1
|
Le HH, Hagen MW, Louey S, Tavori H, Thornburg KL, Giraud GD, Hinds MT, Barnes AP. Development of a novel Guinea Pig model producing transgenerational endothelial transcriptional changes driven by maternal food restriction and a second metabolic insult of high fat diet. Front Physiol 2023; 14:1266444. [PMID: 37942229 PMCID: PMC10628814 DOI: 10.3389/fphys.2023.1266444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
Developmental programming of chronic adverse cardiovascular health outcomes has been studied both using numerous human populations and an array of animal models. However, the mechanisms that produce transgenerational effects have been difficult to study due to a lack of developmentally relevant models. As such, how increased disease risk is carried to the second generation has been poorly studied. We hypothesized that the endothelium which mediates many acute and chronic vascular inflammatory responses is a key player in these effects, and epidemiological studies implicate transgenerational nutritional effects on endothelial health. To study the mutigenerational effects of maternal undernutrition on offspring endothelial health, we developed a model of transgenerational nutritional stress in guinea pigs, a translationally relevant precocial species with a relatively short lifespan. First- and second-generation offspring were subjected to a high fat diet in adolescence to exacerbate negative cardiovascular health. To assess transcriptional changes, we performed bulk RNA-sequencing in carotid artery endothelial cells, with groups stratified as prenatal control or food restricted, and postnatal control or high fat diet. We detected statistically significant gene alterations for each dietary permutation, some of which were unique to treatments and other transcriptional signatures shared by multiple or all conditions. These findings highlight a core group of genes altered by high fat diet that is shared by all cohorts and a divergence of transgenerational effects between the prenatal ad libitum and dietary restriction groups. This study establishes the groundwork for this model to be used to better understand the interplay of prenatal stress and genetic reprogramming.
Collapse
Affiliation(s)
- Hillary H. Le
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| | - Matthew W. Hagen
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| | - Samantha Louey
- Center for Developmental Health, Portland, OR, United States
- Knight Cardiovascular Institute, Portland, OR, United States
| | - Hagai Tavori
- Knight Cardiovascular Institute, Portland, OR, United States
| | - Kent L. Thornburg
- Center for Developmental Health, Portland, OR, United States
- Knight Cardiovascular Institute, Portland, OR, United States
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - George D. Giraud
- Center for Developmental Health, Portland, OR, United States
- Knight Cardiovascular Institute, Portland, OR, United States
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
- Center for Developmental Health, Portland, OR, United States
| | | |
Collapse
|
2
|
Easton ZJW, Sarr O, Zhao L, Buzatto AZ, Luo X, Zhao S, Li L, Regnault TRH. An Integrated Multi-OMICS Approach Highlights Elevated Non-Esterified Fatty Acids Impact BeWo Trophoblast Metabolism and Lipid Processing. Metabolites 2023; 13:883. [PMID: 37623828 PMCID: PMC10456680 DOI: 10.3390/metabo13080883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are linked with impaired placental function and early onset of non-communicable cardiometabolic diseases in offspring. Previous studies have highlighted that the dietary non-esterified fatty acids (NEFAs) palmitate (PA) and oleate (OA), key dietary metabolites associated with maternal obesity and GDM, are potential modulators of placental lipid processing. Using the BeWo cell line model, the current study integrated transcriptomic (mRNA microarray), metabolomic, and lipidomic readouts to characterize the underlying impacts of exogenous PA and OA on placental villous trophoblast cell metabolism. Targeted gas chromatography and thin-layer chromatography highlighted that saturated and monounsaturated NEFAs differentially impact BeWo cell lipid profiles. Furthermore, cellular lipid profiles differed when exposed to single and multiple NEFA species. Additional multi-omic analyses suggested that PA exposure is associated with enrichment in β-oxidation pathways, while OA exposure is associated with enrichment in anti-inflammatory and antioxidant pathways. Overall, this study further demonstrated that dietary PA and OA are important regulators of placental lipid metabolism. Encouraging appropriate dietary advice and implementing dietary interventions to maintain appropriate placental function by limiting excessive exposure to saturated NEFAs remain crucial in managing at-risk obese and GDM pregnancies.
