acetylcholine Esterase Inhibitors and Memantine, Clinically Approved for Alzheimer's Dementia Treatment, on Intestinal Properties of the Mouse. Int J Mol Sci 2021; 22:ijms22031015. [PMID: 33498392 PMCID: PMC7864027 DOI: 10.3390/ijms22031015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Four drugs are currently approved for the treatment of Alzheimer’s disease (AD) by the FDA. Three of these drugs—donepezil, rivastigmine, and galantamine—belong to the class of acetylcholine esterase inhibitors. Memantine, a NMDA receptor antagonist, represents the fourth and a combination of donepezil and memantine the fifth treatment option. Recently, the gut and its habitants, its microbiome, came into focus of AD research and added another important factor to therapeutic considerations. While the first data provide evidence that AD patients might carry an altered microbiome, the influence of administered drugs on gut properties and commensals have been largely ignored so far. However, the occurrence of digestive side effects with these drugs and the knowledge that cholinergic transmission is crucial for several gut functions enforces the question if, and how, this medication influences the gastrointestinal system and its microbial stocking. Here, we investigated aspects such as microbial viability, colonic propulsion, and properties of enteric neurons, affected by assumed intestinal concentration of the four drugs using the mouse as a model organism. All ex vivo administered drugs revealed no direct effect on fecal bacteria viability and only a high dosage of memantine resulted in reduced biofilm formation of E. coli. Memantine was additionally the only compound that elevated calcium influx in enteric neurons, while all acetylcholine esterase inhibitors significantly reduced esterase activity in colonic tissue specimen and prolonged propulsion time. Both, acetylcholine esterase inhibitors and memantine, had no effect on general viability and neurite outgrowth of enteric neurons. In sum, our findings indicate that all AD symptomatic drugs have the potential to affect distinct intestinal functions and with this—directly or indirectly—microbial commensals.
Collapse
|
28
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020; 64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and it is characterised by progressive deterioration in cognitive and memory abilities, which can severely influence the elderly population's daily living abilities. Although researchers have made great efforts in the field of AD, there are still no well-established strategies to prevent and treat this disease. Therefore, better clarification of the molecular mechanisms associated with the onset and progression of AD is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Currently, it is generally believed that neuroinflammation plays a key role in the pathogenesis of AD. Inflammasome, a multiprotein complex, is involved in the innate immune system, and it can mediate inflammatory responses and pyroptosis, which lead to neurodegeneration. Among the various types of inflammasomes, the NLRP3 inflammasome is the most characterised in neurodegenerative diseases, especially in AD. The activation of the NLRP3 inflammasome causes the generation of caspase-1-mediated interleukin (IL)-1β and IL-18 in microglia cells, where neuroinflammation is involved in the development and progression of AD. Thus, the NLRP3 inflammasome is likely to be a crucial therapeutic molecular target for AD via regulating neuroinflammation. In this review, we summarise the current knowledge on the role and regulatory mechanisms of the NLRP3 inflammasome in the pathogenic mechanisms of AD. We also focus on a series of potential therapeutic treatments targeting NLRP3 inflammasome for AD. Further clarification of the regulatory mechanisms of the NLRP3 inflammasome in AD may provide more useful clues to develop novel AD treatment strategies.
Collapse
|
29
|
Elaboration of extra-virgin olive oils rich in oleocanthal and oleacein: pilot plant’s proposal. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03503-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Zhou S, Li Z, Liu P, Wang S, Zhao J, Zhang G. Donepezil Prevents ox-LDL-Induced Attachment of THP-1 Monocytes to Human Aortic Endothelial Cells (HAECs). Chem Res Toxicol 2020; 33:975-981. [PMID: 32174113 DOI: 10.1021/acs.chemrestox.9b00509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)- induced endothelial insults plays an important role in the pathogenesis of atherosclerosis. Donepezil is a well-known acetylcholinesterase inhibitor with its primary application being the treatment of Alzheimer's disease. More recently, there has been increased interest in donepezil as an antiatherosclerosis treatment as it possesses a host of relevant and potentially beneficial properties. In the present study, we found that donepezil could reduce the expression of lectin-type oxidized low-density lipoprotein receptor-1 (LOX-1) in human aortic endothelial cells (HAECs). We found that donepezil could suppress the expression of intercellular adhesion molecule-1 (ICAM-1), which recruits monocytes to adhere to the endothelium, by more than half. Another key finding of our study is that donepezil could reduce the expression of tumor necrosis factor receptor-α (TNF-α) and interleukin-6 (IL-6) by more than half at both the mRNA and protein transcriptional levels. Donepezil also reduced the expression of tissue factor (TF), which is considerably upregulated in atherosclerotic lesions, by more than half. Finally, we turned our attention to the early growth response protein-1 (Egr-1) for its potential role in mediating the effects of donepezil. Through our Egr-1 overexpression experiment, we found that overexpression of Egr-1 almost completely abolished the effects of donepezil described above. Thus, the effects of donepezil are likely mediated through downregulation of Egr-1. These findings provide evidence that donepezil may exert protective effects against atherosclerosis.
