1
|
Roque SM, Furian AC, Takemoto MK, Duarte MCT, Parolina RD, Roque AL, Duran N, Sardi JDCO, Duarte RMT, Muller KC. Biosynthesis and Characterization of Silver Nanoparticles and Simvastatin Association in Titanium Biofilms. Pharmaceuticals (Basel) 2024; 17:1612. [PMID: 39770455 PMCID: PMC11678683 DOI: 10.3390/ph17121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on titanium discs. METHODS Silver nanoparticles were first biosynthesized using the fungus Fusarium oxysporum and then characterized using Dynamic Light Scattering, X-ray Diffraction, Transmission Electron Microscopy, and energy dispersive spectroscopy. Species of Streptococcus oralis, Streptococcus mutans, Porphyromonas gingivalis, Methicillin-sensitive Staphylococcus aureus, and Methicillin-resistant Staphylococcus aureus were used and tested using Minimum Inhibitory Concentration assays with concentrations of silver nanoparticles and simvastatin alone and in combination. Biofilm inhibition and viability tests were performed on titanium surfaces. Toxicity tests were also performed on Galleria mellonella moth larvae. RESULTS The silver nanoparticles had a spherical shape without the formation of aggregates as confirmed by Transmission Electron Microscopy. Dynamic Light Scattering revealed nanoparticles with an average diameter of 53.8 nm (±1.23 nm), a polydispersity index of 0.23 and a zeta potential of -25 mV (±2.19 mV). The silver nanoparticles inhibited the growth of the strains tested in the range of 0.001592 and 63.75, while simvastatin alone inhibited the growth of the same strains in the range of 3.125-62.5 µg/mL. The antibacterial activity test of the combination of the two substances showed a reduction in the Minimum Inhibitory Concentration of about two to eight times, showing synergistic effects on Staphylococcus aureus and additive effects on Streptococcus oralis and Porphyromonas gingivalis. As for biofilm, sub-inhibitory concentrations of the combination of substances showed better antibacterial activity in inhibiting the formation of Streptococcus oralis biofilm, and this combination also proved effective in eradicating already established biofilms compared to the substances alone. The combination of silver nanoparticles and simvastatin showed low toxicity to Galleria mellonella moth larvae. CONCLUSIONS The results presented indicate that the combination of the two substances could be an alternative for the prevention and reduction of biofilms on implants. These findings open up new possibilities in the search for alternatives for the treatment of peri-implant infections, as well as the possibility of using lower doses compared to single drugs, achieving the same results and reducing potential toxic effects.
Collapse
Affiliation(s)
- Sindy Magri Roque
- Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (S.M.R.); (A.C.F.)
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
| | - Ana Carolina Furian
- Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (S.M.R.); (A.C.F.)
| | - Marcela Kim Takemoto
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
| | - Marta Cristina Teixeira Duarte
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas—CPQBA, Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, Brazil;
| | - Rafaela Durrer Parolina
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
| | - Adriano Luís Roque
- Programa de Pós Graduação em Medicina (Cardiologia), Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil;
| | - Nelson Duran
- Laboratório de Carcinogenese Urogenital e Imunoterapia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | | | - Renata Maria Teixeira Duarte
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas—CPQBA, Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, Brazil;
| | - Karina Cogo Muller
- Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (S.M.R.); (A.C.F.)
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
| |
Collapse
|
2
|
Melo-Ferraz A, Miller P, Criado MB, Monteiro MC, Coelho C. Exploring the antimicrobial potential of Leukocyte- and Platelet-Rich Fibrin - an in vitro study. APMIS 2024; 132:859-868. [PMID: 39295296 DOI: 10.1111/apm.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
This study investigates the antimicrobial properties of leukocyte- and platelet-rich fibrin (L-PRF) against Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 90028). Infections can hinder wound healing posing challenges. L-PRF's potential for regeneration and antimicrobial action has been studied. Considering the increasing concern about antibiotic resistance, assessing the antimicrobial properties of L-PRF provides valuable insights into its potential as a therapeutic agent in postoperative infections. Twenty volunteers were enrolled in the study, following ethical guidelines, and obtaining informed consent. Blood samples were collected and L-PRF was prepared. Microbial suspensions were prepared, and susceptibility testing was performed using the Kirby-Bauer agar diffusion method. The study revealed significant heterogeneity in the susceptibility to L-PRF. All L-PRF membrane samples exhibited antimicrobial activity against P. aeruginosa, with inhibition zones of 13 mm ± 3.85 SD. Enterococcus faecalis displayed inhibition diameter of 7.25 mm ± 5.15 SD. Candida albicans susceptibility to L-PRF varied among samples, with both inhibitory and non-inhibitory results. Results showed varying degrees of antimicrobial activity, particularly against P. aeruginosa, and highlight the complexity of the L-PRF-microorganism interaction. Further investigations are needed to elucidate the clinical implications and optimize the use of L-PRF.
