1
|
Karaca MA, Khalili V, Ege D. Highly Flexible Methyl Cellulose/Gelatin Hydrogels for Potential Cartilage Tissue Engineering Applications. Biopolymers 2025; 116:e23641. [PMID: 39775686 PMCID: PMC11707504 DOI: 10.1002/bip.23641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Cartilage damage resulting from trauma demonstrates a poor capacity for repair due to its avascular nature. Cartilage tissue engineering offers a unique therapeutic option for cartilage recovery. In this study, methylcellulose (MC)/gelatin (GEL) hydrogels (MC10G20, MC12.5G20, MC15G20, and MC17.5G20) were developed to assess and compare their chemical, mechanical, and biological characteristics for cartilage repair. First, the interaction between MC and GEL after blending and subsequent crosslinking with EDC/NHS was confirmed by using FTIR. Mechanical tests under compression test revealed that hydrogels' resistance to both elastic and plastic deformation increased with higher wt.% of MC. The % strain of the hydrogels doubled with the addition of MC, likely due to abundant hydrogen bonding between polymeric chains. Furthermore, the compressive modulus of MC/GEL hydrogels was approximately 0.2 MPa, closely matching modulus of human cartilage tissue. Similarly, the % water retention capacity of the hydrogels increased over the 7 days as the MC content increased. Additionally, SEM images showed that the incorporation of MC to GEL introduced porosity with the diameters ranging from 10 to 50 μm, similar to the size of pores in native cartilage. In vitro cell culture studies confirmed the biocompatibility of MC/GEL hydrogels. Fluorescence staining showed a 2.5-fold increase in F-actin staining following the incorporation of MC into the hydrogels. Overall, this study highlights the potential of MC/GEL hydrogels for cartilage tissue engineering, however, further research is required to assess its full potential.
Collapse
Affiliation(s)
- Mehmet Ali Karaca
- Institute of Biomedical EngineeringBoğaziçi UniversityIstanbulTurkey
| | - Vida Khalili
- Institut für WerkstoffeRuhr‐Universität BochumBochumGermany
| | - Duygu Ege
- Institute of Biomedical EngineeringBoğaziçi UniversityIstanbulTurkey
| |
Collapse
|
2
|
Semitela A, Marques PAAP, Completo A. Strategies to engineer articular cartilage with biomimetic zonal features: a review. Biomater Sci 2024; 12:5961-6005. [PMID: 39463257 DOI: 10.1039/d4bm00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.
Collapse
Affiliation(s)
- Angela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula A A P Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Hu K, Ou Y, Xiao L, Gu R, He F, Peng J, Shu Y, Li T, Hao L. Identification and Construction of a Disulfidptosis-Mediated Diagnostic Model and Associated Immune Microenvironment of Osteoarthritis from the Perspective of PPPM. J Inflamm Res 2024; 17:3753-3770. [PMID: 38882183 PMCID: PMC11179642 DOI: 10.2147/jir.s462179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Background Osteoarthritis (OA) is a major cause of human disability. Despite receiving treatment, patients with the middle and late stage of OA have poor survival outcomes. Therefore, within the framework of predictive, preventive, and personalized medicine (PPPM/3PM), early personalized diagnosis of OA is particularly prominent. PPPM aims to accurately identify disease by integrating multiple omic techniques; however, the efficiency of currently available methods and biomarkers in predicting and diagnosing OA should be improved. Disulfidptosis, a novel programmed cell death mechanism and appeared in particular metabolic status, plays a mysterious characteristic in the occurrence and development of OA, which warrants further investigation. Methods In this study, we integrated three public datasets from the Gene Expression Omnibus (GEO) database, including 26 OA samples and 20 normal samples. Via a series of bioinformatic analysis and machine learning, we identified the diagnostic biomarkers and several subtypes of OA. Moreover, the expression of these biomarkers were verified in our in-house cohort and the single cell dataset. Results Three significant regulators of disulfidptosis (NCKAP1, OXSM, and SLC3A2) were identified through differential expression analysis and machine learning. And a nomogram constructed based on these three regulators exhibited ideal efficiency in predicting early- and late-stage OA. Furthermore, based on the expression of three regulators, we identified two disulfidptosis-related subtypes of OA with different infiltration of immune cells and personalized expression level of immune checkpoints. Notably, the expression of the three regulators was demonstrated in a single-cell RNA profile and verified in the synovial tissue in our in-house cohort including 6 OA patients and 6 normal people. Finally, an efficient disulfidptosis-mediated diagnostic model was constructed for OA, with the AUC value of 97.6923% in the training set and 93.3333% and 100% in two validation sets. Conclusion Overall, with regard to PPPM, this study provided novel insights into the role of disulfidptosis regulators in the personalized diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Kaibo Hu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yanghuan Ou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Leyang Xiao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ruonan Gu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fei He
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
4
|
Kuroda K, Kiya K, Matsuzaki S, Takamura H, Otani N, Tomita K, Kawai K, Fujiwara T, Nakai K, Onishi A, Katayama T, Kubo T. Altered actin dynamics is possibly implicated in the inhibition of mechanical stimulation-induced dermal fibroblast differentiation into myofibroblasts. Exp Dermatol 2023; 32:2012-2022. [PMID: 37724850 DOI: 10.1111/exd.14933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
The formation of hypertrophic scars and keloids is strongly associated with mechanical stimulation, and myofibroblasts are known to play a major role in abnormal scar formation. Wounds in patients with neurofibromatosis type 1 (NF1) become inconspicuous and lack the tendency to form abnormal scars. We hypothesized that there would be a unique response to mechanical stimulation and subsequent scar formation in NF1. To test this hypothesis, we investigated the molecular mechanisms of differentiation into myofibroblasts in NF1-derived fibroblasts and neurofibromin-depleted fibroblasts and examined actin dynamics, which is involved in fibroblast differentiation, with a focus on the pathway linking LIMK2/cofilin to actin dynamics. In normal fibroblasts, expression of α-smooth muscle actin (α-SMA), a marker of myofibroblasts, significantly increased after mechanical stimulation, whereas in NF1-derived and neurofibromin-depleted fibroblasts, α-SMA expression did not change. Phosphorylation of cofilin and subsequent actin polymerization did not increase in NF1-derived and neurofibromin-depleted fibroblasts after mechanical stimulation. Finally, in normal fibroblasts treated with Jasplakinolide, an actin stabilizer, α-SMA expression did not change after mechanical stimulation. Therefore, when neurofibromin was dysfunctional or depleted, subsequent actin polymerization did not occur in response to mechanical stimulation, which may have led to the unchanged expression of α-SMA. We believe this molecular pathway can be a potential therapeutic target for the treatment of abnormal scars.