Collapse
Affiliation(s)
- Shengkai Zhou
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Zhao Li
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Sheng Wang
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Jian Zhao
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| | - Guobao Zhang
- Department of Cardiovascular Surgery, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 451464, China
| |
Collapse
|
31
|
Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants (Basel) 2020; 9:antiox9020149. [PMID: 32050687 PMCID: PMC7070598 DOI: 10.3390/antiox9020149] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved.
Collapse
|
32
|
Olive Oil Polyphenols in Neurodegenerative Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:77-91. [PMID: 32468462 DOI: 10.1007/978-3-030-32633-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases lead to the death of nerve cells in the brain or the spinal cord. A wide range of diseases are included within the group of neurodegenerative disorders, with the most common ones being dementia, Alzheimer's, and Parkinson's diseases. Millions of older people are suffering from such pathologies. The global increase of life expectancy unavoidably leads to a consequent increase in the number of people who will be at some degree affected by neurodegenerative-related diseases. At this moment, there is no effective therapy or treatment that can reverse the loss of neurons. A growing number of studies highlight the value of the consumption of medical foods, and in particular olive oil, as one of the most important components of the Mediterranean diet. A diet based on extra virgin olive oil seems to contribute toward the lowering of risk of age-related pathologies due to high phenol concentration. The link of a polyphenol found in extra virgin olive oil, namely, tyrosol, with the protein tyrosinase, associated to Parkinson's disease is underlined as a paradigm of affiliation between polyphenols and neurodegenerative disorders.
Collapse
|
33
|
Carpi S, Scoditti E, Massaro M, Polini B, Manera C, Digiacomo M, Esposito Salsano J, Poli G, Tuccinardi T, Doccini S, Santorelli FM, Carluccio MA, Macchia M, Wabitsch M, De Caterina R, Nieri P. The Extra-Virgin Olive Oil Polyphenols Oleocanthal and Oleacein Counteract Inflammation-Related Gene and miRNA Expression in Adipocytes by Attenuating NF-κB Activation. Nutrients 2019; 11:nu11122855. [PMID: 31766503 PMCID: PMC6950227 DOI: 10.3390/nu11122855] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation of the adipose tissue plays an important role in the development of several chronic diseases associated with obesity. Polyphenols of extra virgin olive oil (EVOO), such as the secoiridoids oleocanthal (OC) and oleacein (OA), have many nutraceutical proprieties. However, their roles in obesity-associated adipocyte inflammation, the NF-κB pathway and related sub-networks have not been fully elucidated. Here, we investigated impact of OC and OA on the activation of NF-κB and the expression of molecules associated with inflammatory and dysmetabolic responses. To this aim, fully differentiated Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were pre-treated with OC or OA before stimulation with TNF-α. EVOO polyphenols significantly reduced the expression of genes implicated in adipocyte inflammation (IL-1β, COX-2), angiogenesis (VEGF/KDR, MMP-2), oxidative stress (NADPH oxidase), antioxidant enzymes (SOD and GPX), leukocytes chemotaxis and infiltration (MCP-1, CXCL-10, MCS-F), and improved the expression of the anti-inflammatory/metabolic effector PPARγ. Accordingly, miR-155-5p, miR-34a-5p and let-7c-5p, tightly connected with the NF-κB pathway, were deregulated by TNF-α in both cells and exosomes. The miRNA modulation and NF-κB activation by TNF-α was significantly counteracted by EVOO polyphenols. Computational studies suggested a potential direct interaction between OC and NF-κB at the basis of its activity. This study demonstrates that OC and OA counteract adipocyte inflammation attenuating NF-κB activation. Therefore, these compounds could be novel dietary tools for the prevention of inflammatory diseases associated with obesity.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219597
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Jasmine Esposito Salsano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Maria Annunziata Carluccio
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany;
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
34
|
Tamasi G, Baratto MC, Bonechi C, Byelyakova A, Pardini A, Donati A, Leone G, Consumi M, Lamponi S, Magnani A, Rossi C. Chemical characterization and antioxidant properties of products and by-products from Olea europaea L. Food Sci Nutr 2019; 7:2907-2920. [PMID: 31572584 PMCID: PMC6766567 DOI: 10.1002/fsn3.1142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022] Open
Abstract
