1
|
Melrose J, Guilak F. Diverse and multifunctional roles for perlecan ( HSPG2) in repair of the intervertebral disc. JOR Spine 2024; 7:e1362. [PMID: 39081381 PMCID: PMC11286675 DOI: 10.1002/jsp2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Perlecan is a widely distributed, modular, and multifunctional heparan sulfate proteoglycan, which facilitates cellular communication with the extracellular environment to promote tissue development, tissue homeostasis, and optimization of biomechanical tissue functions. Perlecan-mediated osmotic mechanotransduction serves to regulate the metabolic activity of cells in tissues subjected to tension, compression, or shear. Perlecan interacts with a vast array of extracellular matrix (ECM) proteins through which it stabilizes tissues and regulates the proliferation or differentiation of resident cell populations. Here we examine the roles of the HS-proteoglycan perlecan in the normal and destabilized intervertebral disc. The intervertebral disc cell has evolved to survive in a hostile weight bearing, acidic, low oxygen tension, and low nutrition environment, and perlecan provides cytoprotection, shields disc cells from excessive compressive forces, and sequesters a range of growth factors in the disc cell environment where they aid in cellular survival, proliferation, and differentiation. The cells in mechanically destabilized connective tissues attempt to re-establish optimal tissue composition and tissue functional properties by changing the properties of their ECM, in the process of chondroid metaplasia. We explore the possibility that perlecan assists in these cell-mediated tissue remodeling responses by regulating disc cell anabolism. Perlecan's mechano-osmotic transductive property may be of potential therapeutic application.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling InstituteNorthern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Farshid Guilak
- Department of Orthopaedic SurgeryWashington UniversitySt. LouisMissouriUSA
- Department of OrthopaedicsShriners Hospitals for ChildrenSt. LouisMissouriUSA
| |
Collapse
|
2
|
Alcaide-Ruggiero L, Cugat R, Domínguez JM. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int J Mol Sci 2023; 24:10824. [PMID: 37446002 DOI: 10.3390/ijms241310824] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| | - Ramón Cugat
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
- Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, 08023 Barcelona, Spain
| | - Juan Manuel Domínguez
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| |
Collapse
|
3
|
Theaflavin-3,3 -Digallate Protects Cartilage from Degradation by Modulating Inflammation and Antioxidant Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3047425. [PMID: 35847580 PMCID: PMC9286955 DOI: 10.1155/2022/3047425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022]
Abstract
Background Osteoarthritis (OA) is a common degenerative joint disease that may be closely linked to inflammation and oxidative stress destroying the balance of cartilage matrix. Theaflavin-3,3′-digallate (TFDG), a natural substance derived from black tea, has been reported to restrict the activity of inflammatory cytokines and effectively eliminate reactive oxygen species (ROS) in various diseases. However, it is not clear whether TFDG can improve OA. Methods Chondrocytes were treated with or without IL-1β and 20 μM and 40 μM TFDG. The effect of TFDG on the proliferation of chondrocytes was detected by CCK8. RT-qPCR was used to detect the gene expression of inflammatory factors, extracellular matrix synthesis, and degradation genes. Western blot and immunofluorescence assays were used to detect the protein expression. The fluorescence intensity of reactive oxygen species labeled by DCFH-DA was detected by flow cytometry. We established an OA rat model by performing destabilized medial meniscus (DMM) surgery to observe whether TFDG can protect chondrocytes under arthritis in vivo. Results TFDG was found to inhibit proinflammatory factors (IL-6, TNF-α, iNOS, and PGE) and matrix-degrading enzymes (MMP13, MMP3, and ADAMTS5) expression and protected extracellular matrix components of chondrocytes (ACAN, COL2, and SOX9). TFDG accelerated the scavenging of ROS caused by IL-1β according to the Nrf2 signaling pathway activation. At the same time, TFDG suppressed the PI3K/AKT/NF-κB and MAPK signaling pathways to delay the inflammatory process. The cartilage of DMM rats receiving TFDG showed lower Osteoarthritis Research Society International (OARSI) scores and expressed higher levels of COL2 and Nrf2 compared with those of rats in the DMM group. Conclusion TFDG could protect cartilage from degradation and alleviate osteoarthritis in rats, which suggests that TFDG has potential as a drug candidate for OA therapy.
Collapse
|
4
|
Vincent TL, McClurg O, Troeberg L. The Extracellular Matrix of Articular Cartilage Controls the Bioavailability of Pericellular Matrix-Bound Growth Factors to Drive Tissue Homeostasis and Repair. Int J Mol Sci 2022; 23:6003. [PMID: 35682681 PMCID: PMC9181404 DOI: 10.3390/ijms23116003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
The extracellular matrix (ECM) has long been regarded as a packing material; supporting cells within the tissue and providing tensile strength and protection from mechanical stress. There is little surprise when one considers the dynamic nature of many of the individual proteins that contribute to the ECM, that we are beginning to appreciate a more nuanced role for the ECM in tissue homeostasis and disease. Articular cartilage is adapted to be able to perceive and respond to mechanical load. Indeed, physiological loads are essential to maintain cartilage thickness in a healthy joint and excessive mechanical stress is associated with the breakdown of the matrix that is seen in osteoarthritis (OA). Although the trigger by which increased mechanical stress drives catabolic pathways remains unknown, one mechanism by which cartilage responds to increased compressive load is by the release of growth factors that are sequestered in the pericellular matrix. These are heparan sulfate-bound growth factors that appear to be largely chondroprotective and displaced by an aggrecan-dependent sodium flux. Emerging evidence suggests that the released growth factors act in a coordinated fashion to drive cartilage repair. Thus, we are beginning to appreciate that the ECM is the key mechano-sensor and mechano-effector in cartilage, responsible for directing subsequent cellular events of relevance to joint health and disease.
Collapse
Affiliation(s)
- Tonia L. Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Oliver McClurg
- Norwich Medical School, University of East Anglia, Norwich, Norwich NR4 7UQ, UK; (O.M.); (L.T.)
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Norwich, Norwich NR4 7UQ, UK; (O.M.); (L.T.)
| |
Collapse
|
5
|
Regulation of FGF-2, FGF-18 and Transcription Factor Activity by Perlecan in the Maturational Development of Transitional Rudiment and Growth Plate Cartilages and in the Maintenance of Permanent Cartilage Homeostasis. Int J Mol Sci 2022; 23:ijms23041934. [PMID: 35216048 PMCID: PMC8872392 DOI: 10.3390/ijms23041934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to highlight the roles of perlecan in the regulation of the development of the rudiment developmental cartilages and growth plate cartilages, and also to show how perlecan maintains permanent articular cartilage homeostasis. Cartilage rudiments are transient developmental templates containing chondroprogenitor cells that undergo proliferation, matrix deposition, and hypertrophic differentiation. Growth plate cartilage also undergoes similar changes leading to endochondral bone formation, whereas permanent cartilage is maintained as an articular structure and does not undergo maturational changes. Pericellular and extracellular perlecan-HS chains interact with growth factors, morphogens, structural matrix glycoproteins, proteases, and inhibitors to promote matrix stabilization and cellular proliferation, ECM remodelling, and tissue expansion. Perlecan has mechanotransductive roles in cartilage that modulate chondrocyte responses in weight-bearing environments. Nuclear perlecan may modulate chromatin structure and transcription factor access to DNA and gene regulation. Snail-1, a mesenchymal marker and transcription factor, signals through FGFR-3 to promote chondrogenesis and maintain Acan and type II collagen levels in articular cartilage, but prevents further tissue expansion. Pre-hypertrophic growth plate chondrocytes also express high Snail-1 levels, leading to cessation of Acan and CoI2A1 synthesis and appearance of type X collagen. Perlecan differentially regulates FGF-2 and FGF-18 to maintain articular cartilage homeostasis, rudiment and growth plate cartilage growth, and maturational changes including mineralization, contributing to skeletal growth.