Collapse
Affiliation(s)
- António Melo-Ferraz
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Paulo Miller
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Maria Begoña Criado
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Maria Céu Monteiro
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Cristina Coelho
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| |
Collapse
|
3
|
Hosseini Hooshiar M, Mozaffari A, Hamed Ahmed M, Abdul Kareem R, Jaber Zrzo A, Salah Mansoor A, H Athab Z, Parhizgar Z, Amini P. Potential role of metal nanoparticles in treatment of peri-implant mucositis and peri-implantitis. Biomed Eng Online 2024; 23:101. [PMID: 39396020 PMCID: PMC11470642 DOI: 10.1186/s12938-024-01294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Peri-implantitis (PI), a pathological condition associated with plaque, affects the tissues around dental implants. In addition, peri-implant mucositis (PIM) is a precursor to the destructive inflammatory PI and is an inflammation of the soft tissues surrounding the dental implant. It is challenging to eradicate and regulate the PI treatment due to its limited effectiveness. Currently, there is a significant interest in the development and research of additional biocompatible materials to prevent the failure of dental implants. Nanotechnology has the potential to address or develop solutions to the significant challenge of implant failure caused by cytotoxicity and biocompatibility in dentistry. Nanoparticles (NPs) may be used as carriers for the release of medicines, as well as to make implant coatings and supply appropriate materials for implant construction. Furthermore, the bioactivity and therapeutic efficacy of metal NPs in peri-implant diseases (PID) are substantiated by a plethora of in vitro and in vivo studies. Furthermore, the use of silver (Ag), gold (Au), zinc oxide, titanium oxide (TiO2), copper (Cu), and iron oxide NPs as a cure for dental implant infections brought on by bacteria that have become resistant to several medications is the subject of recent dentistry research. Because of their unique shape-dependent features, which enhance bio-physio-chemical functionalization, antibacterial activity, and biocompatibility, metal NPs are employed in dental implants. This study attempted to provide an overview of the application of metal and metal oxide NPs to control and increase the success rate of implants while focusing on the antimicrobial properties of these NPs in the treatment of PID, including PIM and PI. Additionally, the study reviewed the potential benefits and drawbacks of using metal NPs in clinical settings for managing PID, with the goal of advancing future treatment strategies for these conditions.