The products and by-products of Olea europaea L.: olive fruits (primary agricultural product), oils (primary agro-industrial product), pomaces (agro-industrial processing by-product), and leaves (agricultural practices by-product), are promising sources of bioactive compounds. In the present study, qualitative and quantitative analyses of selected bioactive components in olive fruits, oils, and pomaces were performed. Total polyphenol content and antioxidant activity were analyzed in all samples (humid pomaces 2015: TPP, 26.0 ± 1.5-43.7 ± 3.0 g(GAEq)/kg DW; TEAC/ABTS, 189.5 ± 3.7-388.1 ± 12.0 mmol(Trx)kg DW). Radical (DPPH) quenching potential was analyzed via photometric and EPR methods, obtaining Vis/EPR signal ratio by 1.05 ± 0.45 and 1.66 ± 0.39 for fruits and pomaces, respectively. Through HPLC-UV and HPLC-MS/MS techniques, oleuropein and hydroxytyrosol, as well as selected hydroxycinnamic acids and flavonoids, were identified and quantified in olive fruits and pomaces. The main components were rutin, luteolin, and chlorogenic acid. Cytotoxic assay on fibroblast cells revealed toxic effects for selected extracts at highest tested concentrations (5%).
Collapse
Affiliation(s)
- Gabriella Tamasi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
| | | | - Claudia Bonechi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
| | | | - Alessio Pardini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
| | - Alessandro Donati
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
| | - Gemma Leone
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FirenzeItaly
| | - Marco Consumi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FirenzeItaly
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FirenzeItaly
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FirenzeItaly
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
- Operative UnitUniversity of SienaCalabriaItaly
| |
Collapse
|
35
|
Al Rihani SB, Darakjian LI, Kaddoumi A. Oleocanthal-Rich Extra-Virgin Olive Oil Restores the Blood-Brain Barrier Function through NLRP3 Inflammasome Inhibition Simultaneously with Autophagy Induction in TgSwDI Mice. ACS Chem Neurosci 2019; 10:3543-3554. [PMID: 31244050 DOI: 10.1021/acschemneuro.9b00175] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by multiple hallmarks including extracellular amyloid (Aβ) plaques, neurofibrillary tangles, dysfunctional blood-brain barrier (BBB), neuroinflammation, and impaired autophagy. Thus, novel strategies that target multiple disease pathways would be essential to prevent, halt, or treat the disease. A growing body of evidence including our studies supports a protective effect of oleocanthal (OC) and extra-virgin olive oil (EVOO) at early AD stages before the onset of pathology. In addition, we reported previously that OC and EVOO exhibited such effect by restoring the BBB function; however, the mechanism(s) by which OC and EVOO exert such an effect and whether this effect extends to a later stage of AD remain unknown. In this work, we sought first to test the effect of OC-rich EVOO consumption at an advanced stage of the disease in TgSwDI mice, an AD mouse model, starting at the age of 6 months for 3 months treatment, and then to elucidate the mechanism(s) by which OC-rich EVOO exerts the observed beneficial effect. Overall findings demonstrated that OC-rich EVOO restored the BBB function and reduced AD-associated pathology by reducing neuroinflammation through inhibition of NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome and inducing autophagy through activation of AMP-activated protein kinase (AMPK)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway. Thus, diet supplementation with OC-rich EVOO could provide beneficial effect to slow or halt the progression of AD.
Collapse
Affiliation(s)
- Sweilem B. Al Rihani
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| | - Lucy I. Darakjian
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Pharmacy Research Building, Auburn University, Auburn, Alabama 36849, United States
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
36
|
Lozano-Castellón J, López-Yerena A, Rinaldi de Alvarenga JF, Romero Del Castillo-Alba J, Vallverdú-Queralt A, Escribano-Ferrer E, Lamuela-Raventós RM. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit Rev Food Sci Nutr 2019; 60:2532-2548. [PMID: 31423808 DOI: 10.1080/10408398.2019.1650715] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extra virgin olive oil (EVOO) polyphenols, including the secoiridoids oleocanthal (OLC) and oleacein (OLE), are attracting attention because of their beneficial effects on health. Data on OLC and OLE bioavailability are scarce, as most research on EVOO polyphenols has concentrated on hydroxytyrosol, tyrosol, and oleuropein. Consequently, relevant goals for future research are the elucidation of OLC and OLE bioavailability and finding evidence for their beneficial effects through pre-clinical and clinical studies. The aim of this review is to shed light on OLC and OLE, focusing on their precursors in the olive fruit and the impact of agronomic and processing factors on their presence in EVOO. Also discussed are their bioavailability and absorption, and finally, their bioactivity and health-promoting properties.
