1
|
Zhou Y, Zhao Y, Wu Y, Chen J, Wu H, Wei W, Yan S. Human Umbilical Cord Mesenchymal Stem Cells Alleviate Rat Knee Osteoarthritis via Activating Wnt/ β-catenin Signaling Pathway. Curr Stem Cell Res Ther 2024; 19:234-244. [PMID: 37132309 DOI: 10.2174/1574888x18666230428094400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic disease characterized by joint cartilage degeneration, destruction, and osteogenic hyperplasia. Human umbilical cord mesenchymal stem cells (hUCMSCs) have attracted increasing research interest due to their high clonogenic, proliferative, and migratory potential, as well as their improved secretion of relevant chondrogenic factors. This study evaluated the therapeutic potential and underlying mechanism of hUC-MSCs in alleviating pathological symptoms of OA. METHODS For the in vivo study, OA rats were established by the Hulth method to observe the therapeutic effect of intra-articular injection of hUC-MSCs. X-ray tests, gross observations, and histological and immunohistochemical assessments were conducted in rats. Levels of interleukin-1 beta (IL-1β), IL-6, matrix metalloproteinase-13 (MMP-13), and tissue inhibitor matrix metalloproteinase-1 in rats' synovial fluid were measured using enzyme-linked immunosorbent assay kits. For the in vitro study, hUC-MSCs and chondrocytes were cultured to explore the effect and underlying mechanisms of hUC-MSCs on OA. Apoptosis, proliferation, and glycosaminoglycan (GAG) were measured in the chondrocytes. The relative expression of aggrecan, COL-2, and SOX-9 mRNA was quantified by real-time polymerase chain reaction. Expressions of Wnt/β-catenin signaling molecules were measured by Western blot. RESULTS We found that intra-articular injection of hUC-MSCs reduced the combined score, increased the expression of collagen II, and decreased the expression of MMP-13, IL-1β, and IL-6 in rat knee joints. Additionally, hUC-MSCs increased the content of GAGs, inhibited chondrocyte apoptosis, and promoted chondrocyte proliferation. The expression of aggrecan, COL-2, and SOX-9 mRNA in chondrocytes was promoted by hUC-MSCs via activation of the Wnt/β-catenin signaling pathway. CONCLUSION Overall, this study demonstrated that hUC-MSCs induce the secretion of some cytokines via the paracrine function to activate the Wnt/β-catenin signaling pathway to reduce the pathological condition of OA and maintain the proper expression of cytokines and extracellular matrix proteins.
Collapse
Affiliation(s)
- Yue Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
- The First Hospital of Anhui University of Science and Technology, Huainan, 232007, China
| | - Yingjie Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yujiao Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
- Anti-inflammatory Immune Drug Collaborative Innovation Center, Hefei, 230032, Anhui Province, China
- Rheumatoid Arthritis Research Center, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
2
|
Yang K, Xie Q, Liang J, Shen Y, Li Z, Zhao N, Wu Y, Liu L, Zhang P, Hu C, Chen L, Wang Y. Identification of Andrographolide as a novel FABP4 inhibitor for osteoarthritis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154939. [PMID: 37354697 DOI: 10.1016/j.phymed.2023.154939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND PURPOSE Fatty acid binding protein 4 (FABP4) has been identified as a contributor to cartilage degradation in osteoarthritis (OA) patients, and inhibiting FABP4 using small molecules has emerged as a promising approach for developing OA drugs. Our previous research showed that Andrographis paniculata, a medicinal plant, strongly inhibits FABP4 activity. This led us to hypothesize that Andrographis paniculata ingredients might have protective effects on OA cartilage through FABP4 inhibition. METHODS We analyzed scRNA-seq data from joint tissue of OA patients (GSE152805; GSE145286) using Scanpy 1.9.1 and Single Cell Portal. We conducted docking analysis of FABP4 inhibitors using Autodock Vina v.1.0.2. We evaluated the anti-FABP4 activity using a fluorescence displacement assay and measured the fatty acid oxidation (FAO) activity using the FAOBlue assay. We used H2DCF-DA to measure reactive oxygen species (ROS) levels. We studied signaling pathways using bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. We evaluated anti-OA activity in monosodium iodoacetate (MIA)-induced rats. RESULTS We identified Andrographolide (AP) as a novel FABP4 inhibitor. Bulk RNA-sequencing analysis revealed that FABP4 upregulated FAO and ROS in chondrocytes, which was inhibited by AP. ROS generation activated the NF-κB pathway, leading to overexpression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which is a responsible factor for cartilage degradation in OA patients. AP inhibited FABP4, thereby reducing the overexpression of ADAMTS4 by inhibiting the NF-κB pathway. In MIA rats, AP treatment reduced the overexpression of ADAMTS4, repaired cartilage and subchondral bone, and promoted cartilage regeneration. CONCLUSION Our results indicate that the inhibition of FABP4 activity by AP explains the anti-OA properties of Andrographis paniculata by protecting against cartilage degradation in OA patients. Additionally, our findings suggest that AP may be a promising therapeutic agent for OA treatment due to its ability to alleviate cartilage damage and bone erosion.