Collapse
|
6
|
Ding DF, Xue Y, Zhang JP, Zhang ZQ, Li WY, Cao YL, Xu JG. Similarities and differences between rat and mouse chondrocyte gene expression induced by IL-1β. J Orthop Surg Res 2022; 17:70. [PMID: 35120538 PMCID: PMC8815127 DOI: 10.1186/s13018-021-02889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Osteoarthritis (OA) is the most prevalent degenerative joint disease. In vitro experiments are an intuitive method used to investigate its early pathogenesis. Chondrocyte inflammation models in rats and mice are often used as in vitro models of OA. However, similarities and differences between them in the early stages of inflammation have not been reported. Objective This paper seeks to compare the chondrocyte phenotype of rats and mice in the early inflammatory state and identify chondrocytes suitable for the study of early OA. Methods Under similar conditions, chondrocytes from rats and mice were stimulated using the same IL-1β concentration for a short period of time. The phenotypic changes of chondrocytes were observed under a microscope. The treated chondrocytes were subjected to RNA-seq to identify similarities and differences in gene expression. Chondrocytes were labelled with EdU for proliferation analysis. Cell proliferation-associated proteins, including minichromosome maintenance 2 (MCM2), minichromosome maintenance 5 (MCM5), Lamin B1, proliferating cell nuclear antigen (PCNA), and Cyclin D1, were analysed by immunocytochemical staining, cell immunofluorescence, and Western blots to verify the RNA-seq results. Results RNA-seq revealed that the expression patterns of cytokines, chemokines, matrix metalloproteinases, and collagen were similar between the rat and mouse chondrocyte inflammation models. Nonetheless, the expression of proliferation-related genes showed the opposite pattern. The RNA-seq results were further verified by subsequent experiments. The expression levels of MCM2, MCM5, Lamin B1, PCNA, and Cyclin D1 were significantly upregulated in rat chondrocytes (P < 0.05) and mouse chondrocytes (P < 0.05). Conclusions Based on the findings, the rat chondrocyte inflammation model may help in the study of the early pathological mechanism of OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02889-2.
Collapse
Affiliation(s)
- Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, 201613, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Zeng-Qiao Zhang
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wen-Yao Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue-Long Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
7
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
8
|
Garcia J, McCarthy HS, Kuiper JH, Melrose J, Roberts S. Perlecan in the Natural and Cell Therapy Repair of Human Adult Articular Cartilage: Can Modifications in This Proteoglycan Be a Novel Therapeutic Approach? Biomolecules 2021; 11:biom11010092. [PMID: 33450893 PMCID: PMC7828356 DOI: 10.3390/biom11010092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Articular cartilage is considered to have limited regenerative capacity, which has led to the search for therapies to limit or halt the progression of its destruction. Perlecan, a multifunctional heparan sulphate (HS) proteoglycan, promotes embryonic cartilage development and stabilises the mature tissue. We investigated the immunolocalisation of perlecan and collagen between donor-matched biopsies of human articular cartilage defects (n = 10 × 2) that were repaired either naturally or using autologous cell therapy, and with age-matched normal cartilage. We explored how the removal of HS from perlecan affects human chondrocytes in vitro. Immunohistochemistry showed both a pericellular and diffuse matrix staining pattern for perlecan in both natural and cell therapy repaired cartilage, which related to whether the morphology of the newly formed tissue was hyaline cartilage or fibrocartilage. Immunostaining for perlecan was significantly greater in both these repair tissues compared to normal age-matched controls. The immunolocalisation of collagens type III and VI was also dependent on tissue morphology. Heparanase treatment of chondrocytes in vitro resulted in significantly increased proliferation, while the expression of key chondrogenic surface and genetic markers was unaffected. Perlecan was more prominent in chondrocyte clusters than in individual cells after heparanase treatment. Heparanase treatment could be a means of increasing chondrocyte responsiveness to cartilage injury and perhaps to improve repair of defects.
Collapse
Affiliation(s)
- John Garcia
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - Helen S. McCarthy
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - Jan Herman Kuiper
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Local Health District, St. Leonards, NSW 2065, Australia;
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
- Correspondence: ; Tel.: +44-1-691-404-664
| |
Collapse
|
9
|
Southan J, McHugh E, Walker H, Ismail HM. Metabolic Signature of Articular Cartilage Following Mechanical Injury: An Integrated Transcriptomics and Metabolomics Analysis. Front Mol Biosci 2020; 7:592905. [PMID: 33392255 PMCID: PMC7773849 DOI: 10.3389/fmolb.2020.592905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical injury to the articular cartilage is a key risk factor in joint damage and predisposition to osteoarthritis. Integrative multi-omics approaches provide a valuable tool to understand tissue behavior in response to mechanical injury insult and help to identify key pathways linking injury to tissue damage. Global or untargeted metabolomics provides a comprehensive characterization of the metabolite content of biological samples. In this study, we aimed to identify the metabolic signature of cartilage tissue post injury. We employed an integrative analysis of transcriptomics and global metabolomics of murine epiphyseal hip cartilage before and after injury. Transcriptomics analysis showed a significant enrichment of gene sets involved in regulation of metabolic processes including carbon metabolism, biosynthesis of amino acids, and steroid biosynthesis. Integrative analysis of enriched genes with putatively identified metabolite features post injury showed a significant enrichment for carbohydrate metabolism (glycolysis, galactose, and glycosylate metabolism and pentose phosphate pathway) and amino acid metabolism (arginine biosynthesis and tyrosine, glycine, serine, threonine, and arginine and proline metabolism). We then performed a cross analysis of global metabolomics profiles of murine and porcine ex vivo cartilage injury models. The top commonly modulated metabolic pathways post injury included arginine and proline metabolism, arginine biosynthesis, glycolysis/gluconeogenesis, and vitamin B6 metabolic pathways. These results highlight the significant modulation of metabolic responses following mechanical injury to articular cartilage. Further investigation of these pathways would provide new insights into the role of the early metabolic state of articular cartilage post injury in promoting tissue damage and its link to disease progression of osteoarthritis.
Collapse
Affiliation(s)
- Jennifer Southan
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Emily McHugh
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Heather Walker
- biOMICS Mass Spectrometry Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Heba M Ismail
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Danalache M, Erler AL, Wolfgart JM, Schwitalle M, Hofmann UK. Biochemical changes of the pericellular matrix and spatial chondrocyte organization-Two highly interconnected hallmarks of osteoarthritis. J Orthop Res 2020; 38:2170-2180. [PMID: 32301522 DOI: 10.1002/jor.24699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/04/2023]
Abstract
During osteoarthritis, chondrocytes change their spatial arrangement from single to double strings, then to small and big clusters. This change in pattern has recently been established as an image-based biomarker for osteoarthritis. The pericellular matrix (PCM) appears to degrade together alongside cellular reorganization. The aim of this study was to characterize this PCM-degradation based on different cellular patterns. We additionally wanted to identify the earliest time point of PCM-breakdown in this physiopathological model. To this end, cartilage samples were selected according to their predominant cellular pattern. Qualitative analysis of PCM degradation was performed immunohistochemically by analysing five main PCM components: collagen type VI, perlecan, collagen type III, biglycan, and fibrillin-1 (n = 6 patients). Their protein content was quantified by enzyme-linked immunosorbent assay (127 patients). Accompanying spatial cellular rearrangement, the PCM is progressively destroyed, with a pericellular signal loss in fluorescence microscopy for collagen type VI, perlecan, and biglycan. This loss in protein signal is accompanied by a reduction in total protein content from single strings to big clusters (P < .001 for collagen type VI, P = .003 for perlecan, and P < .001 for biglycan). As a result of an increase in the number of cells from single strings to big clusters, the amount of protein available per cell also decreases for collagen type III and fibrillin-1, where total protein levels remain constant. Biochemical changes of the PCM and cellular rearrangement are thus highly interconnected hallmarks of osteoarthritis. Interestingly, the earliest point in time for a relevant PCM impairment appears to be at the transition to small clusters.
