1
|
Sethi G, Hwang JH, Krishna R. Structure based exploration of potential lead molecules against the extracellular cysteine protease (EcpA) of Staphylococcus epidermidis: a therapeutic halt. J Biomol Struct Dyn 2024; 42:9167-9183. [PMID: 37615425 DOI: 10.1080/07391102.2023.2250455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Nosocomial infection caused by Staphylococcus epidermidis is one of the most widely spread diseases affecting the world's population. No strategies have been developed to overcome this infection and inhibit its spread in immunocompromised patients or patients with indwelling medical devices. EcpA is an extracellular cysteine protease protein involved in biofilm formation on medical devices. Thus, blocking this mechanism may be viable for developing a drug against S. epidermidis. The current research aimed to find new, potent inhibitors that could stop the S. epidermidis EcpA protein from functioning. This study attempted to identify the most promising drug candidates using structure-based virtual screening (SBVS) from libraries of natural ligands. The top-scored molecules were shortlisted based on their IC50 values and pharmacophore properties and further validated through density functional theory (DFT) studies. We found five inhibitors using virtual screening, and the results indicate that these drugs had the highest energy binding potential towards the EcpA targets when compared to the reference molecule E-64, a known cysteine protease inhibitor. In order to evaluate the binding conformational stability of protein-ligand complexes, molecular dynamics (MD) simulations were performed in triplicate for 100 ns, revealing the significant stability of anticipated molecules at the docked site. Furthermore, principal component analysis and binding free energy calculations were performed to understand the dynamics and stability of the complexes. The current study indicated that these compounds looked to be suitable novel inhibitors of the EcpA protein and pave the path for further discovery of novel inhibitors of EcpA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Guneswar Sethi
- Department of Bioinformatics, Pondicherry University, Puducherry, India
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeonguep, Republic of Korea
| | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
2
|
Almohaimeed HM, Almars AI, Alsulaimani F, Basri AM, Althobaiti NA, Albalaw AE, Alsharif I, Al Abdulmonem W, Hershan AA, Soliman MH. Investigating the potential neuroprotective benefits of taurine and Dihydrotestosterone and Hydroxyprogesterone levels in SH-SY5Y cells. Front Aging Neurosci 2024; 16:1379431. [PMID: 38867846 PMCID: PMC11168113 DOI: 10.3389/fnagi.2024.1379431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
Background Taurine, an amino acid abundantly found in the brain and other tissues, has potential neuroprotective properties. Alzheimer's disease (AD) is a commonly occurring type of dementia, which becomes more prevalent as people age. This experiment aimed to assess the neuroprotective effects of taurine on SH-SY5Y cells by examining its impact on Dihydrotestosterone (DHT), Dihydroprogesterone (DHP), as well as the expression of miRNA-21 and miRNA-181. Methods The effects of various taurine concentrations (0.25, and 0.75 mg/mL), and LPS (0.1, and 12 mg/mL) on the SH-SY5Y cell line were assessed using the MTT assay. The levels of DHT and DHP were quantified using an ELISA kit. Additionally, the expression levels of miRNA-181 and miRNA-21 genes were examined through Real-Time PCR analysis. Results The results of the MTT assay showed that treatment with taurine at concentrations of 0.25, and 0.75 mg/mL reduces the toxicity of LPS in SH-SY5Y cells. ELISA results indicated that taurine at a concentration of 0.25, and 0.75 mg/mL significantly elevated DHT and DHP hormones in the SH-SY5Y cell line compared to the untreated group (p < 0.01). The expression levels of IL-1β and IL-6 were decreased under the influence of LPS in SH-SY5Y cells after taurine treatment (p < 0.01). Gene expression analysis revealed that increasing taurine concentration resulted in heightened expression of miRNA-181 and miRNA-21, with the most significant increase observed at a concentration of 0.75 mg/mL (p < 0.001). Conclusion Our study findings revealed that the expression of miRNA-181 and miRNA-21 can be enhanced by taurine. Consequently, exploring the targeting of taurine, miRNA-181, and miRNA-21 or considering hormone therapy may offer potential therapeutic approaches for treating AD or alleviating severe symptoms. Nonetheless, in order to fully comprehend the precise mechanisms involved, additional research is required.