Collapse
Affiliation(s)
- Kuangyang Yang
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Qian Xie
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China; Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jianhui Liang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Yanni Shen
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziqi Li
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Na Zhao
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Yuanyan Wu
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Lichu Liu
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Peng Zhang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Fleischer MM, Hartner SE, Newton MD, Baker KC, Maerz T. Early patellofemoral cartilage and bone pathology in a rat model of noninvasive anterior cruciate ligament rupture. Connect Tissue Res 2023; 64:175-185. [PMID: 36318110 DOI: 10.1080/03008207.2022.2136571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Anterior cruciate ligament rupture (ACLR) is a risk factor for the development of post-traumatic osteoarthritis (PTOA). While PTOA in the tibiofemoral joint compartment is well-characterized, very little is known about pathology in the patellofemoral compartment after ACL injury. Here, we evaluated the extent to which ACLR induces early patellofemoral joint damage in a rat model. METHODS Adult female Lewis rats were randomized to noninvasive ACLR or Sham. Two weeks post-injury, contrast-enhanced micro-computed tomography (µCT) of femoral and patellar cartilage was performed using 20% v/v ioxaglate. Morphometric parameters of femoral trochlear and patellar cartilage, subchondral bone, and trabecular bone were derived from µCT. Sagittal Safranin-O/Fast-Green-stained histologic sections were graded using the OARSI score in a blinded fashion. RESULTS Cartilage and bone remodelling consistent with an early PTOA phenotype were observed in both femoral trochleas and patellae. ACLR caused osteophyte formation of the patella and pathology in the superficial zone of articular cartilage, including surface fibrillation, fissures, increased cellularity, and abnormal chondrocyte clustering. There were significant increases in thickness of patellar and trochlear cartilage. Loss of subchondral bone thickness, bone volume fraction, and tissue mineral density, as well as changes to patellar and trochlear trabecular microarchitecture, were indicative of catabolic bone remodelling. Several injury-induced changes, including increased cartilage thickness and trabecular spacing and decreased trabecular number were more severe in the patella compared to the trochlea. CONCLUSION The patellofemoral joint develops mild but evident pathology in the early period following ACL rupture, extending the utility of this model to the study of patellofemoral PTOA.
Collapse
Affiliation(s)
| | | | - Michael D Newton
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI, USA
| | - Kevin C Baker
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI, USA
- Bone & Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Tsuji K, Oka A, Arihara N, Onishi R, Sawaya R, Saito S. [Longitudinal In Vivo Evaluation of Knee Osteoarthritis Model Using 7 T-MRI and Micro-CT]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:1393-1399. [PMID: 34924475 DOI: 10.6009/jjrt.2021_jsrt_77.12.1393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE This study aims to investigate inflammatory changes and osteophyte formation in a rat osteoarthritis (OA) model longitudinally by using 7 T-magnetic resonance imaging (MRI) and micro-computed tomography (CT). METHOD This OA model is induced surgically by removing the medial collateral ligament and medial meniscus of the right knee joint. Using 7 T-MRI, we compared the relative signal value of the medial collateral site and the area (mm2) of the upper end of the tibia at the right knee joint to those of the left knee joint on T2WI. In addition, we compared statistically the coefficient of variance (CV) of signal intensity on the subchondral bone, the area (mm2), the major axis (mm) and the minor axis (mm) of the upper end of the tibia by the use of micro-CT images. RESULTS In MRI experiment, the relative signal value was significantly higher at 2, 6, and 10 weeks postoperatively in the medial part of right knee joint than that in the left one. In micro-CT experiment, CV was significantly higher from 6 weeks postoperatively in the subchondral bone of surgical side. Rough and irregular surface at the medial tibia was also observed by 3D images. CONCLUSION Using 7 T-MRI and micro-CT, we're able to observe the knee osteoarthritis model rat longitudinally.