Collapse
Affiliation(s)
- Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Anna-Lisa Erler
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany.,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Julius M Wolfgart
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany.,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | | | - Ulf K Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany.,Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Chery DR, Han B, Li Q, Zhou Y, Heo SJ, Kwok B, Chandrasekaran P, Wang C, Qin L, Lu XL, Kong D, Enomoto-Iwamoto M, Mauck RL, Han L. Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis. Acta Biomater 2020; 111:267-278. [PMID: 32428685 DOI: 10.1016/j.actbio.2020.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
The pericellular matrix (PCM) of cartilage is a structurally distinctive microdomain surrounding each chondrocyte, and is pivotal to cell homeostasis and cell-matrix interactions in healthy tissue. This study queried if the PCM is the initiation point for disease or a casualty of more widespread matrix degeneration. To address this question, we queried the mechanical properties of the PCM and chondrocyte mechanoresponsivity with the development of post-traumatic osteoarthritis (PTOA). To do so, we integrated Kawamoto's film-assisted cryo-sectioning with immunofluorescence-guided AFM nanomechanical mapping, and quantified the microscale modulus of murine cartilage PCM and further-removed extracellular matrix. Using the destabilization of the medial meniscus (DMM) murine model of PTOA, we show that decreases in PCM micromechanics are apparent as early as 3 days after injury, and that this precedes changes in the bulk ECM properties and overt indications of cartilage damage. We also show that, as a consequence of altered PCM properties, calcium mobilization by chondrocytes in response to mechanical challenge (hypo-osmotic stress) is significantly disrupted. These aberrant changes in chondrocyte micromechanobiology as a consequence of DMM could be partially blocked by early inhibition of PCM remodeling. Collectively, these results suggest that changes in PCM micromechanobiology are leading indicators of the initiation of PTOA, and that disease originates in the cartilage PCM. This insight will direct the development of early detection methods, as well as small molecule-based therapies that can stop early aberrant remodeling in this critical cartilage microdomain to slow or reverse disease progression. STATEMENT OF SIGNIFICANCE: Post-traumatic osteoarthritis (PTOA) is one prevalent musculoskeletal disease that afflicts young adults, and there are no effective strategies for early detection or intervention. This study identifies that the reduction of cartilage pericellular matrix (PCM) micromodulus is one of the earliest events in the initiation of PTOA, which, in turn, impairs the mechanosensitive activities of chondrocytes, contributing to the vicious loop of cartilage degeneration. Rescuing the integrity of PCM has the potential to restore normal chondrocyte mechanosensitive homeostasis and to prevent further degradation of cartilage. Our findings enable the development of early OA detection methods targeting changes in the PCM, and treatment strategies that can stop early aberrant remodeling in this critical microdomain to slow or reverse disease progression.
Collapse
|
12
|
Farrugia B, Smith SM, Shu CC, Melrose J. Spatiotemporal Expression of 3-B-3(-) and 7-D-4 Chondroitin Sulfation, Tissue Remodeling, and Attempted Repair in an Ovine Model of Intervertebral Disc Degeneration. Cartilage 2020; 11:234-250. [PMID: 31578084 PMCID: PMC7097983 DOI: 10.1177/1947603519876354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Examination of intervertebral disc (IVD) regeneration in an ovine annular lesion model. HYPOTHESIS Sulfation motifs are important functional determinants in glycosaminoglycans (GAGs). Previous studies have correlated 3-B-3(-) and 7-D-4 chondroitin sulfate (CS) motifs in tissues undergoing morphogenetic transition in development. We hypothesize that these motifs may also be expressed in degenerate IVDs and may represent a reparative response. DESIGN Induction of disc degeneration by 5 mm or 6 × 20 mm lesions in the annulus fibrosus (AF) over 6 or 3 to 6 months postoperation (PO). Tissue sections were stained with toluidine blue-fast green, 3-B-3(-) and 7-D-4 CS-sulfation motifs were immunolocalized in 3-month PO 6 × 20 mm lesion IVDs. Sulfated glycosaminoglycan (GAG), 3-B-3(-), and 7-D-4 epitopes were quantitated by ELISIA (enzyme-linked immunosorbent inhibition assay) in extracts of AF (lesion site and contralateral half) and nucleus pulposus (NP) 0, 3, and 6 months PO. RESULTS Collagenous overgrowth of lesions occurred in the outer AF. Chondroid metaplasia in ~20% of the 6 × 20 mm affected discs resulted in integration of an outgrowth of NP tissue with the inner AF lamellae preventing propagation of the lesion. 3-B-3(-) and 7-D-4 CS sulfation motifs were immunolocalized in this chondroid tissue. ELISIA quantified CS sulfation motifs demonstrating an increase 3 to 6 months PO in the AF lesion and a reduction in sulfated GAG not evident in the contralateral AF. CONCLUSIONS (1) Outer annular lesions underwent spontaneous repair. (2) Chondroid metaplasia of the inner 6 × 20 mm defect prevented its propagation suggesting an apparent reparative response.
Collapse
Affiliation(s)
- Brooke Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne
| | - Susan M. Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Cindy C. Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Health Authority, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Danalache M, Kleinert R, Schneider J, Erler AL, Schwitalle M, Riester R, Traub F, Hofmann UK. Changes in stiffness and biochemical composition of the pericellular matrix as a function of spatial chondrocyte organisation in osteoarthritic cartilage. Osteoarthritis Cartilage 2019; 27:823-832. [PMID: 30711608 DOI: 10.1016/j.joca.2019.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/26/2018] [Accepted: 01/20/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE During osteoarthritis (OA), chondrocytes seem to change their spatial arrangement from single to double strings, small and big clusters. Since the pericellular matrix (PCM) appears to degrade alongside this reorganisation, it has been suggested that spatial patterns act as an image-based biomarker for OA. The aim of this study was to establish the functional relevance of spatial organisation in articular cartilage. METHOD Cartilage samples were selected according to their predominant spatial cellular pattern. Young's modulus of their PCM was measured by atomic force microscopy (AFM) (∼500 measurements/pattern). The distribution of two major PCM components (collagen type VI and perlecan) was analysed by immunohistochemistry (8 patients) and protein content quantified by enzyme-linked immunosorbent assay (ELISA) (58 patients). RESULTS PCM stiffness significantly decreased with the development from single to double strings (p = 0.030), from double strings to small clusters (p = 0.015), and from small clusters to big clusters (p < 0.001). At the same time, the initially compact collagen type VI and perlecan staining progressively weakened and was less focalised. The earliest point with a significant reduction in protein content as shown by ELISA was the transition from single strings to small clusters for collagen type VI (p = 0.016) and from double strings to small clusters for perlecan (p = 0.008), with the lowest amounts for both proteins seen in big clusters. CONCLUSIONS This study demonstrates the functional relevance of spatial chondrocyte organisation as an image-based biomarker. At the transition from single to double strings PCM stiffness decreases, followed by protein degradation from double strings to small clusters.
Collapse
Affiliation(s)
- M Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - R Kleinert
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - J Schneider
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - A L Erler
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Medical Faculty of the University of Tübingen, D-72076 Tübingen, Germany.
| | - M Schwitalle
- Winghofer Medicum, Röntgenstraße 38, D-72108 Rottenburg am Neckar, Germany.
| | - R Riester
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - F Traub
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Department of Orthopaedic Surgery, University Hospital of Tübingen, Hoppe-Seyler-Strasse 3, D-72076 Tübingen, Germany.
| | - U K Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Department of Orthopaedic Surgery, University Hospital of Tübingen, Hoppe-Seyler-Strasse 3, D-72076 Tübingen, Germany.
| |
Collapse
|
14
|
Heparan Sulfate Proteoglycan Synthesis Is Dysregulated in Human Osteoarthritic Cartilage. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:632-647. [DOI: 10.1016/j.ajpath.2018.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
|
15
|
Martinez JR, Grindel BJ, Hubka KM, Dodge GR, Farach-Carson MC. Perlecan/HSPG2: Signaling role of domain IV in chondrocyte clustering with implications for Schwartz-Jampel Syndrome. J Cell Biochem 2019; 120:2138-2150. [PMID: 30203597 PMCID: PMC6411452 DOI: 10.1002/jcb.27521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023]
Abstract
Perlecan/heparan sulfate proteoglycan 2 (HSPG2), a large HSPG, is indispensable for the development of musculoskeletal tissues, where it is deposited within the pericellular matrix (PCM) surrounding chondrocytes and disappears nearly completely at the chondro-osseous junction (COJ) of developing long bones. Destruction of perlecan at the COJ converts an avascular cartilage compartment into one that permits blood vessel infiltration and osteogenesis. Mutations in perlecan are associated with chondrodysplasia with widespread musculoskeletal and joint defects. This study elucidated novel signaling roles of perlecan core protein in endochondral bone formation and chondrocyte behavior. Perlecan subdomains were tested for chondrogenic properties in ATDC5 cells, a model for early chondrogenesis. A region within domain IV of perlecan (HSPG2 IV-3) was found to promote rapid prechondrocyte clustering. Introduction of the mutation (R3452Q) associated with the human skeletal disorder Schwartz-Jampel syndrome limited HSPG2 IV-3-induced clustering. HSPG2 IV-3 activity was enhanced when thermally unfolded, likely because of increased exposure of the active motif(s). HSPG2 IV-3-induced clustering was accompanied by the deactivation of key components of the focal adhesion complex, FAK and Src, with increased messenger RNA (mRNA) levels of precartilage condensation markers Sox9 and N-cadherin ( Cdh2), and cartilage PCM components collagen II ( Col2a1) and aggrecan ( Acan). HSPG2 IV-3 reduced signaling through the ERK pathway, where loss of ERK1/2 phosphorylation coincided with reduced FoxM1 protein levels and increased mRNA levels cyclin-dependent kinase inhibitor 1C (Cdkn1c) and activating transcription factor 3 ( Atf3), reducing cell proliferation. These findings point to a critical role for perlecan domain IV in cartilage development through triggering chondrocyte condensation.