Collapse
Affiliation(s)
- Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany I. Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fayez Alsulaimani
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Basri
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah A. Althobaiti
- Biology Department, College of Science and Humanities Al Quwaiiyah, Shaqra University, Al Quwaiiyah, Saudi Arabia
| | - Aishah E. Albalaw
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Almonther Abdullah Hershan
- Department of Medical Microbiology and Parasitology, College of Medicine, The University of Jeddah, Jeddah, Saudi Arabia
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
3
|
Xi H, Wang Y, Ni X, Zhang M, Luo Y. Patulin Biodegradation Mechanism Study in Pichia guilliermondii S15-8 Based on PgSDR-A5D9S1. Toxins (Basel) 2024; 16:177. [PMID: 38668602 PMCID: PMC11053455 DOI: 10.3390/toxins16040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Patulin contamination has become a bottleneck problem in the safe production of fruit products, although biodegradation technology shows potential application value in patulin control. In the present study, the patulin biodegradation mechanism in a probiotic yeast, Pichia guilliermondii S15-8, was investigated. Firstly, the short-chain dehydrogenase PgSDR encoded by gene A5D9S1 was identified as a patulin degradation enzyme, through RNA sequencing and verification by qRT-PCR. Subsequently, the exogenous expression system of the degradation protein PgSDR-A5D9S1 in E. coli was successfully constructed and demonstrated a more significant patulin tolerance and degradation ability. Furthermore, the structure of PgSDR-A5D9S1 and its active binding sites with patulin were predicted via molecular docking analysis. In addition, the heat-excited protein HSF1 was predicted as the transcription factor regulating the patulin degradation protein PgSDR-A5D9S1, which may provide clues for the further analysis of the molecular regulation mechanism of patulin degradation. This study provides a theoretical basis and technical support for the industrial application of biodegradable functional strains.
Collapse
Affiliation(s)
- Huijuan Xi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yebo Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
| | - Xulei Ni
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
| | - Minjie Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.X.); (Y.W.); (X.N.); (M.Z.)
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| |
Collapse
|
4
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
5
|
Liang Y, Chen X, Teng Z, Wang X, Yang J, Liu G. Discovery of a 4-Hydroxy-3'-Trifluoromethoxy-Substituted Resveratrol Derivative as an Anti-Aging Agent. Molecules 2023; 29:86. [PMID: 38202669 PMCID: PMC10779923 DOI: 10.3390/molecules29010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
With the intensification of population aging, aging-related diseases are attracting more and more attention, thus, the study of aging mechanisms and anti-aging drugs is becoming increasingly urgent. Resveratrol is a potential candidate as an anti-aging agent, but its low bioavailability limits its application in vivo. In this work, a 4-hydroxy-3'-trifluoromethoxy-substituted resveratrol derivative (4-6), owing to its superior cell accumulation, could inhibit NO production in an inflammatory cell model, inhibit oxidative cytotoxicity, and reduce ROS accumulation and the population of apoptotic cells in an oxidative stress cell model. In D-galactose (D-gal)-stimulated aging mice, 4-6 could reverse liver and kidney damage; protect the serum, brain, and liver against oxidative stress; and increase the body's immunity in the spleen. Further D-gal-induced brain aging studies showed that 4-6 could improve the pathological changes in the hippocampus and the dysfunction of the cholinergic system. Moreover, protein expression related to aging, oxidative stress, and apoptosis in the brain tissue homogenate measured via Western blotting also showed that 4-6 could ameliorate brain aging by protecting against oxidative stress and reducing apoptosis. This work revealed that meta-trifluoromethoxy substituted 4-6 deserved to be further investigated as an effective anti-aging candidate drug.
Collapse
Affiliation(s)
- Yinhu Liang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
| | - Xi Chen
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
| | - Zhifeng Teng
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China (X.W.)