Collapse
Affiliation(s)
- Kazuya Kuroda
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichiro Kiya
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
- Department of Radiological Sciences, Faculty of Medical Science Technology, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Hironori Takamura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Naoya Otani
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Tomita
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Kawai
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiro Fujiwara
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kunihiro Nakai
- Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, Fukui, Japan
| | - Ayako Onishi
- Inclusive Medical Science Research Institute, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Trippel SB. Harnessing Growth Factor Interactions to Optimize Articular Cartilage Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:135-143. [PMID: 37052852 DOI: 10.1007/978-3-031-25588-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The failure of cartilage healing is a major impediment to recovery from joint disease or trauma. Growth factors play a central role in cell function and have been proposed as potential therapeutic agents to promote cartilage repair. Decades of investigation have identified many growth factors that promote the formation of cartilage in vitro and in vivo. However, very few of these have progressed to human trials. A growth factor that robustly augments articular cartilage healing remains elusive. This is not surprising. Articular cartilage repair involves multiple cellular processes and it is unlikely that any single agent will be able to optimally regulate all of them. It is more likely that multiple regulatory molecules may be required to optimize the maintenance and restoration of articular cartilage. If this is the case, then interactions among growth factors may be expected to play a key role in determining their therapeutic value. This review explores the hypothesis that growth factor interactions could help optimize articular cartilage healing.
Collapse
Affiliation(s)
- Stephen B Trippel
- Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Trompeter N, Gardinier JD, DeBarros V, Boggs M, Gangadharan V, Cain WJ, Hurd L, Duncan RL. Insulin-like growth factor-1 regulates the mechanosensitivity of chondrocytes by modulating TRPV4. Cell Calcium 2021; 99:102467. [PMID: 34530313 PMCID: PMC8541913 DOI: 10.1016/j.ceca.2021.102467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Both mechanical and biochemical stimulation are required for maintaining the integrity of articular cartilage. However, chondrocytes respond differently to mechanical stimuli in osteoarthritic cartilage when biochemical signaling pathways, such as Insulin-like Growth Factor-1 (IGF-1), are altered. The Transient Receptor Potential Vanilloid 4 (TRPV4) channel is central to chondrocyte mechanotransduction and regulation of cartilage homeostasis. Here, we propose that changes in IGF-1 can modulate TRPV4 channel activity. We demonstrate that physiologic levels of IGF-1 suppress hypotonic-induced TRPV4 currents and intracellular calcium flux by increasing apparent cell stiffness that correlates with actin stress fiber formation. Disruption of F-actin following IGF-1 treatment results in the return of the intracellular calcium response to hypotonic swelling. Using point mutations of the TRPV4 channel at the microtubule-associated protein 7 (MAP-7) site shows that regulation of TRPV4 by actin is mediated via the interaction of actin with the MAP-7 domain of TRPV4. We further highlight that ATP release, a down-stream response to mechanical stimulation in chondrocytes, is mediated by TRPV4 during hypotonic challenge. This response is significantly abrogated with IGF-1 treatment. As chondrocyte mechanosensitivity is greatly altered during osteoarthritis progression, IGF-1 presents as a promising candidate for prevention and treatment of articular cartilage damage.
Collapse
Affiliation(s)
- Nicholas Trompeter
- Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Joseph D Gardinier
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States; Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Victor DeBarros
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Mary Boggs
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Vimal Gangadharan
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - William J Cain
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Lauren Hurd
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Randall L Duncan
- Biomedical Engineering, University of Delaware, Newark, DE, United States; Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States; Department of Biology, University of Michigan-Flint, Flint, MI, United States.
| |
Collapse
|
7
|
Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev 2021; 67:101315. [PMID: 33684550 DOI: 10.1016/j.arr.2021.101315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Mechanical loading is essential for chondrocyte health. Chondrocytes can sense and respond to various extracellular mechanical signals through an integrated set of mechanisms. Recently, it has been found that mitochondria, acting as critical mechanotransducers, are at the intersection between extracellular mechanical signals and chondrocyte biology. Much attention has been focused on identifying how mechanical loading-induced mitochondrial dysfunction contributes to the pathogenesis of osteoarthritis. In contrast, little is known regarding the mechanisms underlying functional alterations in mitochondria induced by mechanical stimulation. In this review, we describe how chondrocytes perceive environmental mechanical signals. We discuss how mechanical load induces mitochondrial functional alterations and highlight the major unanswered questions in this field. We speculate that AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, may play an important role in coupling force transmission to mitochondrial health and intracellular biological responses.
Collapse
|
8
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
9
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
10
|
Li G, Song X, Li R, Sun L, Gong X, Chen C, Yang L. Zyxin-involved actin regulation is essential in the maintenance of vinculin focal adhesion and chondrocyte differentiation status. Cell Prolif 2018; 52:e12532. [PMID: 30328655 PMCID: PMC6430480 DOI: 10.1111/cpr.12532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Objectives To investigate the role of zyxin‐involved actin regulation in expression level of vinculin focal adhesion and collagen production of chondrocyte and its possible underlying mechanism. Materials and methods Chondrocytes obtained from rabbit articular cartilage were used in this study. The expression of zyxin, actin and vinculin, as well as the extracellular matrix (ECM) protein collagen type I, II and X (COL I, II and X) of chondrocytes were compared between zyxin‐knockdown group and negative control group, and between transforming growth factor‐β1 (TGF‐β1) treatment group and non‐treatment group, respectively. Results Knockdown of zyxin increased the ratio of globular actin (G‐actin) to filamentous actin (F‐actin) of chondrocyte, which further inhibited expression of vinculin and chondrogenic marker COL II as well as hypertrophy marker COL X. On the other hand, chondrocytes treated with TGF‐β1 showed an enhanced expression of F‐actin, and a lower expression of zyxin compared to non‐treatment group. In response to TGF‐β1‐induced actin polymerization, expression of vinculin and COL I was increased, while expression of COL II and aggrecan was decreased. Conclusions These results demonstrate supporting evidence that in chondrocytes the level of zyxin is closely associated with the state of actin polymerization. In particular, the change of zyxin and F‐actin parallels with the change of COL II and vinculin, respectively, indicating a major role of zyxin‐actin interaction in the synthesis of collagen ECM and the remodelling of cytoskeleton‐ECM adhesion.