Collapse
Affiliation(s)
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | - Athmar Jaber Zrzo
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Zahra Parhizgar
- Resident of Periodontology, Department of Periodontics, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parisa Amini
- Department of Periodontology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Elhassan E, Omolo CA, Gafar MA, Kiruri LW, Ibrahim UH, Ismail EA, Devnarain N, Govender T. Disease-Inspired Design of Biomimetic Tannic Acid-Based Hybrid Nanocarriers for Enhancing the Treatment of Bacterial-Induced Sepsis. Mol Pharm 2024; 21:4924-4946. [PMID: 39214595 DOI: 10.1021/acs.molpharmaceut.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses. CIP released from TAH-NPs displayed a sustained release profile over 72 h. The in vitro antibacterial activity studies revealed that CIP-loaded TAH-NPs exhibited enhanced antibacterial efficacy and efflux pump inhibitory activity. Specifically, they showed a 3-fold increase in biofilm eradication activity against MRSA and a 2-fold increase against P. aeruginosa compared to bare CIP. Time-killing assays demonstrated complete bacterial clearance within 8 h of treatment with CIP-loaded TAH-NPs. In vitro DPPH scavenging and anti-inflammatory investigations confirmed the ability of the prepared hybrid nanosystem to neutralize reactive oxygen species (ROS) and modulate LPS-induced inflammatory responses. Collectively, these results suggest that CIP-loaded TAH-NPs may serve as an innovative nanocarrier for the effective and targeted delivery of antibiotics against bacterial-induced sepsis.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634-00800, Nairobi 00800, Kenya
| | - Mohammed Ali Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4300, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| |
Collapse
|
5
|
Pineda MEB, Sánchez DFV, Caycedo PAC, -Rozo JC. Nanocomposites: silver nanoparticles and bacteriocins obtained from lactic acid bacteria against multidrug-resistant Escherichia coli and Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:341. [PMID: 39358621 DOI: 10.1007/s11274-024-04151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Drug-resistant bacteria such as Escherichia coli and Staphylococcus aureus represent a global health problem that requires priority attention. Due to the current situation, there is an urgent need to develop new, more effective and safe antimicrobial agents. Biotechnological approaches can provide a possible alternative control through the production of new generation antimicrobial agents, such as silver nanoparticles (AgNPs) and bacteriocins. AgNPs stand out for their antimicrobial potential by employing several mechanisms of action that can act simultaneously on the target cell such as the production of reactive oxygen species and cell wall rupture. On the other hand, bacteriocins are natural peptides synthesized ribosomally that have antimicrobial activity and are produced, among others, by lactic acid bacteria (LAB), whose main mechanism of action is to produce pores at the level of the cell membrane of bacterial cells. However, these agents have disadvantages. Nanoparticles also have limitations such as the tendency to form aggregates, which decreases their antibacterial activity and possible cytotoxic effects, and bacteriocins have a narrow spectrum of action, require high doses to be effective, and can be degraded by proteases. Given these limitations, nanoconjugates of these two agents have been developed that can act synergistically in the control of pathogenic bacteria resistant to antibiotics. This review focuses on knowing relevant aspects of the antibiotic resistance of E. coli and S. aureus, the characteristics of these new generation antibacterial agents, and their effect alone or forming nanoconjugates that are more effective against the multiresistant mentioned bacteria.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Grupo de Investigación Gestión Ambiental-Universidad de Boyacá, Grupo de Investigación Biología Ambiental, Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Macromoléculas. Universidad Nacional de Colombia, Tunja, Colombia
| | | | | | | |
Collapse
|
6
|
Sanhueza C, Pavéz M, Hermosilla J, Rocha S, Valdivia-Gandur I, Manzanares MC, Beltrán V, Acevedo F. Poly-3-hydroxybutyrate-silver nanoparticles membranes as advanced antibiofilm strategies for combatting peri-implantitis. Int J Biol Macromol 2024; 269:131974. [PMID: 38692546 DOI: 10.1016/j.ijbiomac.2024.131974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Dental implant success is threatened by peri-implantitis, an inflammation leading to implant failure. Conventional treatments struggle with the intricate microbial and host factors involved. Antibacterial membranes, acting as barriers and delivering antimicrobials, may offer a promising solution. Thus, this study highlights the potential of developing antibacterial membranes of poly-3-hydroxybutyrate and silver nanoparticles (Ag Nps) to address peri-implantitis challenges, discussing design and efficacy against potential pathogens. Electrospun membranes composed of PHB microfibers and Ag Nps were synthesized in a blend of DMF/chloroform at three different concentrations. Various studies were conducted on the characterization and antimicrobial activity of the membranes. The synthesized Ag Nps ranged from 4 to 8 nm in size. Furthermore, Young's modulus decreased, reducing from 13.308 MPa in PHB membranes without Ag Nps to 0.983 MPa in PHB membranes containing higher concentrations of Ag Nps. This demonstrates that adding Ag Nps results in a less stiff membrane. An increase in elongation at break was noted with the rise in Ag Nps concentration, from 23.597 % in PHB membranes to 60.136 % in PHB membranes loaded with Ag Nps. The antibiotic and antibiofilm activity of the membranes were evaluated against Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Candida albicans. The results indicated that all PHB membranes containing Ag Nps exhibited potent antibacterial activity by inhibiting the growth of biofilms and planktonic bacteria. However, inhibition of C. albicans occurred only with the PHB-Ag Nps C membrane. These findings emphasize the versatility and potential of Ag Nps-incorporated membranes as a multifunctional approach for preventing and addressing microbial infections associated with peri-implantitis. The combination of antibacterial and antibiofilm properties in these membranes holds promise for improving the management and treatment of peri-implantitis-related complications.