Collapse
Affiliation(s)
- Jerahme R. Martinez
- Department of BioSciences, Rice University, Houston, TX 77005, USA,Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Brian J. Grindel
- Department of BioSciences, Rice University, Houston, TX 77005, USA,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Kelsea M. Hubka
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA,Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Medical Center, Department of Veterans Affairs, Philadelphia, PA. University of Pennsylvania Perelman School of Medicine, Department of Orthopedic Surgery, Philadelphia, PA., 19104, USA
| | - Mary C. Farach-Carson
- Department of BioSciences, Rice University, Houston, TX 77005, USA,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA,Department of Bioengineering, Rice University, Houston, TX 77005, USA,To whom correspondence should be addressed: Mary C. Farach-Carson, Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston TX 77054, Phone: 713-486-4438,
| |
Collapse
|
16
|
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci 2018; 1442:17-34. [PMID: 30008181 DOI: 10.1111/nyas.13930] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
Articular chondrocytes are quiescent, fully differentiated cells responsible for the homeostasis of adult articular cartilage by maintaining cellular survival functions and the fine-tuned balance between anabolic and catabolic functions. This balance requires phenotypic stability that is lost in osteoarthritis (OA), a disease that affects and involves all joint tissues and especially impacts articular cartilage structural integrity. In OA, articular chondrocytes respond to the accumulation of injurious biochemical and biomechanical insults by shifting toward a degradative and hypertrophy-like state, involving abnormal matrix production and increased aggrecanase and collagenase activities. Hypertrophy is a necessary, transient developmental stage in growth plate chondrocytes that culminates in bone formation; in OA, however, chondrocyte hypertrophy is catastrophic and it is believed to initiate and perpetuate a cascade of events that ultimately result in permanent cartilage damage. Emphasizing changes in DNA methylation status and alterations in NF-κB signaling in OA, this review summarizes the data from the literature highlighting the loss of phenotypic stability and the hypertrophic differentiation of OA chondrocytes as central contributing factors to OA pathogenesis.
Collapse
Affiliation(s)
- Purva Singh
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| |
Collapse
|
17
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
18
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
19
|
Xu X, Li Z, Leng Y, Neu CP, Calve S. Knockdown of the pericellular matrix molecule perlecan lowers in situ cell and matrix stiffness in developing cartilage. Dev Biol 2016; 418:242-7. [PMID: 27578148 DOI: 10.1016/j.ydbio.2016.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022]
Abstract
The pericellular matrix (PCM) is a component of the extracellular matrix that is found immediately surrounding individual chondrocytes in developing and adult cartilage, and is rich in the proteoglycan perlecan. Mutations in perlecan are the basis of several developmental disorders, which are thought to arise from disruptions in the mechanical stability of the PCM. We tested the hypothesis that defects in PCM organization will reduce the stiffness of chondrocytes in developing cartilage by combining a murine model of Schwartz-Jampel syndrome, in which perlecan is knocked down, with our novel atomic force microscopy technique that can measure the stiffness of living cells and surrounding matrix in embryonic and postnatal tissues in situ. Perlecan knockdown altered matrix organization and significantly decreased the stiffness of both chondrocytes and interstitial matrix as a function of age and genotype. Our results demonstrate that the knockdown of a spatially restricted matrix molecule can have a profound influence on cell and tissue stiffness, implicating a role for outside-in mechanical signals from the PCM in regulating the intracellular mechanisms required for the overall development of cartilage.
Collapse
Affiliation(s)
- Xin Xu
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO 80309, United States
| | - Zhiyu Li
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Yue Leng
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO 80309, United States.
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States.
| |
Collapse
|
20
|
Shu CC, Jackson MT, Smith MM, Smith SM, Penm S, Lord MS, Whitelock JM, Little CB, Melrose J. Ablation of Perlecan Domain 1 Heparan Sulfate Reduces Progressive Cartilage Degradation, Synovitis, and Osteophyte Size in a Preclinical Model of Posttraumatic Osteoarthritis. Arthritis Rheumatol 2016; 68:868-79. [PMID: 26636652 DOI: 10.1002/art.39529] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/19/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the role of the heparan sulfate (HS) proteoglycan perlecan (HSPG-2) in regulating fibroblast growth factor (FGF) activity, bone and joint growth, and the onset and progression of posttraumatic osteoarthritis (OA) in a mouse gene-knockout model. METHODS Maturational changes were evaluated histologically in the knees of 3-, 6-, and 12-week-old wild-type (WT) mice and Hspg2(Δ3-/Δ3-) mice (Hspg2 lacking domain 1 HS, generated by ablation of exon 3 of perlecan). Cartilage damage, subchondral bone sclerosis, osteophytosis, and synovial inflammation were scored at 4 and 8 weeks after surgical induction of OA in WT and Hspg2(Δ3-/Δ3-) mice. Changes in cartilage expression of FGF-2, FGF-18, HSPG-2, FGF receptor 1 (FGFR-1), and FGFR-3 were examined immunohistochemically. Femoral head cartilage from both mouse genotypes was cultured in the presence or absence of interleukin-1α (IL-1α), FGF-2, and FGF-18, and the content and release of glycosaminoglycan (GAG) and expression of messenger RNA (mRNA) for key matrix molecules, enzymes, and inhibitors were quantified. RESULTS No effect of perlecan HS ablation on growth plate or joint development was detected. After induction of OA, Hspg2(Δ3-/Δ3-) mice had significantly reduced cartilage erosion, osteophytosis, and synovitis. OA-induced loss of chondrocyte expression of FGF-2, FGF-18, and HSPG-2 occurred in both genotypes. Expression of FGFR-1 after OA induction was maintained in WT mice, while FGFR-3 loss after OA induction was significantly reduced in Hspg2(Δ3-/Δ3-) mice. There were no genotypic differences in GAG content or release between unstimulated control cartilage and IL-1α-stimulated cartilage. However, IL-1α-induced cartilage expression of Mmp3 mRNA was significantly reduced in Hspg2(Δ3-/Δ3-) mice. Cartilage GAG release in either the presence or absence of IL-1α was unaltered by FGF-2 in both genotypes. In cartilage cultures with FGF-18, IL-1α-stimulated GAG loss was significantly reduced only in Hspg2(Δ3-/Δ3-) mice, and this was associated with maintained expression of Fgfr3 mRNA and reduced expression of Mmp2/Mmp3 mRNA. CONCLUSION Perlecan HS has significant roles in directing the development of posttraumatic OA, potentially via the alteration of FGF/HS/FGFR signaling. These data suggest that the chondroprotection conferred by perlecan HS ablation could be attributed, at least in part, to the preservation of FGFR-3 and increased FGF signaling.