Collapse
Affiliation(s)
- Gaoming Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China.,Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Sha H, Tong X, Zhao J. Abnormal expressions of AGEs, TGF-β1, BDNF and their receptors in diabetic rat colon-Associations with colonic morphometric and biomechanical remodeling. Sci Rep 2018; 8:9437. [PMID: 29930382 PMCID: PMC6013484 DOI: 10.1038/s41598-018-27787-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Present study aims to investigate the role of AGEs, TGF-β1, BDNF and their receptors on diabetes-induced colon remodeling. Diabetes was induced by a single tail vein injection 40 mg/kg of STZ. The parameters of morphometric and biomechanical properties of colonic segments were obtained from diabetic and normal rats. The expressions of AGE, RAGE, TGF- β1, TGF- β1 receptor, BDNF and TrkB were immunohistochemically detected in different layers of the colon. The expressions of AGE, RAGE, TGF-β1 and TGF- β1 receptor were increased whereas BDNF and TrkB were decreased in the diabetic colon (P < 0.05, P < 0.01). AGE, RAGE and TGF-β1 receptor expressions were positively correlated whereas the BDNF expression was negatively correlated with most of the morphometry and biomechanical parameters (P < 0.05, P < 0.01, P < 0.001). AGE, TGF- β1 and BDNF in different layers correlated with their receptors RAGE, TGF- β1 receptor and TrkB respectively. STZ-induced diabetes up-regulated the expression of AGE, RAGE, TGF- β1 and TGF- β1 receptors and down-regulated BDNF and TrkB in different layers of diabetic colon mainly due to hyperglycemia. Such changes maybe important for diabetes-induced colon remodeling, however it is needed to further perform mechanistic experiments in order to study causality or approaches that explain the relevance of the molecular pathways.
Collapse
Affiliation(s)
- Hong Sha
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jingbo Zhao
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
12
|
Mallick SP, Singh BN, Rastogi A, Srivastava P. Design and evaluation of chitosan/poly(l-lactide)/pectin based composite scaffolds for cartilage tissue regeneration. Int J Biol Macromol 2018; 112:909-920. [PMID: 29438752 DOI: 10.1016/j.ijbiomac.2018.02.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/14/2017] [Accepted: 02/08/2018] [Indexed: 01/01/2023]
Abstract
Poor regenerative potential of cartilage tissue due to the avascular nature and lack of supplementation of reparative cells impose an important challenge in recent medical practice towards development of artificial extracellular matrix with enhanced neo-cartilage tissue regeneration potential. Chitosan (CH), poly (l-lactide) (PLLA), and pectin (PC) compositions were tailored to generate polyelectrolyte complex based porous scaffolds using freeze drying method and crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS) solution containing chondroitin sulfate (CS) to mimic the composition as well as architecture of the cartilage extracellular matrix (ECM). The physical, chemical, thermal, and mechanical behaviors of developed scaffolds were done. The scaffolds were porous with homogeneous pore structure with pore size 49-170μm and porosities in the range of 79 to 84%. Fourier transform infrared study confirmed the presence of polymers (CH, PLLA and PC) within the scaffolds. The crystallinity of the scaffold was examined by the X-ray diffraction studies. Furthermore, scaffold shows suitable swelling property, moderate biodegradation and hemocompatibility in nature and possess suitable mechanical strength for cartilage tissue regeneration. MTT assay, GAG content, and attachment of chondrocyte confirmed the regenerative potential of the cell seeded scaffold. The histopathological analysis defines the suitability of scaffold for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Sarada Prasanna Mallick
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Bhisham Narayan Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Amit Rastogi
- Department of Orthopedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
13
|
Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Sci Rep 2016; 6:37268. [PMID: 27853300 PMCID: PMC5112533 DOI: 10.1038/srep37268] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/27/2016] [Indexed: 01/14/2023] Open
Abstract
Mechanical factors play a key role in regulating the development of cartilage degradation in osteoarthritis. This study aimed to identify the influence of mechanical stress in cartilage and chondrocytes. To explore the effects of mechanical stress on cartilage morphology, we observed cartilages in different regions by histological and microscopic examination. Nanoindentation was performed to assess cartilage biomechanics. To investigate the effects of mechanical stress on chondrocytes, cyclic tensile strain (CTS, 0.5 Hz, 10%) was applied to monolayer cultures of human articular chondrocytes by using Flexcell-5000. We quantified the mechanical properties of chondrocytes by atomic force microscopy. Chondrocytes were stained with Toluidine blue and Alcian blue after exposure to CTS. The expression of extracellular matrix (ECM) molecules was detected by qPCR and immunofluorescence analyses in chondrocytes after CTS. Our results demonstrated distinct morphologies and mechanical properties in different cartilage regions. In conclusion, mechanical stress can affect the chondrocyte phenotype, thereby altering the expression of chondrocyte ECM.
Collapse
|
14
|
Sha H, Zhao D, Tong X, Gregersen H, Zhao J. Mechanism Investigation of the Improvement of Chang Run Tong on the Colonic Remodeling in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2015; 2016:1826281. [PMID: 26839890 PMCID: PMC4709916 DOI: 10.1155/2016/1826281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Previous study demonstrated that Chang Run Tong (CRT) could partly restore the colon remodeling in streptozotocin- (STZ-) induced diabetic rats. Here we investigated the mechanisms of such effects of CRT. Diabetes was induced by a single injection of 40 mg/kg of STZ. CRT was poured into the stomach by gastric lavage once daily for 60 days. The remodeling parameters were obtained from diabetic (DM), CRT treated diabetic (T1, 50 g/kg; T2, 25 g/kg), and normal (Con) rats. Expressions of advanced glycation end product (AGE), AGE receptor, transforming growth factor-β1 (TGF-β1), and TGF-β1 receptor in the colon wall were immunochemically detected and quantitatively analyzed. The association between the expressions of those proteins and the remodeling parameters was analyzed. The expressions of those proteins were significantly higher in different colon layers in the DM group (P < 0.05, P < 0.01) and highly correlated to the remodeling parameters. Furthermore, the expressions of those proteins were significantly decreased in the T1 group (P < 0.05, P < 0.01) but not in the T2 group (P > 0.05). The corrective effect on the expressions of those proteins is likely to be one molecular pathway for the improvement of CRT on the diabetes-induced colon remodeling.