Collapse
Affiliation(s)
- Claudia Sanhueza
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Mónica Pavéz
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jeyson Hermosilla
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Sebastián Rocha
- Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco, Chile
| | - Iván Valdivia-Gandur
- Biomedical Department, Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile
| | - María-Cristina Manzanares
- Human Anatomy and Embryology Unit, Experimental Pathology and Therapeutics Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Víctor Beltrán
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Clinical Investigation and Dental Innovation Center (CIDIC), Dental School, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| | - Francisca Acevedo
- Center of Excellence in Translational Medicine - Scientific and Technology Bioresource Nucleus (CEMT- BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
7
|
Bhavikatti SK, Zainuddin SLA, Ramli RB, Nadaf SJ, Dandge PB, Khalate M, Karobari MI. Insights into the antioxidant, anti-inflammatory and anti-microbial potential of Nigella sativa essential oil against oral pathogens. Sci Rep 2024; 14:11878. [PMID: 38789533 PMCID: PMC11126586 DOI: 10.1038/s41598-024-62915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oral disorders can exert systemic ramifications beyond their localized effects on dental tissues, implicating a wide array of physiological conditions. The utilization of essential oils (EOs) for protection of oral health represents a longstanding practice. Consequently, in this investigation, essential oil derived from Nigella sativa seeds (NSEO) underwent isolation via the hydro-distillation process, followed by a comprehensive evaluation of its antioxidant, anti-inflammatory, anti-fungal, antibacterial activities, and cytocompatibility. The isolated NSEO manifested as a pale-yellow substance and was found to harbor a diverse spectrum of bioactive constituents, including steroids, triterpenoids, flavonoids, phenols, proteins, alkaloids, tannin, sesquiterpenoid hydrocarbons, monoterpenoid alcohol, and monoterpenoid ketone (thymoquinone). Notably, the total phenolic content (TPC) and total flavonoid content (TFC) of NSEO were quantified at 641.23 μg GAE/gm and 442.25 μg QE/g, respectively. Furthermore, NSEO exhibited concentration-dependent inhibition of protein denaturation, HRBC membrane stabilization, and hemolysis inhibition. Comparative analysis revealed that NSEO and chlorhexidine (CHX) 0.2% displayed substantial inhibition of hemolysis compared to aspirin. While NSEO and CHX 0.2% demonstrated analogous antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, NSEO showcased heightened efficacy against Lactobacillus acidophilus and Candida albicans. Additionally, NSEO exhibited pronounced effects against periodontal pathogens such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia. Importantly, no cytotoxicity was observed on human gingival fibroblast cell lines. These findings underscore the potential of NSEO as a potent antibacterial and antifungal agent in the management of oral microbial pathogens, thereby offering avenues for the development of innovative therapies targeting diverse oral inflammatory conditions. Nevertheless, further investigations are imperative to unlock its full therapeutic repertoire.
Collapse
Affiliation(s)
- Shaeesta Khaleelahmed Bhavikatti
- Department of Periodontics, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia
- Department of Dental Research, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Siti Lailatul Akmar Zainuddin
- Department of Periodontics, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kelantan, Malaysia.
- Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150, Melaka, Malaysia.