Collapse
Affiliation(s)
- Zachary J. W. Easton
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Ousseynou Sarr
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Lin Zhao
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Adriana Zardini Buzatto
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Xian Luo
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Shuang Zhao
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Liang Li
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
- Department of Obstetrics and Gynaecology, Western University, B2-401 London Health Science Centre-Victoria Hospital, 800 Commissioners Rd E, London, ON N6H 5W9, Canada
- Children’s Health Research Institute, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON N6C 2R5, Canada
| |
Collapse
|
3
|
Sex-specific alterations in hepatic cholesterol metabolism in low birth weight adult guinea pigs. Pediatr Res 2022; 91:1078-1089. [PMID: 34230622 DOI: 10.1038/s41390-021-01491-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intrauterine growth restriction and low birth weight (LBW) have been widely reported as an independent risk factor for adult hypercholesterolaemia and increased hepatic cholesterol in a sex-specific manner. However, the specific impact of uteroplacental insufficiency (UPI), a leading cause of LBW in developed world, on hepatic cholesterol metabolism in later life, is ill defined and is clinically relevant in understanding later life liver metabolic health trajectories. METHODS Hepatic cholesterol, transcriptome, cholesterol homoeostasis regulatory proteins, and antioxidant markers were studied in UPI-induced LBW and normal birth weight (NBW) male and female guinea pigs at 150 days. RESULTS Hepatic free and total cholesterol were increased in LBW versus NBW males. Transcriptome analysis of LBW versus NBW livers revealed that "cholesterol metabolism" was an enriched pathway in LBW males but not in females. Microsomal triglyceride transfer protein and cytochrome P450 7A1 protein, involved in hepatic cholesterol efflux and catabolism, respectively, and catalase activity were decreased in LBW male livers. Superoxide dismutase activity was reduced in LBW males but increased in LBW females. CONCLUSIONS UPI environment is associated with a later life programed hepatic cholesterol accumulation via impaired cholesterol elimination in a sex-specific manner. These programmed alterations could underlie later life cholesterol-induced hepatic lipotoxicity in LBW male offspring. IMPACT Low birth weight (LBW) is a risk factor for increased hepatic cholesterol. Uteroplacental insufficiency (UPI) resulting in LBW increased hepatic cholesterol content, altered hepatic expression of cholesterol metabolism-related genes in young adult guinea pigs. UPI-induced LBW was also associated with markers of a compromised hepatic cholesterol elimination process and failing antioxidant system in young adult guinea pigs. These changes, at the current age studied, were sex-specific, only being observed in LBW males and not in LBW females. These programmed alterations could lead to further hepatic damage and greater predisposition to liver diseases in UPI-induced LBW male offspring as they age.
Collapse
|
4
|
Wiese MD, Meakin AS, Varcoe TJ, Darby JRT, Sarr O, Kiser P, Bradshaw EL, Regnault TRH, Morrison JL. Hepatic cytochrome P450 function is reduced by life-long Western diet consumption in guinea pig independent of birth weight. Life Sci 2021; 287:120133. [PMID: 34774623 DOI: 10.1016/j.lfs.2021.120133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is characterised by accumulation of triglycerides and cholesterol within the liver and dysregulation of specific hepatic cytochrome P450 (CYPs) activity. CYPs are involved in the metabolism of endogenous and exogenous chemicals. Hepatic CYP activity is dysregulated in human studies and animal models of a Western diet (WD) or low birth weight (LBW) independently, but the additive effects of LBW and postnatal WD consumption are unknown. As such, the aim of this study was to determine the independent and combined effect of birthweight and postnatal diet on hepatic CYP activity in a guinea pig model. METHODS LBW was generated via uterine artery ablation at mid gestation (term = 70 days gestation). Normal birthweight (NBW) and LBW pups were allocated either a control diet (CD) or WD at weaning. After 4 months of dietary intervention, guinea pigs were humanely killed, and liver tissue collected for biochemical and functional hepatic CYP activity analyses. RESULTS Independent of birthweight, functional activity of CYP3A was significantly reduced in female and male WD compared to CD animals (female, P < 0.0001; male, P = 0.004). Likewise, CYP1A2 activity was significantly reduced in male WD compared to CD animals (P = 0.020) but this same reduction was not observed in females. CONCLUSION Diet, but not birthweight, significantly altered hepatic CYP activity in both sexes, and the effect of diet appeared to be greater in males. These findings may have clinical implications for the management of NAFLD and associated co-morbidities between the sexes.