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China
| |
Collapse
|
6
|
Yu Z, Cheng M, Luo S, Wei J, Song T, Gong Y, Zhou Z. Comparative Lipidomics and Metabolomics Reveal the Underlying Mechanisms of Taurine in the Alleviation of Nonalcoholic Fatty Liver Disease Using the Aged Laying Hen Model. Mol Nutr Food Res 2023; 67:e2200525. [PMID: 37909476 DOI: 10.1002/mnfr.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/18/2023] [Indexed: 11/03/2023]
Abstract
SCOPE Aged laying hen is recently suggested as a more attractive animal model than rodent for studying nonalcoholic fatty liver disease (NAFLD) of humans. This study aims to reveal effects and metabolic regulation mechanisms of taurine alleviating NAFLD by using the aged laying hen model. METHODS AND RESULTS Liver histomorphology and biochemical indices show 0.02% taurine effectively alleviated fat deposition and liver damage. Comparative liver lipidomics and gene expressions analyses reveal taurine promoted lipolysis, fatty acids oxidation, lipids transport, and reduced oxidative stress in liver. Furthermore, comparative serum metabolomics screen six core metabolites negatively correlated with NAFLD, including linoleic acid, gamma-linolenic acid, pantothenate, L-methionine, 2-methylbutyroylcarnitine, L-carnitine; and two core metabolites positively correlated with NAFLD, including lysophosphatidylcholine (14:0/0:0) and lysophosphatidylcholine (16:0/0:0). Metabolic pathway analysis reveals taurine mainly regulated linoleic acid metabolism, cysteine and methionine metabolism, carnitine metabolism, pantothenic acid and coenzyme A biosynthesis metabolism, and glycerophospholipid metabolism to up-adjust levels of six negatively correlated metabolites and down-adjust two positively correlated metabolites for alleviating NAFLD of aged hens. CONCLUSION This study firstly reveals underlying metabolic mechanisms of taurine alleviating NAFLD using the aged hen model, thereby laying the foundation for taurine's application in the prevention of NAFLD in both human and poultry.
Collapse
Affiliation(s)
- Zhengwang Yu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Shanghai Yuanyao Agriculture and Animal Husbandry Technology Co., Ltd, Shanghai, 200000, China
| | - Manman Cheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimei Luo
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tieping Song
- Yichang Tianyou Huamu Technology Co.,Ltd, Yichang, 443000, China
| | - Yanzhang Gong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Łanoszka K, Vlčková N. Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Curr Atheroscler Rep 2023; 25:979-994. [PMID: 38038821 PMCID: PMC10770200 DOI: 10.1007/s11883-023-01165-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most recent findings investigating the impact of several natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis. RECENT FINDINGS Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating their long-term impact in recent years. SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials is necessary to ensure the safety of these compounds for preventing atherosclerosis development.
Collapse
Affiliation(s)
- Karolina Łanoszka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland
| | - Nimasha Vlčková
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland.
| |
Collapse
|
8
|
Katturajan R, Evan Prince S. Zinc and L-carnitine combination with or without methotrexate prevents intestinal toxicity during arthritis treatment via Nrf2/Sirt1/Foxo3 pathways: an In vivo and molecular docking approach. Inflammopharmacology 2023; 31:2599-2614. [PMID: 37405586 DOI: 10.1007/s10787-023-01280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