| | - Rosmaliza Binti Ramli
- Basic and Medical Sciences Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu16150, Kelantan, Malaysia
| | - Sameer J Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus, 416310, Maharashtra, India
| | - Padma B Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004, Maharastra, India
| | - Masidd Khalate
- Department of Biotechnology, Shivaji University, Kolhapur, 416004, Maharastra, India
| | - Mohmed Isaqali Karobari
- Department of Dental Research, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
8
|
Ahmad N, Bukhari SNA, Hussain MA, Ejaz H, Munir MU, Amjad MW. Nanoparticles incorporated hydrogels for delivery of antimicrobial agents: developments and trends. RSC Adv 2024; 14:13535-13564. [PMID: 38665493 PMCID: PMC11043667 DOI: 10.1039/d4ra00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The prevention and treatment of microbial infections is an imminent global public health concern due to the poor antimicrobial performance of the existing antimicrobial regime and rapidly emerging antibiotic resistance in pathogenic microbes. In order to overcome these problems and effectively control bacterial infections, various new treatment modalities have been identified. To attempt this, various micro- and macro-molecular antimicrobial agents that function by microbial membrane disruption have been developed with improved antimicrobial activity and lesser resistance. Antimicrobial nanoparticle-hydrogels systems comprising antimicrobial agents (antibiotics, biological extracts, and antimicrobial peptides) loaded nanoparticles or antimicrobial nanoparticles (metal or metal oxide) constitute an important class of biomaterials for the prevention and treatment of infections. Hydrogels that incorporate nanoparticles can offer an effective strategy for delivering antimicrobial agents (or nanoparticles) in a controlled, sustained, and targeted manner. In this review, we have described an overview of recent advancements in nanoparticle-hydrogel hybrid systems for antimicrobial agent delivery. Firstly, we have provided an overview of the nanoparticle hydrogel system and discussed various advantages of these systems in biomedical and pharmaceutical applications. Thereafter, different hybrid hydrogel systems encapsulating antibacterial metal/metal oxide nanoparticles, polymeric nanoparticles, antibiotics, biological extracts, and antimicrobial peptides for controlling infections have been reviewed in detail. Finally, the challenges and future prospects of nanoparticle-hydrogel systems have been discussed.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland Brisbane Queens-land 4072 Australia
| | - Muhammad Wahab Amjad
- 6 Center for Ultrasound Molecular Imaging and Therapeutics, School of Medicine, University of Pittsburgh 15213 Pittsburgh Pennsylvania USA
| |
Collapse
|
9
|
Wang L, Zheng J, Hou W, Zhang C, Zhang J, Fan X, Zhang H, Han Y. The Anti-Microbial Peptide Citrocin Controls Pseudomonas aeruginosa Biofilms by Breaking Down Extracellular Polysaccharide. Int J Mol Sci 2024; 25:4122. [PMID: 38612931 PMCID: PMC11012989 DOI: 10.3390/ijms25074122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Citrocin is an anti-microbial peptide that holds great potential in animal feed. This study evaluates the anti-microbial and anti-biofilm properties of Citrocin and explores the mechanism of action of Citrocin on the biofilm of P. aeruginosa. The results showed that Citrocin had a significant inhibitory effect on the growth of P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.3 mg/mL. All five concentrations (1/4MIC, 1/2MIC, MIC, 2MIC, and 4MIC) of Citrocin inhibited P. aeruginosa biofilm formation. Citrocin at the MIC, 2MIC and 4MIC removed 42.7%, 76.0% and 83.2% of mature biofilms, respectively, and suppressed the swarming motility, biofilm metabolic activity and extracellular polysaccharide production of P. aeruginosa. Metabolomics analysis indicated that 0.3 mg/mL of Citrocin up- regulated 26 and down-regulated 83 metabolites, mainly comprising amino acids, fatty acids, organic acids and sugars. Glucose and amino acid metabolic pathways, including starch and sucrose metabolism as well as arginine and proline metabolism, were highly enriched by Citrocin. In summary, our research reveals the anti-biofilm mechanism of Citrocin at the metabolic level, which provides theoretical support for the development of novel anti-biofilm strategies for combatting P. aeruginosa.