Collapse
Affiliation(s)
- Julián Lozano-Castellón
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anallely López-Yerena
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - José Fernando Rinaldi de Alvarenga
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jaume Romero Del Castillo-Alba
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Biopharmaceutics and Pharmacokinetics Unit, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Goren L, Zhang G, Kaushik S, Breslin PAS, Du YCN, Foster DA. (-)-Oleocanthal and (-)-oleocanthal-rich olive oils induce lysosomal membrane permeabilization in cancer cells. PLoS One 2019; 14:e0216024. [PMID: 31412041 PMCID: PMC6693737 DOI: 10.1371/journal.pone.0216024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022] Open
Abstract
(-)-Oleocanthal (oleocanthal) is a phenolic compound found in varying concentrations in extra virgin olive oil oleocanthal has been shown to be active physiologically, benefiting several diseased states by conferring anti-inflammatory and neuroprotective benefits. Recently, we and other groups have demonstrated its specific and selective toxicity toward cancer cells; however, the mechanism leading to cancer cell death is still disputed. The current study demonstrates that oleocanthal, as well as naturally oleocanthal-rich extra virgin olive oils, induced damage to cancer cells’ lysosomes leading to cellular toxicity in vitro and in vivo. Lysosomal membrane permeabilization following oleocanthal treatment in various cell lines was assayed via three complementary methods. Additionally, we found oleocanthal treatment reduced tumor burden and extended lifespan of mice engineered to develop pancreatic neuroendocrine tumors. Finally, following-up on numerous correlative studies demonstrating consumption of olive oil reduces cancer incidence and morbidity, we observed that extra virgin olive oils naturally rich in oleocanthal sharply reduced cancer cell viability and induced lysosomal membrane permeabilization while oleocanthal-poor oils did not. Our results are especially encouraging since tumor cells often have larger and more numerous lysosomes, making them especially vulnerable to lysosomotropic agents such as oleocanthal.
Collapse
Affiliation(s)
- Limor Goren
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biology Program, Graduate Center of the City University of New York, New York, New York, United States of America
| | - George Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Paul A. S. Breslin
- Rutgers University Department of Nutritional Sciences, New Brunswick, New Jersey, United States of America
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - David A. Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
- Biology Program, Graduate Center of the City University of New York, New York, New York, United States of America
- Biochemistry Program, Graduate Center of the City University of New York, New York, New York, United States of America
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Begines P, Biedermann D, Valentová K, Petrásková L, Pelantová H, Maya I, Fernández-Bolaños JG, Křen V. Chemoenzymatic Synthesis and Radical Scavenging of Sulfated Hydroxytyrosol, Tyrosol, and Acetylated Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7281-7288. [PMID: 31198027 DOI: 10.1021/acs.jafc.9b01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potential metabolites of bioactive compounds are important for their biological activities and as authentic standards for metabolic studies. The phenolic compounds contained in olive oil are an important part of the human diet, and therefore their potential metabolites are of utmost interest. We developed a convenient, scalable, one-pot chemoenzymatic method using the arylsulfotransferase from Desulfitobacterium hafniense for the sulfation of the natural olive oil phenols tyrosol, hydroxytyrosol, and of their monoacetylated derivatives. Respective monosulfated (tentative) metabolites were fully structurally characterized using LC-MS, NMR, and HRMS. In addition, Folin-Ciocalteu reduction, 1,1-diphenyl-2-picrylhydrazyl radical scavenging, and antilipoperoxidant activity in rat liver microsomes damaged by tert-butylhydroperoxide were measured and compared to the parent compounds. As expected, the sulfation diminished the radical scavenging properties of the prepared compounds. These compounds will serve as authentic standards of phase II metabolites.