Methotrexate (MTX) is an antifolate that is inescapable and widely used to treat autoimmune diseases and is the gold standard medicine for the arthritic condition. Despite its importance, it is more prone to gastrointestinal toxicity, which is most common in arthritis patients during MTX treatment. Combination therapies are required to ensure MTX's antiarthritic activity while providing gastrointestinal protection. Zinc (Zn) and L-carnitine (Lc) are well-known potent antioxidants and anti-inflammatory supplements with promising results in pre-clinical studies. Arthritis was induced in Wistar rat's ankles with Freund's adjuvant and treated with either MTX (2.5 mg/kg b.w per week for two weeks) or Zn (18 mg/kg b.w. per day) Lc (200 mg/kg b.w. per day) individually or in combination (MTX + Zn Lc). The antiarthritic effects were evaluated by body weight, paw volume, ankle tissue, and joint histopathology. At the same time, anti-toxicity/gastrointestinal protective activity was examined by tissue oxidative stress markers, antioxidants, mitochondrial function, inflammatory mediators, and antioxidant signaling proteins and their binding mechanism. Repercussions of MTX intoxication induced upregulation of oxidative stress markers, antioxidant depletion, ATP depletion, decreased expression of Nrf2/Sirt1/Foxo3, and the overexpression of inflammatory mediators attenuated by co-treatment with Zn Lc. Zn Lc markedly mitigated MTX-instigated intestinal injury by activating antioxidant signaling mechanisms Nrf2/Sirt1/Foxo3 signaling and tissue architectural anomalies and exhibited an enhanced antiarthritic effect. In conclusion, we report that Zn Lc and MTX combination could presumably protect the intestine from low-dose MTX which managed arthritis but induced severe intestinal damage with increased inflammation and downregulated Nrf2/Sirt1/Foxo3 pathway.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
9
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
10
|
Jia W, Wang J, Wei C, Bian M, Bao S, Yu L. Synthesis and hypoglycemic activity of quinoxaline derivatives. Front Chem 2023; 11:1197124. [PMID: 37483267 PMCID: PMC10358274 DOI: 10.3389/fchem.2023.1197124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, a new series of quinoxalinone derivatives (5a-5p, 6a-6n) was designed and its hypoglycemic activity was evaluated. The results showed that compounds 5i and 6b exhibited stronger hypoglycemic effects than the lead compounds and were comparable to the positive control Pioglitazone. 5i and 6b may exert hypoglycemic effects by alleviating cellular OS and modulating the interactions among GLUT4, SGLT2, and GLUT1 proteins. The alleviating cellular OS of compound 6b was better than that of 5i, and 6b was found to bind better than 5i for most of the screening targets. In summary, compound 6b is a potential lead compound with hypoglycaemic activity.3.
Collapse
Affiliation(s)
| | | | | | - Ming Bian
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| | - Shuyin Bao
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| | - Lijun Yu
- *Correspondence: Ming Bian, ; Shuyin Bao, ; Lijun Yu,
| |
Collapse
|
11
|
Molecular Docking and Site-Directed Mutagenesis of GH49 Family Dextranase for the Preparation of High-Degree Polymerization Isomaltooligosaccharide. Biomolecules 2023; 13:biom13020300. [PMID: 36830669 PMCID: PMC9953027 DOI: 10.3390/biom13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The high-degree polymerization of isomaltooligosaccharide (IMO) not only effectively promotes the growth and reproduction of Bifidobacterium in the human body but also renders it resistant to rapid degradation by gastric acid and can stimulate insulin secretion. In this study, we chose the engineered strain expressed dextranase (PsDex1711) as the research model and used the AutoDock vina molecular docking technique to dock IMO4, IMO5, and IMO6 with it to obtain mutation sites, and then studied the potential effect of key amino acids in this enzyme on its hydrolysate composition and enzymatic properties by site-directed mutagenesis method. It was found that the yield of IMO4 increased significantly to 62.32% by the mutant enzyme H373A. Saturation mutation depicted that the yield of IMO4 increased to 69.81% by the mutant enzyme H373R, and its neighboring site S374R IMO4 yield was augmented to 64.31%. Analysis of the enzymatic properties of the mutant enzyme revealed that the optimum temperature of H373R decreased from 30 °C to 20 °C, and more than 70% of the enzyme activity was maintained under alkaline conditions. The double-site saturation mutation results showed that the mutant enzyme H373R/N445Y IMO4 yield increased to 68.57%. The results suggest that the 373 sites with basic non-polar amino acids, such as arginine and histidine, affect the catalytic properties of the enzyme. The findings provide an important theoretical basis for the future marketable production of IMO4 and analysis of the structure of dextranase.