Collapse
Affiliation(s)
- Liyao Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- College of Life Science and Technology, Southeast University, Nanjing 211189, China
| | - Jiaqi Zheng
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wenchao Hou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Chaowen Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Jie Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Xuanbo Fan
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Hongliang Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| |
Collapse
|
10
|
Kannan KP, Gunasekaran V, Sreenivasan P, Sathishkumar P. Recent updates and feasibility of nanodrugs in the prevention and eradication of dental biofilm and its associated pathogens-A review. J Dent 2024; 143:104888. [PMID: 38342369 DOI: 10.1016/j.jdent.2024.104888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
OBJECTIVES Dental biofilm is one of the most prevalent diseases in humans, which is mediated by multiple microorganisms. Globally, half of the human population suffers from dental biofilm and its associated diseases. In recent trends, nano-formulated drugs are highly attractive in the treatment of dental biofilms. However, the impact of different types of nanodrugs on the dental biofilm and its associated pathogens have not been published till date. Thus, this review focuses on the recent updates, feasibility, mechanisms, limitations, and regulations of nanodrugs applications in the prevention and eradication of dental biofilm. STUDY SELECTION, DATA AND SOURCES A systematic search was conducted in PubMed/Google Scholar/Scopus over the past five years covering the major keywords "nanodrugs, metallic nanoparticles, metal oxide nanoparticles, natural polymers, synthetic polymers, biomaterials, dental biofilm, antibiofilm mechanism, dental pathogens", are reviewed in this study. Nearly, 100 scientific articles are selected in this relevant topic published between 2019 and 2023. Data from the selected studies dealing with nanodrugs used for biofilm treatment was qualitatively analyzed. CONCLUSIONS The nanodrugs such as silver nanoparticles, gold nanoparticles, selenium nanoparticles, zinc oxide nanoparticles, copper oxide nanoparticles, titanium oxide nanoparticles, hydroxyapatite nanoparticles and these inorganic nanoparticles incorporated polymer-based nanocomposites, organic/inorganic nanoparticles mediated antimicrobial photodynamic therapy exhibits an excellent antibacterial and antibiofilm activity towards dental pathogens. Finally, this review highlights that bioinspired nanodrugs will be very useful to control the dental biofilm and its associated diseases. CLINICAL SIGNIFICANCE Microbial influence on the oral environment is unavoidable; therefore, curing such dental biofilms and pathogens is essential for the impactful reflection of applying biocompatible treatments. In this direction, the current review explains the demand for the nanodrug in inhibiting biofilms for the effective exploration of employing treatments.
Collapse
Affiliation(s)
- Kannika Parameshwari Kannan
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India
| | - Vinothini Gunasekaran
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India
| | - Pavithra Sreenivasan
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, India.
| |
Collapse
|
11
|
Souza JAS, do Amaral JG, Monteiro DR, Fernandes RA, Fernandes GL, Gorup LF, de Souza Neto FN, de Camargo ER, Agostinho AM, Barbosa DB, Delbem ACB. 'Green' silver nanoparticles combined with tyrosol as potential oral antimicrobial therapy. J Dent 2024; 143:104867. [PMID: 38286192 DOI: 10.1016/j.jdent.2024.104867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate silver nanoparticles (AgNPs) obtained by a 'green' route associated or not to tyrosol (TYR) against Streptococcus mutans and Candida albicans in planktonic and biofilms states. METHODS AgNPs were obtained by a 'green' route using pomegranate extract. The minimum inhibitory concentration (MIC) against S. mutans and C. albicans was determined for AgNPs and TYR combined and alone, and fractional inhibitory concentration index (FICI) was calculated. Single biofilms of C. albicans and S. mutans were cultivated for 24 h and then treated with drugs alone or in combination for 24 h. RESULTS AgNPs and TYR were effective against C. albicans and S. mutans considering planktonic cells alone and combined. The MIC values obtained for C. albicans was 312.5 µg/mL (AgNPs) and 50 mM (TYR) and for S. mutans was 78.1 µg/mL (AgNPs) and 90 mM (TYR). The combination of these antimicrobial agents was also effective against both microorganisms: 2.44 µg/mL/0.08 mM (AgNPs/TYR) for C. albicans and 39.05 µg/mL /1.25 mM (AgNPs/TYR) for S. mutans. However, synergism was observed only for C. albicans (FICI 0.008). When biofilm was evaluated, a reduction of 4.62 log10 was observed for S. mutans biofilm cells treated with AgNPs (p < 0.05, Tukey test). However, the addition of TYR to AgNPs did not improve their action against biofilm cells (p > 0.05). AgNPs combined with TYR demonstrated a synergistic effect against C. albicans biofilms. CONCLUSIONS These findings suggest the potential use of AgNPs with or without TYR against C. albicans and S. mutans, important oral pathogens. CLINICAL SIGNIFICANCE AgNPs obtained by a 'green' route combined or not with TYR can be an alternative to develop several types of oral antimicrobial therapies and biomaterials.
