1
|
Meng Y, Sun J, Zhang G. Take the bull by the horns and tackle the potential downsides of the ketogenic diet. Nutrition 2024; 125:112480. [PMID: 38788511 DOI: 10.1016/j.nut.2024.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The ketogenic diet (KD) is a distinctive dietary regimen known for its low-carbohydrate and high-fat composition. Recently, it has garnered considerable interest from the scientific community and the general population because of its claimed efficacy in facilitating weight reduction, improving the management of glucose levels, and raising overall energy levels. The core principle of the KD is the substantial decrease in carbohydrate consumption, which is subsequently substituted by ingesting nourishing fats. While the KD has promising advantages and is gaining popularity, it must be acknowledged that this dietary method may not be appropriate for all individuals. The dietary regimen may give rise to adverse effects, including constipation, halitosis, and imbalances in electrolyte levels, which may pose a potential risk if not adequately supervised. Hence, thorough and meticulous inquiry is needed to better comprehend the possible hazards and advantages linked to the KD over prolonged durations. By obtaining a more comprehensive perspective, we can enhance our ability to make well-informed judgments and suggestions as to implementation of this specific dietary regimen.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
2
|
Ye W, Han K, Xie M, Li S, Chen G, Wang Y, Li T. Mitochondrial energy metabolism in diabetic cardiomyopathy: Physiological adaption, pathogenesis, and therapeutic targets. Chin Med J (Engl) 2024; 137:936-948. [PMID: 38527931 PMCID: PMC11046025 DOI: 10.1097/cm9.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 03/27/2024] Open
Abstract
ABSTRACT Diabetic cardiomyopathy is defined as abnormal structure and function of the heart in the setting of diabetes, which could eventually develop heart failure and leads to the death of the patients. Although blood glucose control and medications to heart failure show beneficial effects on this disease, there is currently no specific treatment for diabetic cardiomyopathy. Over the past few decades, the pathophysiology of diabetic cardiomyopathy has been extensively studied, and an increasing number of studies pinpoint that impaired mitochondrial energy metabolism is a key mediator as well as a therapeutic target. In this review, we summarize the latest research in the field of diabetic cardiomyopathy, focusing on mitochondrial damage and adaptation, altered energy substrates, and potential therapeutic targets. A better understanding of the mitochondrial energy metabolism in diabetic cardiomyopathy may help to gain more mechanistic insights and generate more precise mitochondria-oriented therapies to treat this disease.
Collapse
Affiliation(s)
- Wanlin Ye
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kun Han
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, Division of Guideline and Rapid Recommendation, Cochrane China Center, MAGIC China Center, Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guo Chen
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyan Wang
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Zeng Y, Li Y, Jiang W, Hou N. Molecular mechanisms of metabolic dysregulation in diabetic cardiomyopathy. Front Cardiovasc Med 2024; 11:1375400. [PMID: 38596692 PMCID: PMC11003275 DOI: 10.3389/fcvm.2024.1375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious complications of diabetes mellitus, has become recognized as a cardiometabolic disease. In normoxic conditions, the majority of the ATP production (>95%) required for heart beating comes from mitochondrial oxidative phosphorylation of fatty acids (FAs) and glucose, with the remaining portion coming from a variety of sources, including fructose, lactate, ketone bodies (KB) and branched chain amino acids (BCAA). Increased FA intake and decreased utilization of glucose and lactic acid were observed in the diabetic hearts of animal models and diabetic patients. Moreover, the polyol pathway is activated, and fructose metabolism is enhanced. The use of ketones as energy sources in human diabetic hearts also increases significantly. Furthermore, elevated BCAA levels and impaired BCAA metabolism were observed in the hearts of diabetic mice and patients. The shift in energy substrate preference in diabetic hearts results in increased oxygen consumption and impaired oxidative phosphorylation, leading to diabetic cardiomyopathy. However, the precise mechanisms by which impaired myocardial metabolic alterations result in diabetes mellitus cardiac disease are not fully understood. Therefore, this review focuses on the molecular mechanisms involved in alterations of myocardial energy metabolism. It not only adds more molecular targets for the diagnosis and treatment, but also provides an experimental foundation for screening novel therapeutic agents for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yue Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wenyue Jiang