Collapse
|
12
|
Terriente-Palacios C, Rubiño S, Hortós M, Peteiro C, Castellari M. Taurine, homotaurine, GABA and hydrophobic amino acids content influences "in vitro" antioxidant and SIRT1 modulation activities of enzymatic protein hydrolysates from algae. Sci Rep 2022; 12:20832. [PMID: 36460715 PMCID: PMC9718854 DOI: 10.1038/s41598-022-25130-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Prevention and control of diseases and delaying the signs of ageing are nowadays one of the major goals of biomedicine. Sirtuins, a family of NAD+ dependent deacylase enzymes, could be pivotal targets of novel preventive and therapeutic strategies to achieve such aims. SIRT1 activating and inhibiting compounds, such as polyphenols and bioactive peptides, have been proposed to be involved in the development of many human diseases. The objective of this work was to assess and compare the antioxidant and SIRT1 modulation activities of enzymatic protein hydrolysates (EPHs) from a wide number of algae species (24 commercial samples and 12 samples harvested off the Atlantic coast of northern Spain). High antioxidant activities were observed in EPHs from red and green seaweed species. Moreover, 19 samples exhibited SIRT1 activation, while EPHs from the 16 samples were SIRT1 inhibitors. Pearson's correlation test and Principal Component Analysis revealed significant correlations between (1) total peptide and hydrophobic amino acid content in EPHs and their antioxidant activities, and (2) concentrations of taurine, homotaurine, and amino acid gamma aminobutyric acid in EPHs and their SIRT1 modulation activity.
Collapse
Affiliation(s)
- Carlos Terriente-Palacios
- IRTA, Food Safety and Functionality Programe, Finca Camps I Armet s/n, Monells, 17121 Girona, Spain ,grid.10702.340000 0001 2308 8920Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (EIDUNED), Calle Bravo Murillo 38, 28015 Madrid, Spain
| | - Susana Rubiño
- IRTA, Food Safety and Functionality Programe, Finca Camps I Armet s/n, Monells, 17121 Girona, Spain
| | - Maria Hortós
- IRTA, Food Safety and Functionality Programe, Finca Camps I Armet s/n, Monells, 17121 Girona, Spain
| | - César Peteiro
- Spanish Institute of Oceanography of the Spanish National Research Council (IEO, CSIC), Oceanographic Center of Santander, Marine Culture Units “El Bocal”, Seaweeds Center, Barrio Corbanera s/n., Monte, 39012 Santander, Spain
| | - Massimo Castellari
- IRTA, Food Safety and Functionality Programe, Finca Camps I Armet s/n, Monells, 17121 Girona, Spain
| |
Collapse
|
13
|
Wang M, Cui B, Gong M, Liu Q, Zhuo X, Lv J, Yang L, Liu X, Wang Z, Dai L. Arctium lappa leaves based on network pharmacology and experimental validation attenuate atherosclerosis by targeting the AMPK-mediated PPARG/LXRα pathway. Biomed Pharmacother 2022; 153:113503. [PMID: 36076592 DOI: 10.1016/j.biopha.2022.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/27/2022] Open
|
14
|
Liu K, Zhu R, Jiang H, Li B, Geng Q, Li Y, Qi J. Taurine inhibits KDM3a production and microglia activation in lipopolysaccharide-treated mice and BV-2 cells. Mol Cell Neurosci 2022; 122:103759. [PMID: 35901929 DOI: 10.1016/j.mcn.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia activation has been suggested as the key factor in neuro-inflammation and thus participates in neurological diseases. Although taurine exhibits anti-inflammatory and neuro-protective effects, its underlying epigenetic mechanism is unknown. In this study, taurine was administered to lipopolysaccharide (LPS)-treated mice and BV-2 cells. Behavioral test, morphological analyze, detection of microglia activation, and lysine demethylase 3a (KDM3a) measurements were performed to investigate the mechanism by which taurine regulates KDM3a and subsequently antagonizes microglia activation. Taurine improved the sociability of LPS-treated mice, inhibited microglia activation in the hippocampus, and reduced generation of brain inflammatory factors, such as interleukin-6, tumor necrosis factor-α, inducible nitric oxide synthase, and cyclooxygenase-2. Meanwhile, taurine suppressed the LPS-induced increase in microglial KDM3a, and increased the level of mono-, di- or tri-methylation of lysine 9 on histone H3 (H3K9me1/2/3). Furthermore, taurine inhibited the LPS-induced increase in KDM3a, elevated the H3K9me1/2/3 level, and reduced inflammatory factors and reactive oxygen species in a concentration-dependent manner in LPS-stimulated BV-2 cells. In conclusion, taurine inhibited KDM3a and microglia activation, thereby playing an anti-inflammatory role in LPS-treated mice and BV-2 cells.
Collapse
Affiliation(s)
- Kun Liu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China; Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Runying Zhu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Hongwei Jiang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Bin Li
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Qi Geng
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| |
Collapse
|