Collapse
Affiliation(s)
- Cindy C Shu
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Miriam T Jackson
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Margaret M Smith
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Susan M Smith
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Steven Penm
- University of New South Wales, Kensington, New South Wales, Australia
| | - Megan S Lord
- University of New South Wales, Kensington, New South Wales, Australia
| | - John M Whitelock
- University of New South Wales, Kensington, New South Wales, Australia
| | - Christopher B Little
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - James Melrose
- Kolling Institute, Northern Sydney Local Health District, and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
21
|
Xu M, Stattin EL, Shaw G, Heinegård D, Sullivan G, Wilmut I, Colman A, Önnerfjord P, Khabut A, Aspberg A, Dockery P, Hardingham T, Murphy M, Barry F. Chondrocytes Derived From Mesenchymal Stromal Cells and Induced Pluripotent Cells of Patients With Familial Osteochondritis Dissecans Exhibit an Endoplasmic Reticulum Stress Response and Defective Matrix Assembly. Stem Cells Transl Med 2016; 5:1171-81. [PMID: 27388238 DOI: 10.5966/sctm.2015-0384] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/16/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED : Familial osteochondritis dissecans (FOCD) is an inherited skeletal defect characterized by the development of large cartilage lesions in multiple joints, short stature, and early onset of severe osteoarthritis. It is associated with a heterozygous mutation in the ACAN gene, resulting in a Val-Met replacement in the C-type lectin domain of aggrecan. To understand the cellular pathogenesis of this condition, we studied the chondrogenic differentiation of patient bone marrow mesenchymal stromal cells (BM-MSCs). We also looked at cartilage derived from induced pluripotent stem cells (iPSCs) generated from patient fibroblasts. Our results revealed several characteristics of the differentiated chondrocytes that help to explain the disease phenotype and susceptibility to cartilage injury. First, patient chondrogenic pellets had poor structural integrity but were rich in glycosaminoglycan. Second, it was evident that large amounts of aggrecan accumulated within the endoplasmic reticulum of chondrocytes differentiated from both BM-MSCs and iPSCs. In turn, there was a marked absence of aggrecan in the extracellular matrix. Third, it was evident that matrix synthesis and assembly were globally dysregulated. These results highlight some of the abnormal aspects of chondrogenesis in these patient cells and help to explain the underlying cellular pathology. The results suggest that FOCD is a chondrocyte aggrecanosis with associated matrix dysregulation. The work provides a new in vitro model of osteoarthritis and cartilage degeneration based on the use of iPSCs and highlights how insights into disease phenotype and pathogenesis can be uncovered by studying differentiation of patient stem cells. SIGNIFICANCE The isolation and study of patient stem cells and the development of methods for the generation of iPSCs have opened up exciting opportunities in understanding causes and exploring new treatments for major diseases. This technology was used to unravel the cellular phenotype in a severe form of inherited osteoarthritis, termed familial osteochondritis dissecans. The phenotypic abnormalities that give rise to cartilage lesions in these patients were able to be described via the generation of chondrocytes from bone marrow-derived mesenchymal stromal cells and iPSCs, illustrating the extraordinary value of these approaches in disease modeling.
Collapse
Affiliation(s)
- Maojia Xu
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Eva-Lena Stattin
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Georgina Shaw
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Dick Heinegård
- Department of Clinical Sciences, Rheumatology, and Molecular Skeletal Biology, Lund University, Lund, Sweden
| | | | - Ian Wilmut
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan Colman
- A*STAR Institute of Medical Biology, Singapore
| | - Patrik Önnerfjord
- Department of Clinical Sciences, Rheumatology, and Molecular Skeletal Biology, Lund University, Lund, Sweden
| | - Areej Khabut
- Department of Clinical Sciences, Rheumatology, and Molecular Skeletal Biology, Lund University, Lund, Sweden
| | - Anders Aspberg
- Department of Clinical Sciences, Rheumatology, and Molecular Skeletal Biology, Lund University, Lund, Sweden
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Timothy Hardingham
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences University of Manchester, Manchester, United Kingdom
| | - Mary Murphy
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
22
|
Millucci L, Giorgetti G, Viti C, Ghezzi L, Gambassi S, Braconi D, Marzocchi B, Paffetti A, Lupetti P, Bernardini G, Orlandini M, Santucci A. Chondroptosis in alkaptonuric cartilage. J Cell Physiol 2015; 230:1148-57. [PMID: 25336110 PMCID: PMC5024069 DOI: 10.1002/jcp.24850] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/14/2014] [Indexed: 01/16/2023]
Abstract
Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU.
Collapse
Affiliation(s)
- Lia Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
24
|
Nakamura R, Nakamura F, Fukunaga S. Disruption of endogenous perlecan function improves differentiation of rat articular chondrocytesin vitro. Anim Sci J 2014; 86:449-58. [DOI: 10.1111/asj.12309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Ryosuke Nakamura
- Laboratory of Animal By-Product Science; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Fumio Nakamura
- Laboratory of Animal By-Product Science; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Shigeharu Fukunaga
- Laboratory of Animal By-Product Science; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| |
Collapse
|
25
|
Lord MS, Farrugia BL, Rnjak-Kovacina J, Whitelock JM. Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix. Expert Rev Mol Diagn 2014; 15:77-95. [DOI: 10.1586/14737159.2015.979158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Almonte-Becerril M, Costell M, Kouri JB. Changes in the integrins expression are related with the osteoarthritis severity in an experimental animal model in rats. J Orthop Res 2014; 32:1161-6. [PMID: 24839051 DOI: 10.1002/jor.22649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/24/2014] [Indexed: 02/04/2023]
Abstract
We identify changes in the expression and localization of α5, α4, and α2 integrins during osteoarthritis (OA) pathogenesis in a rat experimental model. The changes were concomitant with variations in the extracellular matrix (ECM) content and the increase of metalloproteinases (MMPs) activity during OA pathogenesis, which were analyzed by immunofluorescence and Western blot assays. Our results showed an increased expression of α5 and α2 integrins at OA late stages, which was co-related with changes in the ECM content, as a consequence of the MMPs activity. In addition, this is the first report that has shown the presence of α4 integrin since OA early stages, which was co-related with the loss of proteoglycans and clusters formation. However, at late OA stages, the increased expression of α4 integrin in the middle and deep zones of the cartilage was also co-related with the abnormal endochondral ossification of the cartilage through its interaction with osteopontin. Finally, we conclude that ECM-chondrocytes interaction through specific cell receptors is essential to maintain the cartilage homeostasis. However, due to integrins cell signaling is ligand-dependent; changes in the ECM contents could induce activation of either anabolic or catabolic processes, which limits the reparative capacity of chondrocytes, favoring OA severity.
Collapse
Affiliation(s)
- Maylin Almonte-Becerril
- Departamento de Infectómica y Patogénesis Molecular, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, DF, México
| | | | | |
Collapse
|
27
|
Troeberg L, Lazenbatt C, Anower-E-Khuda MF, Freeman C, Federov O, Habuchi H, Habuchi O, Kimata K, Nagase H. Sulfated glycosaminoglycans control the extracellular trafficking and the activity of the metalloprotease inhibitor TIMP-3. ACTA ACUST UNITED AC 2014; 21:1300-1309. [PMID: 25176127 PMCID: PMC4210636 DOI: 10.1016/j.chembiol.2014.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 12/15/2022]
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP-3) is an important regulator of extracellular matrix (ECM) turnover. TIMP-3 binds to sulfated ECM glycosaminoglycans or is endocytosed by cells via low-density lipoprotein receptor-related protein 1 (LRP-1). Here, we report that heparan sulfate (HS) and chondroitin sulfate E (CSE) selectively regulate postsecretory trafficking of TIMP-3 by inhibiting its binding to LRP-1. HS and CSE also increased TIMP-3 affinity for glycan-binding metalloproteinases, such as adamalysin-like metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), by reducing the dissociation rate constants. The sulfation pattern was crucial for these activities because monosulfated or truncated heparin had a reduced ability to bind to TIMP-3 and increase its affinity for ADAMTS-5. Therefore, sulfation of ECM glycans regulates the levels and inhibitory activity of TIMP-3 and modulates ECM turnover, and small mimicries of sulfated glycans may protect the tissue from the excess destruction seen in diseases such as osteoarthritis, cancer, and atherosclerosis. The metalloprotease inhibitor TIMP-3 binds to sulfated extracellular glycans This inhibits cellular uptake of TIMP-3 by the endocytic receptor LRP-1 Glycans also increase TIMP-3 affinity for selected target proteases The sulfation of matrix glycans therefore modulates TIMP-3 activity and ECM turnover
Collapse
Affiliation(s)
- Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK.
| | - Christopher Lazenbatt
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Md Ferdous Anower-E-Khuda
- Aichi Medical University Research Complex for Medicine Frontiers, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Craig Freeman
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra ACT 2601, Australia
| | - Oleg Federov
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Hiroko Habuchi
- Advanced Medical Research Centre, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Osami Habuchi
- Advanced Medical Research Centre, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Koji Kimata
- Aichi Medical University Research Complex for Medicine Frontiers, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| |
Collapse
|
28
|
Drexler S, Wann A, Vincent TL. Are cellular mechanosensors potential therapeutic targets in osteoarthritis? ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
30
|
Jeng L, Hsu HP, Spector M. Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen. Tissue Eng Part A 2013; 19:2267-74. [PMID: 23672504 DOI: 10.1089/ten.tea.2013.0013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.