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
4
|
Luca AC, Pădureț IA, Țarcă V, David SG, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E. Nutritional Approach in Selected Inherited Metabolic Cardiac Disorders-A Concise Summary of Available Scientific Evidence. Nutrients 2023; 15:4795. [PMID: 38004189 PMCID: PMC10675151 DOI: 10.3390/nu15224795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Inborn errors of metabolism (IMDs) are a group of inherited diseases that manifest themselves through a myriad of signs and symptoms, including structural or functional cardiovascular damage. The therapy of these diseases is currently based on enzyme-replacement therapy, chaperone therapy or the administration of supplements and the establishment of personalized dietary plans. Starting from the major signs identified by the pediatric cardiologist that can indicate the presence of such a metabolic disease-cardiomyopathies, conduction disorders or valvular dysplasias-we tried to paint the portrait of dietary interventions that can improve the course of patients with mitochondrial diseases or lysosomal abnormalities. The choice of the two categories of inborn errors of metabolism is not accidental and reflects the experience and concern of the authors regarding the management of patients with such diagnoses. A ketogenic diet offers promising results in selected cases, although, to date, studies have failed to bring enough evidence to support generalized recommendations. Other diets have been successfully utilized in patients with IMDs, but their specific effect on the cardiac phenotype and function is not yet fully understood. Significant prospective studies are necessary in order to understand and establish which diet best suits every patient depending on the inherited metabolic disorder. The most suitable imagistic monitoring method for the impact of different diets on the cardiovascular system is still under debate, with no protocols yet available. Echocardiography is readily available in most hospital settings and brings important information regarding the impact of diets on the left ventricular parameters. Cardiac MRI (magnetic resonance imaging) could better characterize the cardiac tissue and bring forth both functional and structural information.
Collapse
Affiliation(s)
- Alina Costina Luca
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (I.-A.P.); (D.E.M.); (E.V.R.)
| | - Ioana-Alexandra Pădureț
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (I.-A.P.); (D.E.M.); (E.V.R.)
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (H.A.)
| | - Viorel Țarcă
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Dana Elena Mîndru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (I.-A.P.); (D.E.M.); (E.V.R.)
| | - Solange Tamara Roșu
- Nursing Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Eduard Vasile Roșu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (I.-A.P.); (D.E.M.); (E.V.R.)
| | | | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, 2025 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Surgery II Department—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
5
|
Lee TI, Trang NN, Lee TW, Higa S, Kao YH, Chen YC, Chen YJ. Ketogenic Diet Regulates Cardiac Remodeling and Calcium Homeostasis in Diabetic Rat Cardiomyopathy. Int J Mol Sci 2023; 24:16142. [PMID: 38003332 PMCID: PMC10671812 DOI: 10.3390/ijms242216142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A ketogenic diet (KD) might alleviate patients with diabetic cardiomyopathy. However, the underlying mechanism remains unclear. Myocardial function and arrhythmogenesis are closely linked to calcium (Ca2+) homeostasis. We investigated the effects of a KD on Ca2+ homeostasis and electrophysiology in diabetic cardiomyopathy. Male Wistar rats were created to have diabetes mellitus (DM) using streptozotocin (65 mg/kg, intraperitoneally), and subsequently treated for 6 weeks with either a normal diet (ND) or a KD. Our electrophysiological and Western blot analyses assessed myocardial Ca2+ homeostasis in ventricular preparations in vivo. Unlike those on the KD, DM rats treated with an ND exhibited a prolonged QTc interval and action potential duration. Compared to the control and DM rats on the KD, DM rats treated with an ND also showed lower intracellular Ca2+ transients, sarcoplasmic reticular Ca2+ content, sodium (Na+)-Ca2+ exchanger currents (reverse mode), L-type Ca2+ contents, sarcoplasmic reticulum ATPase contents, Cav1.2 contents. Furthermore, these rats exhibited elevated ratios of phosphorylated to total proteins across multiple Ca2+ handling proteins, including ryanodine receptor 2 (RyR2) at serine 2808, phospholamban (PLB)-Ser16, and calmodulin-dependent protein kinase II (CaMKII). Additionally, DM rats treated with an ND demonstrated a higher frequency and incidence of Ca2+ leak, cytosolic reactive oxygen species, Na+/hydrogen-exchanger currents, and late Na+ currents than the control and DM rats on the KD. KD treatment may attenuate the effects of DM-dysregulated Na+ and Ca2+ homeostasis, contributing to its cardioprotection in DM.