Collapse
Affiliation(s)
- José Antonio Santos Souza
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Jackeline Gallo do Amaral
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Renan Aparecido Fernandes
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Gabriela Lopes Fernandes
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Luiz Fernando Gorup
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil
| | | | | | | | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil.
| |
Collapse
|
12
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
13
|
Arsene MMJ, Viktorovna PI, Alla M, Mariya M, Davares AKL, Carime BZ, Anatolievna GO, Vyacheslavovna YN, Vladimirovna ZA, Andreevna SL, Aleksandrovna VE, Alekseevich BL, Nikolaïevna BM, Parfait K, Andrey V. Antimicrobial activity of phytofabricated silver nanoparticles using Carica papaya L. against Gram-negative bacteria. Vet World 2023; 16:1301-1311. [PMID: 37577189 PMCID: PMC10421558 DOI: 10.14202/vetworld.2023.1301-1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Antibiotic resistance, especially in Gram-negative bacteria, is a major public health risk affecting all industries requiring the use of antibiotics, including agriculture and animal breeding. This study aimed to use papaya extracts to synthesize silver nanoparticles (AgNPs) and evaluate their antimicrobial activity against various Gram-negative bacteria. Materials and Methods Silver nanoparticles were synthesized from the aqueous extracts of papaya seed, root, and bark, with AgNO3 used as a reducing agent. The phytofabricated AgNPs were analyzed by ultraviolet-visible absorbance, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and photon cross-correlation spectroscopy (PCCS). The disc-diffusion method was used to perform antibacterial analysis, and the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations were determined. We also investigated the antibiofilm activity of AgNPs and attempted to elucidate the potential mechanism of action on Escherichia coli ATCC 25922. Results Phytofabrication of AgNPs was successful with papaya root (PR-AgNPs) and papaya seed (PS-AgNPs), but not with papaya bark. Silver nanoparticles using papaya root and PS-AgNPs were both cubic and showed maximum absorbances of 2.6 and 0.3 AUs at 411.6 and 416.8 nm wavelengths and average hydrodynamic diameters X50 of 59.46 ± 7.03 and 66.57 ± 8.89 nm, respectively. The Ag in both AgNPs was confirmed by X-ray fluorescence by a distinctive peak in the spectrum at the silver Kα line of 22.105 keV. Both AgNPs exhibited broad-spectrum antimicrobial and antibiofilm activity against all Gram-negative bacteria, and PR-AgNPs were slightly better than AgNPs-PS. The MIC ranged from 16 μg/mL-128 μg/mL and 16 μg/mL-64 μg/mL, respectively, for PS-AgNPs and PR-AgNPs. The elucidation of the mechanism of action revealed interference with E. coli ATCC 25922 growth kinetics and inhibition of H+-ATPase proton pumps. Conclusion Papaya seed and root extracts were efficient reducing agents for the biogenic synthesis of AgNPs, with noteworthy antibacterial and antibiofilm activities. Future studies should be conducted to identify the phytochemicals and the mechanism involved in AgNPs synthesis.