Collapse
Affiliation(s)
- Hong Sha
- China-Japan Hospital, Beijing 100029, China
| | - Dong Zhao
- China-Japan Hospital, Beijing 100029, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hans Gregersen
- Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jingbo Zhao
- Bioengineering College of Chongqing University, Chongqing 400044, China
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| |
Collapse
|
15
|
Stocco E, Barbon S, Grandi F, Gamba PG, Borgio L, Del Gaudio C, Dalzoppo D, Lora S, Rajendran S, Porzionato A, Macchi V, Rambaldo A, De Caro R, Parnigotto PP, Grandi C. Partially oxidized polyvinyl alcohol as a promising material for tissue engineering. J Tissue Eng Regen Med 2015; 11:2060-2070. [PMID: 26511206 DOI: 10.1002/term.2101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/10/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022]
Abstract
The desired clinical outcome after implantation of engineered tissue substitutes depends strictly on the development of biodegradable scaffolds. In this study we fabricated 1% and 2% oxidized polyvinyl alcohol (PVA) hydrogels, which were considered for the first time for tissue-engineering applications. The final aim was to promote the protein release capacity and biodegradation rate of the resulting scaffolds in comparison with neat PVA. After physical crosslinking, characterization of specific properties of 1% and 2% oxidized PVA was performed. We demonstrated that mechanical properties, hydrodynamic radius of molecules, thermal characteristics and degree of crystallinity were inversely proportional to the PVA oxidation rate. On the other hand, swelling behaviour and protein release were enhanced, confirming the potential of oxidized PVA as a protein delivery system, besides being highly biodegradable. Twelve weeks after in vivo implantation in mice, the modified hydrogels did not elicit severe inflammatory reactions, showing them to be biocompatible and to degrade faster as the degree of oxidation increased. According to our results, oxidized PVA stands out as a novel biomaterial for tissue engineering that can be used to realize scaffolds with customizable mechanical behaviour, protein-loading ability and biodegradability. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Silvia Barbon
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signalling (TES) ONLUS, Padua, Italy.,Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Italy
| | - Francesca Grandi
- Department of Women's and Children's Health, Paediatric Surgery, University of Padua, Italy
| | - Pier Giorgio Gamba
- Department of Women's and Children's Health, Paediatric Surgery, University of Padua, Italy
| | - Luca Borgio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Costantino Del Gaudio
- Department of Enterprise Engineering 'Mario Lucertini', Intra-Universitary Consortium for Material Science and Technology (INSTM) Research Unit, University of Rome 'Tor Vergata', Italy
| | - Daniele Dalzoppo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Silvano Lora
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signalling (TES) ONLUS, Padua, Italy
| | | | - Andrea Porzionato
- Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Italy
| | - Anna Rambaldo
- Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Molecular Medicine, University of Padua, Italy
| | - Pier Paolo Parnigotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.,Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signalling (TES) ONLUS, Padua, Italy
| | - Claudio Grandi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| |
Collapse
|
16
|
Lui JC, Chau M, Chen W, Cheung CSF, Hanson J, Rodriguez-Canales J, Nilsson O, Baron J. Spatial regulation of gene expression during growth of articular cartilage in juvenile mice. Pediatr Res 2015; 77:406-15. [PMID: 25521919 PMCID: PMC6354579 DOI: 10.1038/pr.2014.208] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/30/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND In juvenile mammals, the epiphyses of long bones grow by chondrogenesis within the articular cartilage. A better understanding of the molecular mechanisms that regulate the growth of articular cartilage may give insight into the antecedents of joint disease, such as osteoarthritis. METHODS We used laser capture microdissection to isolate chondrocytes from the superficial, middle, and deep zones of growing tibial articular cartilage in the 1-wk-old mouse and then investigated expression patterns by microarray. To identify molecular markers for each zone of the growing articular cartilage, we found genes showing zone-specific expression and confirmed by real-time PCR and in situ hybridization. RESULTS Bioinformatic analyses implicated ephrin receptor signaling, Wnt signaling, and bone morphogenetic protein signaling in the spatial regulation of chondrocyte differentiation during growth. Molecular markers were identified for superficial (e.g., Cilp, Prg4), middle (Cxcl14, Tnn), and deep zones (Sfrp5, Frzb). Comparison between juvenile articular and growth plate cartilage revealed that the superficial-to-deep zone transition showed similarity with the hypertrophic-to-resting zone transition. CONCLUSION Laser capture microdissection combined with microarray analysis identified novel signaling pathways that are spatially regulated in growing mouse articular cartilage and revealed similarities between the molecular architecture of the growing articular cartilage and that of growth plate cartilage.
Collapse
Affiliation(s)
- Julian C Lui
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Chau
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Weiping Chen
- The Genomics Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Crystal SF Cheung
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jeffrey Hanson
- Laser Capture Microdissection Core Facility, Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jaime Rodriguez-Canales
- Laser Capture Microdissection Core Facility, Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Ola Nilsson
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA,,Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
17
|
Athanasiou KA, Responte DJ, Brown WE, Hu JC. Harnessing biomechanics to develop cartilage regeneration strategies. J Biomech Eng 2015; 137:020901. [PMID: 25322349 DOI: 10.1115/1.4028825] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 12/24/2022]
Abstract
As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of chondrogenic cells. The challenging problem of enhanced integration of engineered cartilage with native cartilage is approached with both familiar and novel methods, such as lysyl oxidase (LOX). These diverse tissue engineering strategies all aim to build upon thorough biomechanical characterizations to produce functional neotissue that ultimately will help combat the pressing problem of cartilage degeneration. As our prior research is reviewed, we look to establish new pathways to comprehensively and effectively address the complex problems of musculoskeletal cartilage regeneration.
Collapse
|
18
|
Smith Callahan LA, Ganios AM, Childers EP, Weiner SD, Becker ML. Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young's modulus gradient. Acta Biomater 2013; 9:6095-104. [PMID: 23291491 DOI: 10.1016/j.actbio.2012.12.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 11/26/2022]
Abstract
Efficient ex vivo methods for expanding primary human chondrocytes while maintaining the phenotype is critical to advancing the sourcing of autologous cells for tissue engineering applications. While there has been significant research reported in the literature, systematic approaches are necessary to determine and optimize the chemical and mechanical scaffold properties for hyaline cartilage generation using limited cell numbers. Functionalized hydrogels possessing continuous variations in physico-chemical properties are, therefore, an efficient three-dimensional platform for studying several properties simultaneously. Herein we describe a polyethylene glycol dimethacrylate (PEGDM) hydrogel system with a modulus gradient (~27,000-3800 Pa) containing a uniform concentration of arginine-glycine-aspartic acid (RGD) peptide to enhance cell adhesion in order to correlate primary human osteoarthritic chondrocyte proliferation, phenotype maintenance, and extracellular matrix (ECM) production with hydrogel properties. Cell number and chondrogenic phenotype (CD14:CD90 ratios) were found to decline in regions with a higher storage modulus (>13,100 Pa), while regions with a lower storage modulus maintained their cell number and phenotype. Over 3 weeks culture hydrogel regions possessing a lower Young's modulus experienced an increase in ECM content (~200%) compared with regions with a higher storage modulus. Variations in the amount and organization of the cytoskeletal markers actin and vinculin were observed within the modulus gradient, which are indicative of differences in chondrogenic phenotype maintenance and ECM expression. Thus scaffold mechanical properties have a significant impact in modulating human osteoarthritic chondrocyte behavior and tissue formation.