Collapse
Affiliation(s)
- Paloma Begines
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - David Biedermann
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| |
Collapse
|
39
|
Sharma S, Singh N, Nepovimova E, Korabecny J, Kuca K, Satnami ML, Ghosh KK. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2019; 38:1822-1837. [DOI: 10.1080/07391102.2019.1619625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
40
|
Francisco V, Ruiz-Fernández C, Lahera V, Lago F, Pino J, Skaltsounis L, González-Gay MA, Mobasheri A, Gómez R, Scotece M, Gualillo O. Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3845-3853. [PMID: 30875206 DOI: 10.1021/acs.jafc.8b06723] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extra virgin olive oil (EVOO) is the main source of fat in the Mediterranean diet. Phenolic compounds of EVOO, in particular, secoiridoids, are minor components that have generated special interest due to their positive effects on human health, supported by several clinical trials. This review summarizes the most recent findings on the pharmacological properties and action's mechanisms of secoiridoid oleocanthal, focusing attention on inflammation, oxidative stress, cancer, neurodegenerative processes, and rheumatic diseases. Being of relevance to the clinical effects of EVOO intake, the bioavailability and biotransformation of EVOO polyphenols are addressed. Moreover, this review summarizes the factors that may influence the oleocanthal concentration in EVOO. With the growing incidence of age- and lifestyle-related diseases, the current data indicated that the administration of EVOO rich in secoiridoids may be helpful in the prevention or treatment of different pathologies with an inflammatory component. Although promising, the future raises several questions and challenges, which are discussed here. The real beneficial effects of olive oil phenols on human health need to be clarified in new, well-designed clinical studies.
Collapse
Affiliation(s)
- Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Vicente Lahera
- Complutense University , School of Medicine, Department of Physiology , Madrid , Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Laboratory of Cellular and Molecular Cardiology , CIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares) , Laboratory 7, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Jesús Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Leandros Skaltsounis
- National and Kapodistrian University of Athens , Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry , Athens , 15771 , Greece
| | - Miguel Angel González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL , Santander , 39011 , Spain
| | - Ali Mobasheri
- Department of Regenerative Medicine , State Research Institute Centre for Innovative Medicine , Santariskiu 5 , 08661 Vilnius , Lithuania
| | - Rodolfo Gómez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The Musculoskeletal Pathology Group , Santiago University Clinical Hospital , Laboratory 18, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Morena Scotece
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) , Santiago University Clinical Hospital , Laboratory 9, Building C, Travesía da Choupana S/N , Santiago de Compostela 15706 , Spain
| |
Collapse
|
41
|
Elfakhri KH, Abdallah IM, Brannen AD, Kaddoumi A. Multi-faceted therapeutic strategy for treatment of Alzheimer's disease by concurrent administration of etodolac and α-tocopherol. Neurobiol Dis 2019; 125:123-134. [PMID: 30710675 DOI: 10.1016/j.nbd.2019.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with multiple dysfunctional pathways. Therefore, a sophisticated treatment strategy that simultaneously targets multiple brain cell types and disease pathways could be advantageous for effective intervention. To elucidate an effective treatment, we developed an in vitro high-throughput screening (HTS) assay to evaluate candidate drugs for their ability to enhance the integrity of the blood-brain barrier (BBB) and improve clearance of amyloid-β (Aβ) using a cell-based BBB model. Results from HTS identified etodolac and α-tocopherol as promising drugs for further investigation. Both drugs were tested separately and in combination for the purpose of targeting multiple pathways including neuroinflammation and oxidative stress. In vitro studies assessed the effects of etodolac and α-tocopherol individually and collectively for BBB integrity and Aβ transport, synaptic markers and Aβ production in APP-transfected neuronal cells, as well as effects on inflammation and oxidative stress in astrocytes. Transgenic 5XFAD mice were used to translate in vitro results of etodolac and α-tocopherol independently and with concurrent administration. Compared to either drug alone, the combination significantly enhanced the BBB function, decreased total Aβ load correlated with increased expression of major transport proteins, promoted APP processing towards the neuroprotective and non-amyloidogenic pathway, induced synaptic markers expression, and significantly reduced neuroinflammation and oxidative stress both in vitro and in vivo. Collective findings demonstrated the combination produced mixed interaction showing additive, less than additive or synergistic effects on the evaluated markers. In conclusion, this study highlights the significance of combination therapy to simultaneously target multiple disease pathways, and suggest the repurposing and combination of etodolac and α-tocopherol as a novel therapeutic strategy against AD.