Collapse
Affiliation(s)
- Lily Jeng
- Tissue Engineering, VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA
| | | | | |
Collapse
|
31
|
The ovine newborn and human foetal intervertebral disc contain perlecan and aggrecan variably substituted with native 7D4 CS sulphation motif: spatiotemporal immunolocalisation and co-distribution with Notch-1 in the human foetal disc. Glycoconj J 2013; 30:717-25. [DOI: 10.1007/s10719-013-9475-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 03/19/2013] [Accepted: 04/01/2013] [Indexed: 11/26/2022]
|
32
|
Engineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels. Acta Biomater 2012; 8:2203-12. [PMID: 22370447 DOI: 10.1016/j.actbio.2012.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/04/2012] [Accepted: 02/16/2012] [Indexed: 11/20/2022]
Abstract
The release of an anti-angiogenic agent, such as type XVIII/endostatin, from an implantable scaffold may be of benefit in the repair of articular cartilage. The objectives of this study are to develop an injectable mesenchymal stem cell (MSC)-incorporating collagen-based hydrogel capable of undergoing covalent cross-linking in vivo and overexpressing endostatin using nonviral transfection, and to investigate methods for the retention of the endostatin protein within the scaffolds. The effects of different cross-linking agents (genipin, transglutaminase-2, and microbial transglutaminase) and different binding molecules for endostatin retention (heparin, heparan sulfate, and chondroitin sulfate) are evaluated. Cartilaginous constructs that overexpress endostatin for 3 weeks are successfully engineered. Most of the endostatin is released into the surrounding media and is not retained within the constructs. The presence of two common basement membrane molecules, laminin and type IV collagen, which have been reported in developing and mature articular cartilage and are generally associated with type XVIII collagen in vivo, is also observed in the engineered cartilaginous constructs. Endostatin-producing cartilaginous constructs can be formulated by growing nonvirally transfected mesenchymal stem cells in collagen gels covalently cross-linked using genipin, transglutaminase-2, and microbial transglutaminase. These constructs warrant further investigation for cartilage repair procedures. The novel finding of laminin and type IV collagen in the engineered cartilage constructs may be of importance for future work toward understanding the role of basement membrane molecules in chondrogenesis and in the physiology and pathology of articular cartilage.
Collapse
|
33
|
Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci 2010; 67:2879-95. [PMID: 20428923 PMCID: PMC2921489 DOI: 10.1007/s00018-010-0367-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 01/11/2023]
Abstract
More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches.
Collapse
Affiliation(s)
- Jenny Kruegel
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Nicolai Miosge
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
34
|
Smith SM, Shu C, Melrose J. Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem Cell Biol 2010; 134:251-63. [PMID: 20690028 DOI: 10.1007/s00418-010-0730-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2010] [Indexed: 11/24/2022]
Abstract
We undertook a comparative immunolocalisation study on type II collagen, aggrecan and perlecan in a number of 12- to 14-week-old human foetal and postnatal (7-19 months) ovine joints including finger, toe, knee, elbow, hip and shoulder. This demonstrated that perlecan followed a virtually identical immunolocalisation pattern to that of type II collagen in the foetal tissues, but a slightly divergent localisation pattern in adult tissues. Aggrecan was also localised in the cartilaginous joint tissues, which were clearly delineated by toluidine blue staining and the type II collagen immunolocalisations. It was also present in the capsular joint tissues and in ligaments and tendons in the joint, which stained poorly or not at all with toluidine blue. In higher power microscopic views, antibodies to perlecan also stained small blood vessels in the synovial lining tissues of the joint capsule; however, this was not discernable in low power macroscopic views where the immunolocalisation of perlecan to pericellular regions of cells within the cartilaginous rudiments was a predominant feature. Perlecan was also evident in small blood vessels in stromal connective tissues associated with the cartilage rudiments and with occasional nerves in the vicinity of the joint tissues. Perlecan was expressed by rounded cells in the enthesis attachment points of tendons to bone and in rounded cells in the inner third of the meniscus, which stained prominently with type II collagen and aggrecan identifying the chondrogenic background of these cells and local compressive loads. Flattened cells within the tendon and in the surface laminas of articular cartilages and the meniscus did not express perlecan. Collected evidence presented herein, therefore, indicates that besides being a basement membrane component, perlecan is also a marker of chondrogenic cells in prenatal cartilages. In postnatal cartilages, perlecan displayed a pericellular localisation pattern rather than the territorial or interterritorial localisation it displayed in foetal cartilages. This may reflect processing of extracellular perlecan presumably as a consequence of intrinsic biomechanical loading on these tissues or to divergent functions for perlecan and type II collagen in adult compared to prenatal tissues.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, Level 10, Kolling Building B6, St. Leonards, NSW 2065, Australia
| | | | | |
Collapse
|
35
|
Nugent AE, Speicher DM, Gradisar I, McBurney DL, Baraga A, Doane KJ, Horton WE. Advanced osteoarthritis in humans is associated with altered collagen VI expression and upregulation of ER-stress markers Grp78 and bag-1. J Histochem Cytochem 2009; 57:923-31. [PMID: 19546472 DOI: 10.1369/jhc.2009.953893] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that a perturbation of endoplasmic reticulum (ER) function is involved in the pathogenesis of osteoarthritis (OA), articular cartilage was isolated from non-OA patients secondary to resection of osteo- or chondrosarcomas. Intra-joint samples of minimal and advanced osteoarthritic cartilage were isolated from patients undergoing total knee arthroplasty and scored for disease severity. Glucose-regulated protein-78 (grp78) and bcl-2-associated athanogene-1 (bag-1) were detected via immunofluorescence as markers of non-homeostatic ER function. Additionally, the expression of type VI collagen and its integrin receptor, NG2, was determined to examine cartilage matrix health and turnover. There was an upregulation of grp78 in advanced OA, and variable expression in minimal OA. Non-OA cartilage was consistently grp78 negative. The downstream regulator bag-1 was also upregulated in OA compared with normal cartilage. Collagen VI was mainly cell-associated in non-OA cartilage, with a more widespread distribution observed in OA cartilage along with increased intracellular staining intensity. The collagen VI integral membrane proteoglycan receptor NG2 was downregulated in advanced OA compared with its patient-matched minimally involved cartilage sample. These results suggest that chondrocytes exhibit ER stress during OA, in association with upregulation of a large secreted molecule, type VI collagen.
Collapse
Affiliation(s)
- Ashleigh E Nugent
- Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 2008; 22:351-84. [PMID: 18455690 DOI: 10.1016/j.berh.2008.02.001] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The preservation of articular cartilage depends on keeping the cartilage architecture intact. Cartilage strength and function depend on both the properties of the tissue and on their structural parameters. The main structural macromolecules are collagen and proteoglycans (aggrecan). During life, cartilage matrix turnover is mediated by a multitude of complex autocrine and paracrine anabolic and catabolic factors. These act on the chondrocytes and can lead to repair, remodeling or catabolic processes like those that occur in osteoarthritis. Osteoarthritis is characterized by degradation and loss of articular cartilage, subchondral bone remodeling, and, at the clinical stage of the disease, inflammation of the synovial membrane. The alterations in osteoarthritic cartilage are numerous and involve morphologic and metabolic changes in chondrocytes, as well as biochemical and structural alterations in the extracellular matrix macromolecules.