Collapse
Affiliation(s)
- Michael D Wiese
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Ashley S Meakin
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Tamara J Varcoe
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Jack R T Darby
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Ousseynou Sarr
- Departments of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Patti Kiser
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Emma L Bradshaw
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Timothy R H Regnault
- Departments of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada; Departments of Obstetrics and Gynaecology, Western University, London, ON N6A 5C1, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Janna L Morrison
- Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
5
|
Smith LM, Pitts CB, Friesen-Waldner LJ, Prabhu NH, Mathers KE, Sinclair KJ, Wade TP, Regnault TRH, McKenzie CA. In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1- 13 C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non-Alcoholic Fatty Liver Disease Development After Life-Long Western Diet Consumption. J Magn Reson Imaging 2021; 54:1404-1414. [PMID: 33970520 DOI: 10.1002/jmri.27677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Alterations in glycolysis are central to the increasing incidence of non-alcoholic fatty liver disease (NAFLD), highlighting a need for in vivo, non-invasive technologies to understand the development of hepatic metabolic aberrations. PURPOSE To use hyperpolarized magnetic resonance spectroscopy (MRS) and proton density fat fraction (PDFF) magnetic resonance imaging (MRI) techniques to investigate the effects of a chronic, life-long exposure to the Western diet (WD) in an animal model resulting in NAFLD; to investigate the hypothesis that exposure to the WD will result in NAFLD in association with altered pyruvate metabolism. STUDY TYPE Prospective. ANIMAL MODEL Twenty-eight male guinea pigs weaned onto a control diet (N = 14) or WD (N = 14). FIELD STRENGTH/SEQUENCE 3 T; T1-weighted gradient echo, T2-weighted spin-echo, three-dimensional gradient multi-echo fat-water separation (IDEAL-IQ), and broadband point-resolved spectroscopy (PRESS) chemical-shift sequences. ASSESSMENT Median PDFF was calculated in the liver and hind limbs. [1-13 C]pyruvate dynamic MRS in the liver was quantified by the time-to-peak (TTP) for each metabolite. Animals were euthanized and tissue was analyzed for lipid and cholesterol concentration and enzyme level and activity. STATISTICAL TESTS Unpaired Student's t-tests were used to determine differences in measurements between the two diet groups. The Pearson correlation coefficient was calculated to determine correlations between measurements. RESULTS Life-long WD consumption resulted in significantly higher liver PDFF and elevated triglyceride content in the liver. The WD group exhibited a decreased TTP for lactate production, and ex vivo analysis highlighted increased liver lactate dehydrogenase (LDH) activity. DATA CONCLUSION PDFF MRI results suggest differential fat deposition patterns occurring in animals fed a life-long WD characteristic of lean, or lacking excessive subcutaneous fat, NAFLD. The decreased liver lactate TTP and increased ex vivo LDH activity suggest lipid accumulation occurs in association with a shift from oxidative metabolism to anaerobic glycolytic metabolism in WD-exposed livers. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Lauren M Smith
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Conrad B Pitts
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | - Neetin H Prabhu
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Kevin J Sinclair
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Trevor P Wade
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada.,Division of Maternal, Fetal & Newborn Health, Children's Health Research Institute, Lawson Research Institution, London, Ontario, Canada
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Division of Maternal, Fetal & Newborn Health, Children's Health Research Institute, Lawson Research Institution, London, Ontario, Canada
| |
Collapse
|
6
|
Tang Y, Huang J, Zhang WY, Qin S, Yang YX, Ren H, Yang QB, Hu H. Effects of probiotics on nonalcoholic fatty liver disease: a systematic review and meta-analysis. Therap Adv Gastroenterol 2019; 12:1756284819878046. [PMID: 31598135 PMCID: PMC6764034 DOI: 10.1177/1756284819878046] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become prevalent in recent decades, especially in developed countries, and approaches for the prevention and treatment of NAFLD are not clear. The aim of this research was to analyze and summarize randomized controlled trials that investigated the effects of probiotics on NAFLD. METHODS Seven databases (PubMed, Embase, the Web of Science, the Cochrane Library, China National Knowledge Infrastructure, Wan Fang Data, and VIP Database) were searched. Then, eligible studies were identified. Finally, proper data extraction, synthesis and analysis were performed by trained researchers. RESULTS Anthropometric parameters: with use of probiotics weight was reduced by 2.31 kg, and body mass index (BMI) was reduced by 1.08 kg/m2. Liver function: probiotic treatment reduced the alanine aminotransferase level by 7.22 U/l, the aspartate aminotransferase level by 7.22 U/l, the alkaline phosphatase level by 25.87 U/l, and the glutamyl transpeptidase level by -5.76 U/l. Lipid profiles: total cholesterol, low-density lipoprotein cholesterol, and triglycerides were significantly decreased after probiotic treatment. Their overall effects (shown as standard mean difference) were -0.73, -0.54, and -0.36, respectively. Plasma glucose: probiotics reduced the plasma glucose level by 4.45 mg/dl and the insulin level by 0.63. Cytokines: probiotic treatment decreased tumor necrosis factor alpha by 0.62 and leptin by 1.14. Degree of liver fat infiltration (DFI): the related risk of probiotics for restoring DFI was 2.47 (95% confidence interval, 1.61-3.81, p < 0.001). CONCLUSION Probiotic treatment or supplementation is a promising therapeutic method for NAFLD.
Collapse
Affiliation(s)
- Yao Tang
- Department of Clinical Nutrition, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing, China,Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Department of Clinical Nutrition, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing, China,Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Wen yue Zhang
- Department of Clinical Nutrition, The Second
Affiliated Hospital of Chongqing Medical University, Chongqing, China,Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Si Qin
- Center for Endocrine Diseases, The Third
Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi xuan Yang
- Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Institute for Viral Hepatitis, Key Laboratory of
Molecular Biology for Infectious Diseases (Ministry of Education),
Department of Infectious Diseases, The Second Affiliated Hospital of
Chongqing Medical University, Chongqing, China
| | - Qin-bing Yang
- Department of Clinical Nutrition, Tsinghua
University, Beijing, China
| | | |
Collapse
|