Collapse
Affiliation(s)
- Mbarga Manga Joseph Arsene
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Podoprigora Irina Viktorovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Marukhlenko Alla
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Morozova Mariya
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Anyutoulou Kitio Linda Davares
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Bassa Zacharie Carime
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Gizinger Oksana Anatolievna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Yashina Natalya Vyacheslavovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Zhigunova Anna Vladimirovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Smolyakova Larissa Andreevna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Vasilieva Elena Aleksandrovna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Butusov Leonid Alekseevich
- Institute of Innovative Engineering Technologies, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Borekhova Marina Nikolaïevna
- Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Kezimana Parfait
- Department of Agrobiotechnology, Agrarian Institute, RUDN University named after Patrice Lumumba, Moscow, Russia
| | - Vodyashkin Andrey
- Institute of Biochemical Technology and Nanotechnology. RUDN University named after Patrice Lumumba, Moscow, Russia
| |
Collapse
|
14
|
Assunção MA, Botelho J, Machado V, Proença L, Matos APA, Mendes JJ, Bessa LJ, Taveira N, Santos A. Dental Implant Surface Decontamination and Surface Change of an Electrolytic Method versus Mechanical Approaches: A Pilot In Vitro Study. J Clin Med 2023; 12:jcm12041703. [PMID: 36836238 PMCID: PMC9967341 DOI: 10.3390/jcm12041703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Dental implants are the preferred fixed oral rehabilitation for replacing lost teeth. When peri-implant tissues become inflamed, the removal of plaque accumulating around the implant becomes imperative. Recently, several new strategies have been developed for this purpose, with electrolytic decontamination showing increased potential compared to traditional mechanical strategies. In this in vitro pilot study, we compare the efficacy of an electrolytic decontaminant (Galvosurge®) with an erythritol jet system (PerioFlow®) and two titanium brushes (R-Brush™ and i-Brush™) in removing Pseudomonas aeruginosa PAO1 biofilms from implants. Changes in the implant surface after each approach were also evaluated. Twenty titanium SLA implants were inoculated with P. aeruginosa and then randomly assigned to each treatment group. After treatment, decontamination efficacy was assessed by quantifying colony-forming units (log10 CFU/cm2) from each implant surface. Scanning electron microscopy was used to analyse changes in the implant surface. With the exception of R-Brush, all treatment strategies were similarly effective in removing P. aeruginosa from implants. Major surface changes were observed only in implants treated with titanium brushes. In conclusion, this pilot study suggests that electrolytic decontamination, erythritol-chlorhexidine particle jet system and i-Brush™ brushing have similar performance in removing P. aeruginosa biofilm from dental implants. Further studies are needed to evaluate the removal of more complex biofilms. Titanium brushes caused significant changes to the implant surface, the effects of which need to be evaluated.
Collapse
Affiliation(s)
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Luís Proença
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - António P. A. Matos
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Lucinda J. Bessa
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
| | - Nuno Taveira
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
- Correspondence: (N.T.); (A.S.)
| | - Alexandre Santos
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz—School of Health and Science, 2829-511 Almada, Portugal
- Correspondence: (N.T.); (A.S.)
| |
Collapse
|
15
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|
16
|
Ejaz H. Molecular characterization and antibiogram of the carbapenemase gene variants in clinical strains of Pseudomonas aeruginosa. Mol Biol Rep 2022; 49:10531-10539. [PMID: 36129599 DOI: 10.1007/s11033-022-07930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Carbapenemase-producing Pseudomonas aeruginosa (CPPA) is a substantial clinical concern because it jeopardizes therapeutic choices. This study characterizes the gene variants of CPPA and report its antibiogram. METHODS CPPA was isolated prospectively from diverse clinical sources in a tertiary care setting using a routine microbiological approach. Carbapenem-resistant P. aeruginosa strains were phenotypically identified using the modified carbapenem inactivation (mCIM) method. Minimum inhibitory concentration (MIC) breakpoints of several antibacterial drug groups were determined using broth microdilution methods and the MicroScan WalkAway plus system. Carbapenemase gene variants blaNDM, blaVIM, blaOXA,blaGES, and blaIMP were amplified using polymerase chain reaction (PCR), and the purified gene products were sequenced. RESULTS Seventy-one P. aeruginosa-infected cases were found, with 47 (66.2%) carrying CPPA; 46.8% of the latter were significantly associated with intensive care units (p = 0.03). CPPA was frequently detected in wound swabs (13; 27.7%), sputum (11; 23.4%), and blood (9; 19.1%). All strains were multidrug-resistant (MDR), and several were extensively drug-resistant. MIC50 and MIC90 breakpoints of all antibiotics, except colistin, were within the resistance range. MIC90 breakpoints of aztreonam, amikacin, cefepime, and piperacillin-tazobactam were > 512 µg/mL. The multiple antibiotic resistance index (MARI) was remarkably high, with a range of 0.38-0.92. The most commonly detected carbapenemase genes were blaVIM (74%), blaNDM-1 (19%), blaOXA-23 (14.9%), and blaGES (10.6%), while 12 of 47 strains co-harbored different combinations of carbapenemase gene variants. CONCLUSION A large proportion of CPPA strains carried the blaVIM gene variant, indicating intimidating health problems and emphasizing the need for extensive surveillance and antibiotic stewardship.
Collapse
Affiliation(s)
- Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, 72388, Al Jouf, Saudi Arabia.
| |
Collapse
|