Collapse
|
19
|
Dowling EP, Ronan W, Ofek G, Deshpande VS, McMeeking RM, Athanasiou KA, McGarry JP. The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation. J R Soc Interface 2012; 9:3469-79. [PMID: 22809850 DOI: 10.1098/rsif.2012.0428] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The biomechanisms that govern the response of chondrocytes to mechanical stimuli are poorly understood. In this study, a series of in vitro tests are performed, in which single chondrocytes are subjected to shear deformation by a horizontally moving probe. Dramatically different probe force-indentation curves are obtained for untreated cells and for cells in which the actin cytoskeleton has been disrupted. Untreated cells exhibit a rapid increase in force upon probe contact followed by yielding behaviour. Cells in which the contractile actin cytoskeleton was removed exhibit a linear force-indentation response. In order to investigate the mechanisms underlying this behaviour, a three-dimensional active modelling framework incorporating stress fibre (SF) remodelling and contractility is used to simulate the in vitro tests. Simulations reveal that the characteristic force-indentation curve observed for untreated chondrocytes occurs as a result of two factors: (i) yielding of SFs due to stretching of the cytoplasm near the probe and (ii) dissociation of SFs due to reduced cytoplasm tension at the front of the cell. In contrast, a passive hyperelastic model predicts a linear force-indentation curve similar to that observed for cells in which the actin cytoskeleton has been disrupted. This combined modelling-experimental study offers a novel insight into the role of the active contractility and remodelling of the actin cytoskeleton in the response of chondrocytes to mechanical loading.
Collapse
Affiliation(s)
- Enda P Dowling
- Mechanical and Biomedical Engineering, National University of Ireland, University Road, Galway, Republic of Ireland
| | | | | | | | | | | | | |
Collapse
|
20
|
Amanatullah DF, Yamane S, Reddi AH. Distinct patterns of gene expression in the superficial, middle and deep zones of bovine articular cartilage. J Tissue Eng Regen Med 2012; 8:505-14. [PMID: 22777751 DOI: 10.1002/term.1543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 03/05/2012] [Accepted: 04/24/2012] [Indexed: 12/26/2022]
Abstract
Hyaline articular cartilage will not heal spontaneously, and lesions in hyaline articular cartilage often result in degenerative joint disease. Considerable progress has been made with respect to the responsive stem cells, inductive signals and extracellular scaffolding required for the optimal regeneration of cartilage. However, many challenges remain, such as topographic differences in the functional zones of articular cartilage. We hypothesized that a distinct set of differentially expressed genes define the surface, middle and deep zones of hyaline articular cartilage. Microarray analysis of bovine articular cartilage from the superficial and middle zones revealed 52 genes differentially expressed ≥ 10-fold and 114 additional genes differentially expressed ≥ five-fold. However, no genes were identified with a ≥ five-fold difference in expression when comparing articular cartilage from the middle and deep zones. There are distinct, differential gene expression patterns in the superficial and middle zones of hyaline articular cartilage that highlight the functional differences between these zones. This investigation has implications for the tissue engineering and regeneration of hyaline articular cartilage.
Collapse
Affiliation(s)
- Derek F Amanatullah
- Lawrence Ellison Center for Tissue Regeneration and Repair, Department of Orthopedic Surgery, University of California at Davis, Sacramento, CA, 95817, USA
| | | | | |
Collapse
|
21
|
Sanchez-Adams J, Athanasiou KA. Biomechanics of meniscus cells: regional variation and comparison to articular chondrocytes and ligament cells. Biomech Model Mechanobiol 2012; 11:1047-56. [PMID: 22231673 DOI: 10.1007/s10237-012-0372-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/02/2012] [Indexed: 11/29/2022]
Abstract
Central to understanding mechanotransduction in the knee meniscus is the characterization of meniscus cell mechanics. In addition to biochemical and geometric differences, the inner and outer regions of the meniscus contain cells that are distinct in morphology and phenotype. This study investigated the regional variation in meniscus cell mechanics in comparison with articular chondrocytes and ligament cells. It was found that the meniscus contains two biomechanically distinct cell populations, with outer meniscus cells being stiffer (1.59 ± 0.19 kPa) than inner meniscus cells (1.07 ± 0.14 kPa). Additionally, it was found that both outer and inner meniscus cell stiffnesses were similar to ligament cells (1.32 ± 0.20 kPa), and articular chondrocytes showed the highest stiffness overall (2.51 ± 0.20 kPa). Comparison of compressibility characteristics of the cells showed similarities between articular chondrocytes and inner meniscus cells, as well as between outer meniscus cells and ligament cells. These results show that cellular biomechanics vary regionally in the knee meniscus and that meniscus cells are biomechanically similar to ligament cells. The mechanical properties of musculoskeletal cells determined in this study may be useful for the development of mathematical models or the design of experiments studying mechanotransduction in a variety of soft tissues.
Collapse
|
22
|
Riera KM, Rothfusz NE, Wilusz RE, Weinberg JB, Guilak F, McNulty AL. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther 2011; 13:R187. [PMID: 22087734 PMCID: PMC3334636 DOI: 10.1186/ar3515] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair. METHODS A micro-wound assay was used to assess meniscal cell migration and proliferation in response to the following treatments for 0, 24, or 48 hours: 0 to 10 ng/mL IL-1, TNF-α, or TGF-β1, in the presence or absence of 10% serum. Proliferated and total cells were fluorescently labeled and imaged using confocal laser scanning microscopy and the number of proliferated, migrated, and total cells was determined in the micro-wound and edges of each image. Meniscal cell proliferation was also assessed throughout meniscal repair model explants treated with 0 or 10 ng/mL IL-1, TNF-α, or TGF-β1 for 14 days. At the end of the culture period, biomechanical testing and histological analyses were also performed. Statistical differences were assessed using an ANOVA and Newman-Keuls post hoc test. RESULTS IL-1 and TNF-α decreased cell proliferation in both cell and tissue models of meniscal repair. In the presence of serum, TGF-β1 increased outer zone cell proliferation in the micro-wound and in the cross section of meniscal repair model explants. Both IL-1 and TNF-α decreased the integrative shear strength of repair and extracellular matrix deposition in the meniscal repair model system, while TGF-β1 had no effect on either measure. CONCLUSIONS Meniscal cell proliferation in vivo may be diminished following joint injury due to the up-regulation of inflammatory cytokines, thereby limiting native cellular repair of meniscal lesions. Therefore, therapies that can promote meniscal cell proliferation have promise to enhance meniscal repair and improve tissue engineering strategies.