Collapse
|
37
|
Otsuki S, Taniguchi N, Grogan SP, D'Lima D, Kinoshita M, Lotz M. Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic articular cartilage. Arthritis Res Ther 2008; 10:R61. [PMID: 18507859 PMCID: PMC2483452 DOI: 10.1186/ar2432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/04/2008] [Accepted: 05/28/2008] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Changes in sulfation of cartilage glycosaminoglycans as mediated by sulfatases can regulate growth factor signaling. The aim of this study was to analyze expression patterns of recently identified extracellular sulfatases Sulf-1 and Sulf-2 in articular cartilage and chondrocytes. METHODS Sulf-1 and Sulf-2 expressions in human articular cartilage from normal donors and patients with osteoarthritis (OA) and in normal and aged mouse joints were analyzed by real-time polymerase chain reaction, immunohistochemistry, and Western blotting. RESULTS In normal articular cartilage, Sulf-1 and Sulf-2 mRNAs and proteins were expressed predominantly in the superficial zone. OA cartilage showed significantly higher Sulf-1 and Sulf-2 mRNA expression as compared with normal human articular cartilage. Sulf protein expression in OA cartilage was prominent in the cell clusters. Western blotting revealed a profound increase in Sulf protein levels in human OA cartilage. In normal mouse joints, Sulf expression was similar to human cartilage, and with increasing age, there was a marked upregulation of Sulf. CONCLUSION The results show low levels of Sulf expression, restricted to the superficial zone in normal articular cartilage. Sulf mRNA and protein levels are increased in aging and OA cartilage. This increased Sulf expression may change the sulfation patterns of heparan sulfate proteoglycans and growth factor activities and thus contribute to abnormal chondrocyte activation and cartilage degradation in OA.
Collapse
Affiliation(s)
- Shuhei Otsuki
- Division of Arthritis Research, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Kruegel J, Sadowski B, Miosge N. Nidogen-1 and nidogen-2 in healthy human cartilage and in late-stage osteoarthritis cartilage. ACTA ACUST UNITED AC 2008; 58:1422-32. [DOI: 10.1002/art.23480] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Melrose J, Hayes AJ, Whitelock JM, Little CB. Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 2008; 30:457-69. [DOI: 10.1002/bies.20748] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Vincent TL, McLean CJ, Full LE, Peston D, Saklatvala J. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthritis Cartilage 2007; 15:752-63. [PMID: 17368052 DOI: 10.1016/j.joca.2007.01.021] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Accepted: 01/28/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We have shown previously that cutting or loading articular cartilage resulted in a fibroblast growth factor-2 (FGF-2) dependent activation of the extracellularly regulated kinase (ERK), and induction of a number of chondrocyte regulatory proteins including tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases 1 and 3. An extracellular matrix-bound pool of FGF-2 was apparent, which could be liberated from the tissue by heparitinase (Vincent et al., Proc Natl Acad Sci U S A 2002;99(12):8259-64, Vincent et al., Arthritis Rheum 2004 Feb;50(2):526-33). Our objectives were to determine where FGF-2 was stored in articular cartilage, to which proteoglycan it was bound, and to elucidate its role in chondrocyte mechanotransduction. METHODS Immunohistochemistry and confocal microscopy were used to localise FGF-2 in the tissue. In vitro binding studies were performed using IASYS surface plasmon resonance. To study the role of pericellular FGF-2 in mechanotransduction cartilage explants or articular chondrocytes encapsulated in alginate were loaded using an in house loading rig. The loading response was assessed by the activation of ERK, in the presence or absence of a specific FGFR inhibitor. RESULTS Here we have identified perlecan as the heparan sulphate proteoglycan that sequesters FGF-2 in articular cartilage. Perlecan and FGF-2 co-localised within the type VI collagen-rich pericellular matrix of porcine and human articular cartilage. Chondrocytes encapsulated in alginate were able to accumulate pericellular perlecan and FGF-2 in culture, and deliver an FGF-dependent activation of ERK when loaded. CONCLUSION Loading-induced ERK activation was dependent upon the presence and concentration of pericellular FGF-2, suggesting a functional role for this matrix-bound growth factor in chondrocyte mechanotransduction.
Collapse
Affiliation(s)
- T L Vincent
- The Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College School of Science, Technology, and Medicine, London, UK.
| | | | | | | | | |
Collapse
|
41
|
Gomes RR, Van Kuppevelt TH, Farach-Carson MC, Carson DD. Spatiotemporal distribution of heparan sulfate epitopes during murine cartilage growth plate development. Histochem Cell Biol 2006; 126:713-22. [PMID: 16835755 DOI: 10.1007/s00418-006-0203-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are abundant in the pericellular matrix of both developing and mature cartilage. Increasing evidence suggests the action of numerous chondroregulatory molecules depends on HSPGs. In addition to specific functions attributed to their core protein, the complexity of heparan sulfate (HS) synthesis provides extraordinary structural and functional heterogeneity. Understanding the interactions of chondroregulatory molecules with HSPGs and their subsequent outcomes has been limited by the absence of a detailed analysis of HS species in cartilage. In this study, we characterize the distribution and variety of HS species in developing cartilage of normal mice. Cryo-sections of femur and tibia from normal mouse embryos were evaluated using immunostaining techniques. A panel of unique phage display antibodies specific to particular HS species were employed and visualized with secondary antibodies conjugated to Alexa-fluor dyes. Confocal microscopy demonstrates that HS species are dynamic structures within developing growth plate cartilage and the perichondrium. GlcNS6S-IdoUA2S-GlcNS6S species are down regulated and localization of GlcNS6S-IdoUA-GlcNS6S species within the hypertrophic zone of the growth plate is lost during normal development. Regional differences in HS structures are present within developing growth plates, implying that interactions with and responses to HS-binding proteins also may display regional specialization.
Collapse
Affiliation(s)
- Ronald R Gomes
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
42
|
Gersdorff N, Müller M, Schall A, Miosge N. Secreted modular calcium-binding protein-1 localization during mouse embryogenesis. Histochem Cell Biol 2006; 126:705-12. [PMID: 16736127 DOI: 10.1007/s00418-006-0200-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2006] [Indexed: 02/06/2023]
Abstract
BM-40 is an extracellular matrix-associated protein and is characterized by an extracellular calcium-binding domain as well as a follistatin-like domain. Secreted modular calcium-binding protein-1 (SMOC-1) is a new member of the BM-40 family. It consists of two thyroglobulin-like domains, a follistatin-like domain and a new domain without known homologues and is expressed ubiquitously in many adult murine tissues. Immunofluorescence studies, as well as immunogold electron microscopy, have confirmed the localization of SMOC-1 in or around basement membranes of adult murine skin, blood vessels, brain, kidney, skeletal muscle, and the zona pellucida surrounding the oocyte. In the present work, light microscopic immunohistochemistry has revealed that SMOC-1 is localized in the early mouse embryo day 7 throughout the entire endodermal basement membrane zone of the embryo proper. SMOC-1 mRNA is synthesized, even in early stages of mouse development, by mesenchymal as well as epithelial cells deriving from all three germ layers. In embryonic stage day 12, and fetal stages day 14, 16, and 18, the protein is present in the basement membrane zones of brain, blood vessels, skin, skeletal muscle, lung, heart, liver, pancreas, intestine, and kidney. This broad and organ-specific distribution suggests multifunctional roles of SMOC-1 during mouse embryogenesis.
Collapse
Affiliation(s)
- Nikolaus Gersdorff
- Department of Prosthodontics, Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
43
|
Koelling S, Clauditz TS, Kaste M, Miosge N. Cartilage oligomeric matrix protein is involved in human limb development and in the pathogenesis of osteoarthritis. Arthritis Res Ther 2006; 8:R56. [PMID: 16542502 PMCID: PMC1526624 DOI: 10.1186/ar1922] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 02/10/2006] [Accepted: 02/14/2006] [Indexed: 11/23/2022] Open
Abstract
As a member of the thrombospondin gene family, cartilage oligomeric protein (COMP) is found mainly in the extracellular matrix often associated with cartilage tissue. COMP exhibits a wide binding repertoire and has been shown to be involved in the regulation of chondrogenesis in vitro. Not much is known about the role of COMP in human cartilage tissue in vivo. With the help of immunohistochemistry, Western blot, in situ hybridization, and real-time reverse transcription-polymerase chain reaction, we aimed to elucidate the role of COMP in human embryonic, adult healthy, and osteoarthritis (OA) cartilage tissue. COMP is present during the earliest stages of human limb maturation and is later found in regions where the joints develop. In healthy and diseased cartilage tissue, COMP is secreted by the chondrocytes and is often associated with the collagen fibers. In late stages of OA, five times the COMP mRNA is produced by chondrocytes found in an area adjacent to the main defect than in an area with macroscopically normal appearance. The results indicate that COMP might be involved in human limb development, is upregulated in OA, and due to its wide binding repertoire, could play a role in the pathogenesis of OA as a factor secreted by chondrocytes to ameliorate the matrix breakdown.