Collapse
Affiliation(s)
- Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-I.L.); (T.-W.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | | | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-I.L.); (T.-W.L.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Makiminato Urasoe City, Okinawa 901-2131, Japan;
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
6
|
Talib WH, Al-Dalaeen A, Mahmod AI. Ketogenic diet in cancer management. Curr Opin Clin Nutr Metab Care 2023; 26:369-376. [PMID: 37265176 DOI: 10.1097/mco.0000000000000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW This review presents details about types of ketogenic diet (KD), anticancer mechanisms, and the use of KD in experimental and clinical studies. Studies summarized in this review provide a solid ground for researchers to consider the use of KD to augment conventional treatments. RECENT FINDINGS KD is a dietary pattern composed of high fat, moderate proteins, and very-low-carbohydrate. This diet was suggested to have an anticancer effect and to augment conventional anticancer therapies. KD can target cancer cell by interfering with its metabolism without harming normal cells. SUMMARY Several experimental and clinical studies support the use of KD as adjuvant therapy to treat different cancers.
Collapse
Affiliation(s)
| | - Anfal Al-Dalaeen
- Department of Clinical Nutrition and Dietetics, Faculty of Allied Medical Sciences
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
7
|
Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY. Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542198. [PMID: 37292714 PMCID: PMC10245950 DOI: 10.1101/2023.05.24.542198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxaliplatin is a platinum-based alkylating chemotherapeutic agent used for cancer treatment. At high cumulative dosage, the negative effect of oxaliplatin on the heart becomes evident and is linked to a growing number of clinical reports. The aim of this study was to determine how chronic oxaliplatin treatment causes the changes in energy-related metabolic activity in the heart that leads to cardiotoxicity and heart damage in mice. C57BL/6 male mice were treated with a human equivalent dosage of intraperitoneal oxaliplatin (0 and 10 mg/kg) once a week for eight weeks. During the treatment, mice were followed for physiological parameters, ECG, histology and RNA sequencing of the heart. We identified that oxaliplatin induces strong changes in the heart and affects the heart's energy-related metabolic profile. Histological post-mortem evaluation identified focal myocardial necrosis infiltrated with a small number of associated neutrophils. Accumulated doses of oxaliplatin led to significant changes in gene expression related to energy related metabolic pathways including fatty acid (FA) oxidation, amino acid metabolism, glycolysis, electron transport chain, and NAD synthesis pathway. At high accumulative doses of oxaliplatin, the heart shifts its metabolism from FAs to glycolysis and increases lactate production. It also leads to strong overexpression of genes in NAD synthesis pathways such as Nmrk2. Changes in gene expression associated with energy metabolic pathways can be used to develop diagnostic methods to detect oxaliplatin-induced cardiotoxicity early on as well as therapy to compensate for the energy deficit in the heart to prevent heart damage.
Collapse
Affiliation(s)
- Junwei Du
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering Washington University, St. Louis, MO 63130, USA
| | - Leland C Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Kiana Shahverdi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Haiying Zhou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Megan Michie
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamim Mollah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mikhail Y Berezin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Ketone Bodies and Cardiovascular Disease: An Alternate Fuel Source to the Rescue. Int J Mol Sci 2023; 24:ijms24043534. [PMID: 36834946 PMCID: PMC9962558 DOI: 10.3390/ijms24043534] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The increased metabolic activity of the heart as a pump involves a high demand of mitochondrial adenosine triphosphate (ATP) production for its mechanical and electrical activities accomplished mainly via oxidative phosphorylation, supplying up to 95% of the necessary ATP production, with the rest attained by substrate-level phosphorylation in glycolysis. In the normal human heart, fatty acids provide the principal fuel (40-70%) for ATP generation, followed mainly by glucose (20-30%), and to a lesser degree (<5%) by other substrates (lactate, ketones, pyruvate and amino acids). Although ketones contribute 4-15% under normal situations, the rate of glucose use is drastically diminished in the hypertrophied and failing heart which switches to ketone bodies as an alternate fuel which are oxidized in lieu of glucose, and if adequately abundant, they reduce myocardial fat delivery and usage. Increasing cardiac ketone body oxidation appears beneficial in the context of heart failure (HF) and other pathological cardiovascular (CV) conditions. Also, an enhanced expression of genes crucial for ketone break down facilitates fat or ketone usage which averts or slows down HF, potentially by avoiding the use of glucose-derived carbon needed for anabolic processes. These issues of ketone body utilization in HF and other CV diseases are herein reviewed and pictorially illustrated.
Collapse
|