Collapse
Affiliation(s)
- Katherine M Riera
- Department of Orthopaedic Surgery, Duke University Medical Center, DUMC Box 3093, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wang G, Liu X, Zreiqat H, Ding C. Enhanced effects of nano-scale topography on the bioactivity and osteoblast behaviors of micron rough ZrO2 coatings. Colloids Surf B Biointerfaces 2011; 86:267-74. [DOI: 10.1016/j.colsurfb.2011.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/31/2011] [Accepted: 04/05/2011] [Indexed: 01/22/2023]
|
24
|
Coates E, Fisher JP. Gene expression of alginate-embedded chondrocyte subpopulations and their response to exogenous IGF-1 delivery. J Tissue Eng Regen Med 2011; 6:179-92. [PMID: 21360689 DOI: 10.1002/term.411] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/30/2010] [Indexed: 12/28/2022]
Abstract
The delivery of growth factors to aid in cartilage engineering has received considerable attention. However, phenotypical differences between chondrocyte cell populations and their distinct responses to growth factors are not fully understood. To address this issue, we have investigated the gene expression of chondrocytes isolated from the superficial, middle, and deep zones of bovine articular cartilage. A three-dimensional (3D) alginate bead model was used to encapsulate zonal chondrocytes and culture with or without exogenous insulin-like growth factor-1(IFG-1) delivery. Following culture, mRNA expression of type I collagen, type II collagen, aggregan, IGF-1 and IGF-1 binding protein (IGF-BP3) were analysed at 1, 4 and 8 days. To the best of our knowledge, this is the first study to investigate gene expression of IGF-1 and IGF-BP3 by zone, and among the first studies to investigate growth factor delivery to chondrocytes in a 3D culture environment. Histological images and cell count data confirm the isolation of chondrocyte subpopulations, and gene expression data show distinct profiles for each zone, both with and without IGF-1 delivery. The data also show similar gene expression for the middle and deep zone cells, while the superficial zone group displays unique activity. Deep zone cells appear the most robust in their phenotype retention and most responsive to IGF-1 delivery. The results highlight differences in metabolic activity and varying responses to delivered growth factors between zonal chondrocyte populations.
Collapse
Affiliation(s)
- Emily Coates
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
25
|
DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C Methods 2010; 16:1533-42. [PMID: 20626274 DOI: 10.1089/ten.tec.2009.0761] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials-agarose and poly(ethylene glycol) (PEG) diacrylate-were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance.
Collapse
Affiliation(s)
- Brandon J DeKosky
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Coates EE, Fisher JP. Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli. Ann Biomed Eng 2010; 38:3371-88. [PMID: 20556515 DOI: 10.1007/s10439-010-0096-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/04/2010] [Indexed: 12/24/2022]
Abstract
Articular cartilage defects have limited capacity to self-repair, and cost society up to 60 billion dollars annually in both medical treatments and loss of working days. Recent developments in cartilage tissue engineering have resulted in many new products coming to market or entering clinical trials. However, there is a distinct lack of treatments which aim to recreate the complex zonal organization of articular cartilage. Cartilage tissue withstands repetitive strains throughout an individual's lifetime and provides frictionless movement between joints. The structure and composition of its intricately organized extracellular matrix varies with tissue depth to provide optimal resistance to loading, ensure ease of movement, and integrate with the subchondral bone. Each tissue zone is specially designed to resist the load it experiences, and maximize the tissue properties needed for its location. It is unlikely that a homogenous solution to tissue repair will be able to optimally restore the function of such a heterogeneous tissue. For zonal engineering of articular cartilage to become practical, maintenance of phenotypically stable zonal cell populations must be achieved. The chondrocyte phenotype varies considerably by zone, and it is the activity of these cells that help achieve the structural organization of the tissue. This review provides an examination of literature which has studied variations in cellular phenotype between cartilage zones. By doing so, we have identified critical differences between cell populations and highlighted areas of research which show potential in the field. Current research has made the morphological and metabolic variations between these cell populations clear, but an ideal way of maintaining these differences in vitro culture is yet to be established. Combinations of delivered growth factors, mechanical loading, and layered three-dimensional culture systems all show potential for achieving this goal. Furthermore, differentiation of progenitor cell populations into chondrocyte subpopulations may also hold promise for achieving large numbers of zonal chondrocytes. Success of the field lies in establishing methods of retaining phenotypically stable cell populations for in vitro culture.
Collapse
Affiliation(s)
- Emily E Coates
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | | |
Collapse
|
27
|
Darling EM, Pritchett PE, Evans EE, Superfine R, Zauscher S, Guilak F. Mechanical properties and gene expression of chondrocytes on micropatterned substrates following dedifferentiation in monolayer. Cell Mol Bioeng 2009; 2:395-404. [PMID: 20625462 PMCID: PMC2898162 DOI: 10.1007/s12195-009-0077-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022] Open
Abstract
Chondrocytes in articular cartilage normally exhibit high expression of collagen II and aggrecan but rapidly dedifferentiate to a fibroblastic phenotype if passaged in culture. Previous studies have suggested that the loss of chondrocyte phenotype is associated with changes in the structure of the F-actin cytoskeleton, which also controls cell mechanical properties. In this study, we examined how dedifferentiation in monolayer influences the mechanical properties of chondrocytes isolated from different zones of articular cartilage. Atomic force microscopy was used to measure the mechanical properties of superficial and middle/deep zone chondrocytes as they underwent serial passaging and subsequent growth on fibronectin-coated, micropatterned self-assembled monolayers (MSAMs) that restored a rounded cell shape in 2D culture. Chondrocytes exhibited significant increases in elastic and viscoelastic moduli with dedifferentiation in culture. These changes were only partially ameliorated by the restoration of a rounded shape on micropatterned surfaces. Furthermore, intrinsic zonal differences in cell mechanical properties were rapidly lost with passage. These findings indicate that cell mechanical properties may provide additional measures of phenotypic expression of chondrocytes as they undergo dedifferentiation and possibly redifferentiation in culture.