Collapse
Affiliation(s)
- Sebastian Koelling
- Zentrum Anatomie, Abt. Histologie, Georg-August-Universitaet, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Till Sebastian Clauditz
- Zentrum Anatomie, Abt. Histologie, Georg-August-Universitaet, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Matthias Kaste
- Zentrum Anatomie, Abt. Histologie, Georg-August-Universitaet, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Nicolai Miosge
- Zentrum Anatomie, Abt. Histologie, Georg-August-Universitaet, Kreuzbergring 36, 37075 Göttingen, Germany
| |
Collapse
|
44
|
Sato T, Konomi K, Yamasaki S, Aratani S, Tsuchimochi K, Yokouchi M, Masuko-Hongo K, Yagishita N, Nakamura H, Komiya S, Beppu M, Aoki H, Nishioka K, Nakajima T. Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. ACTA ACUST UNITED AC 2006; 54:808-17. [PMID: 16508957 DOI: 10.1002/art.21638] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To analyze the differences in gene expression profiles of chondrocytes in intact and damaged regions of cartilage from the same knee joint of patients with osteoarthritis (OA) of the knee. METHODS We compared messenger RNA expression profiles in regions of intact and damaged cartilage (classified according to the Mankin scale) obtained from patients with knee OA. Five pairs of intact and damaged regions of OA cartilage were evaluated by oligonucleotide array analysis using a double in vitro transcription amplification technique. The microarray data were confirmed by real-time quantitative polymerase chain reaction (PCR) amplification and were compared with previously published data. RESULTS About 1,500 transcripts, which corresponded to 8% of the expressed transcripts, showed > or = 2-fold differences in expression between the cartilage tissue pairs. Approximately 10% of these transcripts (n = 151) were commonly expressed in the 5 patient samples. Accordingly, 114 genes (35 genes expressed in intact > damaged; 79 genes expressed in intact < damaged) were selected. The expression of some genes related to the wound-healing process, including cell proliferation and interstitial collagen synthesis, was higher in damaged regions than in intact regions, similar to the findings for genes that inhibit matrix degradation. Comparisons of the real-time quantitative PCR data with the previously reported data support the validity of our microarray data. CONCLUSION Differences between intact and damaged regions of OA cartilage exhibited a similar pattern among the 5 patients examined, indicating the presence of common mechanisms that contribute to cartilage destruction. Elucidation of this mechanism is important for the development of effective treatments for OA.
Collapse
Affiliation(s)
- Tomoo Sato
- St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Melrose J, Smith S, Cake M, Read R, Whitelock J. Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: an ageing study. Histochem Cell Biol 2005; 124:225-35. [PMID: 16028067 DOI: 10.1007/s00418-005-0005-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 01/30/2023]
Abstract
This is the first study to immunolocalise perlecan in meniscal tissues and to demonstrate how its localisation varied with ageing relative to aggrecan and type I, II and IV collagen. Perlecan was present in the middle and inner meniscal zones where it was expressed by cells of an oval or rounded morphology. Unlike the other components visualised in this study, perlecan was strongly cell associated and its levels fell significantly with age onset and cell number decline. The peripheral outer meniscal zones displayed very little perlecan staining other than in small blood vessels. Picrosirius red staining viewed under polarised light strongly delineated complex arrangements of slender discrete randomly oriented collagen fibre bundles as well as transverse, thick, strongly oriented, collagen tie bundles in the middle and outer meniscal zones. The collagen fibres demarcated areas of the meniscus which were rich in anionic toluidine blue positive proteoglycans; immunolocalisations confirmed the presence of aggrecan and perlecan. When meniscal sections were examined macroscopically, type II collagen localisation in the inner meniscal zone was readily evident in the 2- to 7-day-old specimens; this became more disperse in the older meniscal specimens. Type I collagen had a widespread distribution in all meniscal zones at all time points. Type IV collagen was strongly associated with blood vessels in the 2- to 7-day-old meniscal specimens but was virtually undetectable at the later time points (>7 month).
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Level 5, The University Clinic, Building B26, The Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.
| | | | | | | | | |
Collapse
|
46
|
Melrose J, Smith S, Cake M, Read R, Whitelock J. Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol 2005; 123:561-71. [PMID: 16021525 DOI: 10.1007/s00418-005-0789-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2005] [Indexed: 11/29/2022]
Abstract
Perlecan is a modular heparan sulphate and/or chondroitin sulphate substituted proteoglycan of basement membrane, vascular tissues and cartilage. Perlecan acts as a low affinity co-receptor for fibroblast growth factors 1, 2, 7, 9, binds connective tissue growth factor and co-ordinates chondrogenesis, endochondral ossification and vascular remodelling during skeletal development; however, relatively little is known of its distribution in these tissues during ageing and development. The aim of the present study was to immunolocalise perlecan in the articular and epiphyseal growth plate cartilages of stifle joints in 2-day to 8-year-old pedigree merino sheep. Perlecan was prominent pericellularly in the stifle joint cartilages at all age points and also present in the inter-territorial matrix of the newborn to 19-month-old cartilage specimens. Aggrecan was part pericellular, but predominantly an extracellular proteoglycan. Perlecan was a prominent component of the long bone growth plates and displayed a pericellular as well as a strong ECM distribution pattern; this may indicate a so far unrecognised role for perlecan in the mineralisation of hypertrophic cartilage. A significant age dependant decline in cell number and perlecan levels was evident in the hyaline and growth plate cartilages. The prominent pericellular distribution of perlecan observed indicates potential roles in cell-matrix communication in cartilage, consistent with growth factor signalling, cellular proliferation and tissue development.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, University of Sydney at the Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | | | | | | | | |
Collapse
|
47
|
Mahoney DJ, Mulloy B, Forster MJ, Blundell CD, Fries E, Milner CM, Day AJ. Characterization of the interaction between tumor necrosis factor-stimulated gene-6 and heparin: implications for the inhibition of plasmin in extracellular matrix microenvironments. J Biol Chem 2005; 280:27044-55. [PMID: 15917224 DOI: 10.1074/jbc.m502068200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TSG-6, the secreted product of tumor necrosis factor-stimulated gene-6, is not constitutively expressed but is up-regulated in various cell-types during inflammatory and inflammation-like processes. The mature protein is comprised largely of contiguous Link and CUB modules, the former binding several matrix components such as hyaluronan (HA) and aggrecan. Here we show that this domain can also associate with the glycosaminoglycan heparin/heparan sulfate. Docking predictions and site-directed mutagenesis demonstrate that this occurs at a site distinct from the HA binding surface and is likely to involve extensive electrostatic contacts. Despite these glycosaminoglycans binding to non-overlapping sites on the Link module, the interaction of heparin can inhibit subsequent binding to HA, and it is possible that this occurs via an allosteric mechanism. We also show that heparin can modify another property of the Link module, i.e. its potentiation of the anti-plasmin activity of inter-alpha-inhibitor (IalphaI). Experiments using the purified components of IalphaI indicate that TSG-6 only binds to the bikunin chain and that this is at a site on the Link module that overlaps the HA binding surface. The association of heparin with the Link module significantly increases the anti-plasmin activity of the TSG-6.IalphaI complex. Changes in plasmin activity have been observed previously at sites of TSG-6 expression, and the results presented here suggest that TSG-6 is likely to contribute to matrix remodeling, at least in part, through down-regulation of the protease network, especially in locations containing heparin/heparan sulfate proteoglycans. The differential effects of HA and heparin on TSG-6 function provide a mechanism for its regulation and functional partitioning in particular tissue microenvironments.
Collapse
Affiliation(s)
- David J Mahoney
- Medical Research Council Immunochemistry Unit, University of Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|