Collapse
Affiliation(s)
- Khaled H Elfakhri
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ihab M Abdallah
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA
| | - Andrew D Brannen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA.
| |
Collapse
|
42
|
Current Disease-Targets for Oleocanthal as Promising Natural Therapeutic Agent. Int J Mol Sci 2018; 19:ijms19102899. [PMID: 30250008 PMCID: PMC6213726 DOI: 10.3390/ijms19102899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022] Open
Abstract
The broad number of health benefits which can be obtained from the long-term consumption of olive oil are attributed mainly to its phenolic fraction. Many olive oil phenolics have been studied deeply since their discovery due to their bioactivity properties, such as Hydroxytyrosol. Similarly, in the last decade, the special attention of researchers has been addressed to Oleocanthal (OC). This olive oil phenolic compound has recently emerged as a potential therapeutic agent against a variety of diseases, including cancer, inflammation, and neurodegenerative and cardiovascular diseases. Recently, different underlying mechanisms of OC against these diseases have been explored. This review summarizes the current literature on OC to date, and focuses on its promising bioactivities against different disease-targets.
Collapse
|
43
|
Tsolakou A, Diamantakos P, Kalaboki I, Mena-Bravo A, Priego-Capote F, Abdallah IM, Kaddoumi A, Melliou E, Magiatis P. Oleocanthalic Acid, a Chemical Marker of Olive Oil Aging and Exposure to a High Storage Temperature with Potential Neuroprotective Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7337-7346. [PMID: 29902916 DOI: 10.1021/acs.jafc.8b00561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The investigation of olive oils stored for a period of 24 months under appropriate conditions (25 °C, dark place, and airtight container) led to the identification of a new major phenolic ingredient, which was named oleocanthalic acid. The structure of the new compound was elucidated using one- and two-dimensional nuclear magnetic resonance in combination with tandem mass spectrometry. The new compound is an oxidation product of oleocanthal and is found in fresh oils in very low concentrations. The concentration of oleocanthalic acid increased with storage time, while the oleocanthal concentration decreased. A similar increase of the oleocanthalic acid/oleocanthal ratio was achieved after exposure of olive oil to 60 °C for 14 days. Although the presence of an oxidized derivative of decarboxymethylated ligstroside aglycon had been reported, it is the first time that its structure is characterized. The isolated compound could induce the expression of amyloid-β major transport proteins as well as tight junctions expressed at the blood-brain barrier, suggesting that oleocanthalic acid could be beneficial against Alzheimer's disease.
Collapse
Affiliation(s)
- Annia Tsolakou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Panagiotis Diamantakos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Iliana Kalaboki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Antonio Mena-Bravo
- Department of Analytical Chemistry , University of Córdoba , 14071 Córdoba , Spain
| | | | - Ihab M Abdallah
- Department of Drug Discovery and Development, Harrison School of Pharmacy , Auburn University , 720 South Donahue Drive , Auburn , Alabama 36849 , United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy , Auburn University , 720 South Donahue Drive , Auburn , Alabama 36849 , United States
| | - Eleni Melliou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Prokopios Magiatis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| |
Collapse
|
44
|
Wang GH, Wang LH, Wang C, Qin LH. Spore powder of Ganoderma lucidum for the treatment of Alzheimer disease: A pilot study. Medicine (Baltimore) 2018; 97:e0636. [PMID: 29742702 PMCID: PMC5959386 DOI: 10.1097/md.0000000000010636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study explored the feasible efficacy and safety of the Spore Powder of Ganoderma Lucidum (SPGL) for treating patients with Alzheimer disease (AD). METHODS Forty-two eligible patients with AD were recruited. These patients were randomly allocated to an intervention group and a control group equally. The patients in the intervention group underwent SPGL, whereas the subjects in the control received placebo. All patients were treated for a total of 6 weeks. The primary outcome was measured by Alzheimer's disease Assessment Scale-Cognitive (ADAS-cog). The secondary outcomes were measured by the World Health Organization Quality of Life questionnaire (WHOQOL-BREF) and Neuropsychiatric Index (NPI). The adverse events were also recorded during the treatment period. RESULTS At the end of the treatment, GLSP did not show more encouraging outcomes in symptoms improvement, measured by the ADAS-cog (P = .31), and NPI (P = .79); and quality of life enhancement, measured by the WHOQOL-BREF (physical, P = .62; psychological, P = .69; social relationships, P = .75; environment, P = .82; overall quality of life, P = .74), compared with the control group. In addition, all adverse events were mild, and no significant differences were found between 2 groups. CONCLUSION The results of this study did not find the promising efficacy of SPGL for the treatment of AD after 6-week treatment. It may be because of the relative short-term of intervention. Future clinical trials with larger sample size and longer treatment period are urgently needed.
Collapse
|