Collapse
Affiliation(s)
- Eric M. Darling
- Department of Surgery, Orthopaedic Research Laboratories, Duke University Medical Center, 375 MSRB, Box 3093, Durham, NC 27710 USA
- Department of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710 USA
- Present Address: Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI 02912 USA
| | - Poston E. Pritchett
- Department of Surgery, Orthopaedic Research Laboratories, Duke University Medical Center, 375 MSRB, Box 3093, Durham, NC 27710 USA
| | - Emily E. Evans
- Department of Physics, Elon University, Elon, NC 27244 USA
| | - Richard Superfine
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599 USA
| | - Stefan Zauscher
- Department of Mechanical Engineering & Materials Science, Duke University Medical Center, Durham, NC 27710 USA
| | - Farshid Guilak
- Department of Surgery, Orthopaedic Research Laboratories, Duke University Medical Center, 375 MSRB, Box 3093, Durham, NC 27710 USA
- Department of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710 USA
- Department of Mechanical Engineering & Materials Science, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
28
|
Ofek G, Willard VP, Koay EJ, Hu JC, Lin P, Athanasiou KA. Mechanical characterization of differentiated human embryonic stem cells. J Biomech Eng 2009; 131:061011. [PMID: 19449965 DOI: 10.1115/1.3127262] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human embryonic stem cells (hESCs) possess an immense potential in a variety of regenerative applications. A firm understanding of hESC mechanics, on the single cell level, may provide great insight into the role of biophysical forces in the maintenance of cellular phenotype and elucidate mechanical cues promoting differentiation along various mesenchymal lineages. Moreover, cellular biomechanics can provide an additional tool for characterizing stem cells as they follow certain differentiation lineages, and thus may aid in identifying differentiated hESCs, which are most suitable for tissue engineering. This study examined the viscoelastic properties of single undifferentiated hESCs, chondrogenically differentiated hESC subpopulations, mesenchymal stem cells (MSCs), and articular chondrocytes (ACs). hESC chondrogenesis was induced using either transforming growth factor-beta1 (TGF-beta1) or knock out serum replacer as differentiation agents, and the resulting cell populations were separated based on density. All cell groups were mechanically tested using unconfined creep cytocompression. Analyses of subpopulations from all differentiation regimens resulted in a spectrum of mechanical and morphological properties spanning the range of hESCs to MSCs to ACs. Density separation was further successful in isolating cellular subpopulations with distinct mechanical properties. The instantaneous and relaxed moduli of subpopulations from TGF-beta1 differentiation regimen were statistically greater than those of undifferentiated hESCs. In addition, two subpopulations from the TGF-beta1 group were identified, which were not statistically different from native articular chondrocytes in their instantaneous and relaxed moduli, as well as their apparent viscosity. Identification of a differentiated hESC subpopulation with similar mechanical properties as native chondrocytes may provide an excellent cell source for tissue engineering applications. These cells will need to withstand any mechanical stimulation regimen employed to augment the mechanical and biochemical characteristics of the neotissue. Density separation was effective at purifying distinct populations of cells. A differentiated hESC subpopulation was identified with both similar mechanical and morphological characteristics as ACs. Future research may utilize this cell source in cartilage regeneration efforts.
Collapse
Affiliation(s)
- Gidon Ofek
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ofek G, Dowling EP, Raphael RM, McGarry JP, Athanasiou KA. Biomechanics of single chondrocytes under direct shear. Biomech Model Mechanobiol 2009; 9:153-62. [DOI: 10.1007/s10237-009-0166-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 07/09/2009] [Indexed: 11/29/2022]
|
30
|
Blain EJ. Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology. Int J Exp Pathol 2009; 90:1-15. [PMID: 19200246 DOI: 10.1111/j.1365-2613.2008.00625.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cytoskeleton of all cells is a three-dimensional network comprising actin microfilaments, tubulin microtubules and intermediate filaments. Studies in many cell types have indicated roles for these cytoskeletal proteins in many diverse cellular processes including alteration of cell shape, movement of organelles, migration, endocytosis, secretion, cell division and extracellular matrix assembly. The cytoskeletal networks are highly organized in structure enabling them to fulfil their biological functions. This review will primarily focus on the organization and function of the three major cytoskeletal networks in articular cartilage chondrocytes. Articular cartilage is a major load-bearing tissue of the synovial joint; it is well known that the cytoskeleton acts as a physical interface between the chondrocytes and the extracellular matrix in 'sensing' mechanical stimuli. The effect of mechanical load on cytoskeletal element expression and organization will also be reviewed. Abnormal mechanical load is widely believed to be a risk factor for the development of osteoarthritis. Several studies have intimated that the major cytoskeletal networks are disorganized or often absent in osteoarthritic cartilage chondrocytes. The implications and possible reasoning for this are more widely discussed and placed into context with their potential relevance to disease and therapeutic strategies.
Collapse
Affiliation(s)
- Emma J Blain
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
31
|
Ofek G, Natoli RM, Athanasiou KA. In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J Biomech 2009; 42:873-7. [PMID: 19261283 DOI: 10.1016/j.jbiomech.2009.01.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/01/2023]
Abstract
The way in which the nucleus experiences mechanical forces has important implications for understanding mechanotransduction. Knowledge of nuclear material properties and, specifically, their relationship to the properties of the bulk cell can help determine if the nucleus directly experiences mechanical loads, or if it is a signal transduction mechanism secondary to cell membrane deformation that leads to altered gene expression. Prior work measuring nuclear material properties using micropipette aspiration suggests that the nucleus is substantially stiffer than the bulk cell [Guilak, F., Tedrow, J.R., Burgkart, R., 2000. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781-786], whereas recent work with unconfined compression of single chondrocytes showed a nearly one-to-one correlation between cellular and nuclear strains [Leipzig, N.D., Athanasiou, K.A., 2008. Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys. J. 94, 2412-2422]. In this study, a linearly elastic finite element model of the cell with a nuclear inclusion was used to simulate the unconfined compression data. Cytoplasmic and nuclear stiffnesses were varied from 1 to 7 kPa for several combinations of cytoplasmic and nuclear Poisson's ratios. It was found that the experimental data were best fit when the ratio of cytoplasmic to nuclear stiffness was 1.4, and both cytoplasm and nucleus were modeled as incompressible. The cytoplasmic to nuclear stiffness ratio is significantly lower than prior reports for isolated nuclei. These results suggest that the nucleus may behave mechanically different in situ than when isolated.
Collapse
Affiliation(s)
- Gidon Ofek
- Department of Bioengineering, Rice University, 6100 Main Street, Keck Hall Suite 116, Houston, TX 77005, USA
| | | | | |
Collapse
|
32
|
Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC. The potential of IGF-1 and TGFbeta1 for promoting "adult" articular cartilage repair: an in vitro study. Tissue Eng Part A 2008; 14:1251-61. [PMID: 18399732 DOI: 10.1089/ten.tea.2007.0211] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research into articular cartilage repair, a tissue unable to spontaneously regenerate once injured, has focused on the generation of a biomechanically functional repair tissue with the characteristics of hyaline cartilage. This study was undertaken to provide insight into how to improve ex vivo chondrocyte amplification, without cellular dedifferentiation for cell-based methods of cartilage repair. We investigated the effects of insulin-like growth factor 1 (IGF-1) and transforming growth factor beta 1 (TGFbeta1) on cell proliferation and the de novo synthesis of sulfated glycosaminoglycans and collagen in chondrocytes isolated from skeletally mature bovine articular cartilage, whilst maintaining their chondrocytic phenotype. Here we demonstrate that mature differentiated chondrocytes respond to growth factor stimulation to promote de novo synthesis of matrix macromolecules. Additionally, chondrocytes stimulated with IGF-1 or TGFbeta1 induced receptor expression. We conclude that IGF-1 and TGFbeta1 in addition to autoregulatory effects have differential effects on each other when used in combination. This may be mediated by regulation of receptor expression or endogenous factors; these findings offer further options for improving strategies for repair of cartilage defects.
