1
|
Gallo M, Ferrari E, Giovati L, Pertinhez TA, Artesani L, Conti S, Ciociola T. The Variability of the Salivary Antimicrobial Peptide Profile: Impact of Lifestyle. Int J Mol Sci 2024; 25:11501. [PMID: 39519054 PMCID: PMC11547034 DOI: 10.3390/ijms252111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Saliva is crucial in maintaining oral health; its composition reflects the body's physiological and diseased state. Among salivary components, antimicrobial peptides (AMPs) stand out for their broad antimicrobial activities and role in modulating the oral microbiota and innate immune response. Local and systemic diseases can affect the levels of AMPs in saliva, making them attractive biomarkers. However, the large variability in their concentrations hampers their use in diagnostics. Knowledge of the various factors influencing the profile of salivary AMPs is essential for their use as biomarkers. Here, we examine how lifestyle factors such as physical activity, dietary supplementation, tobacco smoking, and psychological stress impact salivary AMP levels. By understanding these sources of variability, we can take a step forward in using AMPs for diagnostics and prognostics and develop new tailored and preventative approaches.
Collapse
Affiliation(s)
- Mariana Gallo
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Elena Ferrari
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Laura Giovati
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Thelma A. Pertinhez
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Lorenza Artesani
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
| | - Stefania Conti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Tecla Ciociola
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Ye D, Liu Y, Li J, Zhou J, Cao J, Wu Y, Wang X, Fang Y, Ye X, Zou J, Ma Q. Competitive dynamics and balance between Streptococcus mutans and commensal streptococci in oral microecology. Crit Rev Microbiol 2024:1-12. [PMID: 39132685 DOI: 10.1080/1040841x.2024.2389386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Dental caries, as a biofilm-related disease, is closely linked to dysbiosis in microbial ecology within dental biofilms. Beyond its impact on oral health, bacteria within the oral cavity pose systemic health risks by potentially entering the bloodstream, thereby increasing susceptibility to bacterial endocarditis, among other related diseases. Streptococcus mutans, a principal cariogenic bacterium, possesses virulence factors crucial to the pathogenesis of dental caries. Its ability to adhere to tooth surfaces, produce glucans for biofilm formation, and metabolize sugars into lactic acid contributes to enamel demineralization and the initiation of carious lesions. Its aciduricity and ability to produce bacteriocins enable a competitive advantage, allowing it to thrive in acidic environments and dominate in changing oral microenvironments. In contrast, commensal streptococci, such as Streptococcus sanguinis, Streptococcus gordonii, and Streptococcus salivarius, act as primary colonizers and compete with S. mutans for adherence sites and nutrients during biofilm formation. This competition involves the production of alkali, peroxides, and antibacterial substances, thereby inhibiting S. mutans growth and maintaining microbial balance. This dynamic interaction influences the balance of oral microbiota, with disruptions leading to shifts in microbial composition that are marked by rapid increases in S. mutans abundance, contributing to the onset of dental caries. Thus, understanding the dynamic interactions between commensal and pathogenic bacteria in oral microecology is important for developing effective strategies to promote oral health and prevent dental caries. This review highlights the roles and competitive interactions of commensal bacteria and S. mutans in oral microecology, emphasizing the importance of maintaining oral microbial balance for health, and discusses the pathological implications of perturbations in this balance.
Collapse
Affiliation(s)
- Dingwei Ye
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingwei Cao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yumeng Wu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwen Fang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Yang H, Gao XB, Li MH, Ye Q, Sun Y, Huang Y. The use of mind mapping in health education in extended care for children with caries. J Int Med Res 2021; 48:300060519898053. [PMID: 32468883 PMCID: PMC7263125 DOI: 10.1177/0300060519898053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective To investigate the application of mind mapping-based health education in extended care for children with caries. Methods This was a prospective study of 159 eligible children with caries. Participants were randomly assigned to an observation group and a control group, and received extended health education and guidance. Patients in the observation group received health education with mind mapping. In the third month after the first visit, a questionnaire survey was conducted to assess knowledge of extended caries diagnosis and treatment in children and their parents. Children also underwent a bacterial plaque test. Results Caries knowledge was significantly greater in the observation group than in the control group. There was no significant between-group difference in debris index on the bacterial plaque test. The observation group had a significantly greater number of follow-up visits in 12 months than the control group. Conclusions Mind mapping was effective in the implementation of extended care. Mind mapping information was more accessible to children and their parents, increasing their compliance with health education. Thus, mind mapping is an appropriate health education tool for use in extended care for children with caries.
Collapse
Affiliation(s)
- Hua Yang
- Department of Comprehensive, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xue-Bin Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming-He Li
- Department of Dentofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yue Sun
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Huang
- Department of Comprehensive, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Comprehensive analysis and comparison of proteins in salivary exosomes of climacteric and adolescent females. Odontology 2020; 109:82-102. [PMID: 32681298 DOI: 10.1007/s10266-020-00538-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
Currently, it is difficult to extract exosomes with stable physicochemical properties from saliva. Furthermore, due to inadequate availability of basic data, the application of salivary exosomes as a diagnostic material is limited. In this study, we aimed to investigate an easier method for extraction of exosomes from whole saliva and compared proteins in salivary exosomes derived from subjects of two age groups. Salivary exosomes were extracted from nine females (56.7 ± 1.17 years old; climacteric or 19.9 ± 0.20 years old; adolescent) using commercial reagents and kits and detected using western blotting with anti-exosome marker antibodies. Exosome particle size and exosome-containing proteins were identified using NanoSight® and liquid chromatography with tandem mass spectrometry, respectively. In addition, an efficient method of exosome extraction from saliva using a reagent and without the use of an ultracentrifuge was shown. Our results showed a higher total protein content and larger particle size in climacteric exosomes than in adolescent exosomes. However, adolescent exosomes showed a larger variety of proteins (780 proteins) than the climacteric exosomes (573 proteins). Altogether, 893 proteins were identified in the salivary exosomes. Although viral process-, ribosome- and structural molecule-related proteins were higher in the adolescent exosomes, the levels of major salivary proteins such as immunoglobulins and amylase, were higher in the climacteric exosomes than in the adolescent exosomes. The data presented, which show the fundamental protein composition of salivary exosomes and the changes that occur with age, are beneficial in both diagnostic and biotechnological applications.