Collapse
Affiliation(s)
- Lindsay C Davies
- Department of Oral Surgery, Medicine, and Pathology, School of Dentistry, Cardiff University, Heath Park, Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC. The Potential of IGF-1 and TGFβ1 for Promoting “Adult” Articular Cartilage Repair: An In VitroStudy. Tissue Eng Part A 2008. [DOI: 10.1089/tea.2007.0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Koay EJ, Ofek G, Athanasiou KA. Effects of TGF-beta1 and IGF-I on the compressibility, biomechanics, and strain-dependent recovery behavior of single chondrocytes. J Biomech 2008; 41:1044-52. [PMID: 18222457 DOI: 10.1016/j.jbiomech.2007.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/03/2007] [Accepted: 12/05/2007] [Indexed: 12/15/2022]
Abstract
The responses of articular chondrocytes to physicochemical stimuli are intimately linked to processes that can lead to both degenerative and regenerative processes. Toward understanding this link, we examined the biomechanical behavior of single chondrocytes in response to growth factors (IGF-I and TGF-beta1) and a range of compressive strains. The results indicate that the growth factors alter the biomechanics of the cells in terms of their stiffness coefficient ( approximately two-fold increase over control) and compressibility, as measured by an apparent Poisson's ratio ( approximately two-fold increase over control also). Interestingly, the compressibility decreased significantly with respect to the applied strain. Moreover, we have again detected a critical strain threshold in chondrocytes at approximately 30% strain in all treatments. Overall, these findings demonstrate that cellular biomechanics change in response to both biochemical and biomechanical perturbations. Understanding the underlying biomechanics of chondrocytes in response to such stimuli may be useful in understanding various aspects of cartilage, including the study of osteoarthritis and the development of tissue-engineering strategies.
Collapse
Affiliation(s)
- Eugene J Koay
- Department of Bioengineering, Rice University, MS-142, PO Box 1892, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
35
|
Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys J 2007; 94:2412-22. [PMID: 18065463 DOI: 10.1529/biophysj.107.114207] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous work has established that mechanical forces can lead to quantifiable alterations in cell function. However, how forces change gene expression in a single cell and the mechanisms of force transmission to the nucleus are poorly understood. Here we demonstrate that the gene expression of proteins related to the extracellular matrix in single articular chondrocytes is modified by compressive forces in a dosage-dependent manner. Increasing force exposure catabolically shifts single-cell mRNA levels of aggrecan, collagen IIa, and tissue inhibitor of metalloproteinase-1. Cytohistochemistry reveals that the majority of strain experienced by the cell is also experienced by the nucleus, resulting in considerable changes in nuclear volume and structure. Transforming growth factor-beta1 and insulin-like growth factor-I offer mechanoprotection and recovery of gene expression of aggrecan and metalloproteinase-1. These results suggest that forces directly influence gene transcription and may do so by changing chromatin conformation.
Collapse
|
36
|
Lima EG, Bian L, Ng KW, Mauck RL, Byers BA, Tuan RS, Ateshian GA, Hung CT. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthritis Cartilage 2007; 15:1025-33. [PMID: 17498976 PMCID: PMC2724596 DOI: 10.1016/j.joca.2007.03.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 03/11/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether the functional properties of tissue-engineered constructs cultured in a chemically-defined medium supplemented briefly with TGF-beta3 can be enhanced with the application of dynamic deformational loading. METHODS Primary immature bovine cells (2-3 months old) were encapsulated in agarose hydrogel (2%, 30 x 10(6)cells/ml) and cultured in chemically-defined medium supplemented for the first 2 weeks with transforming growth factor beta 3 (TGF-beta3) (10 microg/ml). Physiologic deformational loading (1 Hz, 3 h/day, 10% unconfined deformation initially and tapering to 2% peak-to-peak deformation by day 42) was applied either concurrent with or after the period of TGF-beta3 supplementation. Mechanical and biochemical properties were evaluated up to day 56. RESULTS Dynamic deformational loading applied concurrently with TGF-beta3 supplementation yielded significantly lower (-90%) overall mechanical properties when compared to free-swelling controls. In contrast, the same loading protocol applied after the discontinuation of the growth factor resulted in significantly increased (+10%) overall mechanical properties relative to free-swelling controls. Equilibrium modulus values reach 1306+/-79 kPa and glycosaminoglycan levels reach 8.7+/-1.6% w.w. during this 8-week period and are similar to host cartilage properties (994+/-280 kPa, 6.3+/-0.9% w.w.). CONCLUSIONS An optimal strategy for the functional tissue engineering of articular cartilage, particularly to accelerate construct development, may incorporate sequential application of different growth factors and applied deformational loading.
Collapse
Affiliation(s)
- E G Lima
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Eleswarapu SV, Leipzig ND, Athanasiou KA. Gene expression of single articular chondrocytes. Cell Tissue Res 2006; 327:43-54. [PMID: 16944207 DOI: 10.1007/s00441-006-0258-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/24/2006] [Indexed: 12/22/2022]
Abstract
Although previous studies in the field of tissue engineering have provided important information about articular cartilage, their conclusions are based on population averages and do not account for variations in cell subpopulations. To obtain a precise understanding of chondrocytes, we investigated the effects of cartilage zone and seeding duration on single chondrocyte gene expression to select an optimal zone for tissue engineering (Phase I), followed by an evaluation of growth factor exposure on the zone selected in Phase I (Phase II). In Phase I, superficial and middle/deep bovine articular chondrocytes were seeded in monolayers for 3 or 18 h. In Phase II, middle/deep chondrocytes (selected in Phase I) received 100 ng/ml insulin-like growth factor-I (IGF-I) for 3 h. Real-time reverse transcription/polymerase chain reaction was used to quantify the abundance of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the relative abundances of aggrecan, collagens I and II, cartilage oligomeric matrix protein (COMP), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1). GAPDH varied zonally, but neither time nor IGF-I had an effect on it, suggesting that GAPDH is a suitable housekeeping gene for comparisons within each zone, but not across zones. IGF-I increased the expression of aggrecan and collagen II in middle/deep chondrocytes seeded for 18 h. TIMP-1 expression increased with time in control cells, suggesting that chondrocytes enter a matrix protective state after seeding. IGF-I diminished this effect, suggesting that treatment with IGF-I refocuses chondrocytes on matrix production rather than on protection from metalloproteinases. Concomitant to increasing TIMP-1, MMP-1 was detectable by 18 h in superficial cells, providing further evidence of a trend toward matrix degradation with time. Collagen I was undetected in all cells, and no differences were observed for COMP, confirming that no dedifferentiation or osteoarthritic changes occurred. Taken together, these results establish a unique understanding of individual chondrocyte behavior.
Collapse
Affiliation(s)
- Sriram V Eleswarapu
- Department of Bioengineering, MS-142, Rice University, P.O. Box 1892, Houston, TX 77251, USA
| | | | | |
Collapse
|