Collapse
|
5
|
Wu Q, Cao R, Chen J, Xie X. Screening and identification of biomarkers associated with clinicopathological parameters and prognosis in oral squamous cell carcinoma. Exp Ther Med 2019; 18:3579-3587. [PMID: 31608128 PMCID: PMC6778814 DOI: 10.3892/etm.2019.7998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major type of malignant tumor of the oral cavity. Despite marked advances in the management and diagnosis of OSCC, the associated overall survival ratio has only exhibited a modest increase in recent years. The present study aimed to identify potential crucial genes associated with clinical features and prognosis for OSCC, and to provide a basis for further investigation. RNA-sequencing data and corresponding clinical information were downloaded from The Cancer Genome Atlas database and differentially expressed mRNAs (DEmRNAs) were identified using the edgeR package. Bioinformatics analysis was performed to identify differentially expressed clinical features-associated mRNAs (CFmRNAs) and enhance the current knowledge of the function of them. Functional enrichment analysis and protein-protein interplay (PPI) network analysis were then performed to better understand CFmRNAs. Survival-associated genes were analyzed with Kaplan-Meier survival curves and the log-rank test. A total of 2,013 DEmRNAs between OSCC samples and normal tissues were identified, 180 of which were associated with clinical features. A total of 17 GO terms and 4 KEGG pathways were significantly enriched in functional enrichment analysis. A total of 4 hub genes (albumin, statherin, neurotensin and mucin 7) were identified in the PPI network analysis. A total of 6 genes (DDB1 and CUL4 associated factor 4 like 2, opiorphin prepropeptide, R3H domain containing like, transmembrane phosphatase with tensin homology, actin like 8 and protocadherin α 11) were observed to have an influence on survival. The DEmRNAs identified may have a crucial role in the genesis and development of OSCC and may be further developed for diagnostic, therapeutic and prognostic applications for OSCC in the future.
Collapse
Affiliation(s)
- Qiqi Wu
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Juan Chen
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Xiaoli Xie
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
6
|
Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK. Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Crit Rev Food Sci Nutr 2019; 60:1195-1206. [PMID: 30714390 DOI: 10.1080/10408398.2018.1564234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
Collapse
Affiliation(s)
- Caleb Acquah
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia.,School of Nutrition Sciences, Faculty of Health Sciences, Curtin University, Sarawak, Malaysia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Eugene Marfo Obeng
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Victoria, Australia
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kei Xian Tan
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia
| | - Michael Kobina Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee, USA
| |
Collapse
|
7
|
Ohshima H. Oral biosciences: The annual review 2017. J Oral Biosci 2018. [DOI: 10.1016/j.job.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Saitoh E, Sega T, Imai A, Isemura S, Kato T, Ochiai A, Taniguchi M. The PBII gene of the human salivary proline-rich protein P-B produces another protein, Q504X8, with an opiorphin homolog, QRGPR. Arch Oral Biol 2018; 88:10-18. [PMID: 29339256 DOI: 10.1016/j.archoralbio.2018.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The NCBI gene database and human-transcriptome database for alternative splicing were used to determine the expression of mRNAs for P-B (SMR3B) and variant form of P-B. The translational product from the former mRNA was identified as the protein named P-B, whereas that from the latter has not yet been elucidated. In the present study, we investigated the expression of P-B and its variant form at the protein level. DESIGN To identify the variant protein of P-B, (1) cationic proteins with a higher isoelectric point in human pooled whole saliva were purified by a two dimensional liquid chromatography; (2) the peptide fragments generated from the in-solution of all proteins digested with trypsin separated and analyzed by MALDI-TOF-MS; and (3) the presence or absence of P-B in individual saliva was examined by 15% SDS-PAGE. RESULTS The peptide sequences (I37PPPYSCTPNMNNCSR52, C53HHHHKRHHYPCNYCFCYPK72, R59HHYPCNYCFCYPK72 and H60HYPCNYCFCYPK72) present in the variant protein of P-B were identified. The peptide sequence (G6PYPPGPLAPPQPFGPGFVPPPPPPPYGPGR36) in P-B (or the variant) and sequence (I37PPPPPAPYGPGIFPPPPPQP57) in P-B were identified. The sum of the sequences identified indicated a 91.23% sequence identity for P-B and 79.76% for the variant. There were cases in which P-B existed in individual saliva, but there were cases in which it did not exist in individual saliva. CONCLUSIONS The variant protein is produced by excising a non-canonical intron (CC-AC pair) from the 3'-noncoding sequence of the PBII gene. Both P-B and the variant are subject to proteolysis in the oral cavity.
Collapse
Affiliation(s)
- Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan.
| | - Takuya Sega
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Akane Imai
- Department of Dental Hygiene, The Nippon Dental University College at Niigata, Niigata 951-8580, Japan
| | - Satoko Isemura
- Department of Dental Hygiene, The Nippon Dental University College at Niigata, Niigata 951-8580, Japan
| | - Tetsuo Kato
- Laboratory of Chemistry, Tokyo Dental College, Tokyo 101-0062, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|