Collapse
Affiliation(s)
- Keiho Tsuji
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Asuka Oka
- Course of Medical Physics and Engineering, School of Allied Health Sciences, Osaka University (Current address: Department of Radiology, Osaka Police Hospital)
| | - Narumi Arihara
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Ryutaro Onishi
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Reika Sawaya
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science Division of Health Sciences, Osaka University Graduate School of Medicine.,Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|
5
|
Aizah N, Chong PP, Kamarul T. Early Alterations of Subchondral Bone in the Rat Anterior Cruciate Ligament Transection Model of Osteoarthritis. Cartilage 2021; 13:1322S-1333S. [PMID: 31569963 PMCID: PMC8804754 DOI: 10.1177/1947603519878479] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in research have shown that the subchondral bone plays an important role in the propagation of cartilage loss and progression of osteoarthritis (OA), but whether the subchondral bone changes precede or lead to articular cartilage loss remains debatable. In order to elucidate the subchondral bone and cartilage changes that occur in early OA, an experiment using anterior cruciate ligament transection (ACLT) induced posttraumatic OA model of the rat knee was conducted. DESIGN Forty-two Sprague Dawley rats were divided into 2 groups: the ACLT group and the nonoperated control group. Surgery was conducted on the ACLT group, and subsequently rats from both groups were sacrificed at 1, 2, and 3 weeks postsurgery. Subchondral bone was evaluated using a high-resolution peripheral quantitative computed tomography scanner, while cartilage was histologically evaluated and scored. RESULTS A significant reduction in the subchondral trabecular bone thickness and spacing was found as early as 1 week postsurgery in ACLT rats compared with the nonoperated control. This was subsequently followed by a reduction in bone mineral density and bone fractional volume at week 2, and finally a decrease in the trabecular number at week 3. These changes occurred together with cartilage degeneration as reflected by an increasing Mankin score over all 3 weeks. CONCLUSIONS Significant changes in subchondral bone occur very early in OA concurrent with surface articular cartilage degenerative change suggest that factors affecting bone remodeling and resorption together with cartilage matrix degradation occur very early in the disease.
Collapse
Affiliation(s)
- Nik Aizah
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Nik Aizah, National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic
Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia.
| | - Pan Pan Chong
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ji X, Ito A, Nakahata A, Nishitani K, Kuroki H, Aoyama T. Effects of in vivo cyclic compressive loading on the distribution of local Col2 and superficial lubricin in rat knee cartilage. J Orthop Res 2021; 39:543-552. [PMID: 32716572 DOI: 10.1002/jor.24812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/20/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
This study aimed to examine the effects of an episode of in vivo cyclic loading on rat knee articular cartilage (AC) under medium-term observation, while also investigating relevant factors associated with the progression of post-traumatic osteoarthritis (PTOA). Twelve-week-old Wistar rats underwent one episode comprising 60 cycles of 20 N or 50 N dynamic compression on the right knee joint. Spatiotemporal changes in the AC after loading were evaluated using histology and immunohistochemistry at 3 days and 1, 2, 4, and 8 weeks after loading (n = 6 for each condition). Chondrocyte vitality was assessed at 1, 3, 6, and 12 hours after loading (n = 2 for each condition). A localized AC lesion on the lateral femoral condyle was confirmed in all subjects. The surface and intermediate cartilage in the affected area degenerated after loading, but the calcified cartilage remained intact. Expression of type II collagen in the lesion cartilage was upregulated after loading, whereas the superficial lubricin layer was eroded in response to cyclic compression. However, the distribution of superficial lubricin gradually recovered to the normal level 4 weeks after loading-induced injury. We confirmed that 60 repetitions of cyclic loading exceeding 20 N could result in cartilage damage in the rat knee. Endogenous repairs in well-structured joints work well to rebuild protective layers on the lesion cartilage surface, which may be the latent factor delaying the progression of PTOA.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nakahata
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Badea CT. Principles of Micro X-ray Computed Tomography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Gowler PRW, Mapp PI, Burston JJ, Shahtaheri M, Walsh DA, Chapman V. Refining surgical models of osteoarthritis in mice and rats alters pain phenotype but not joint pathology. PLoS One 2020; 15:e0239663. [PMID: 32991618 PMCID: PMC7523978 DOI: 10.1371/journal.pone.0239663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022] Open
Abstract
The relationship between osteoarthritis (OA) structural change and pain is complex. Surgical models of OA in rodents are often rapid in onset, limiting mechanistic utility and translational validity. We aimed to investigate the effect of refining surgical small rodent models of OA on both joint pathology and pain behaviour. Adult male C57BL/6 mice (n = 76, 10-11 weeks of age at time of surgery) underwent either traditional (transection of the medial meniscotibial ligament [MMTL]) or modified (MMTL left intact, transection of the coronary ligaments) DMM surgery, or sham surgery. Adult male Sprague Dawley rats (n = 76, weight 175-199g) underwent either modified meniscal transection (MMNX) surgery (transection of the medial meniscus whilst the medial collateral ligament is left intact) or sham surgery. Pain behaviours (weight bearing asymmetry [in mice and rats] and paw withdrawal thresholds [in rats]) were measured pre-surgery and weekly up to 16 weeks post-surgery. Post-mortem knee joints were scored for cartilage damage, synovitis, and osteophyte size. There was a significant increase in weight bearing asymmetry from 13 weeks following traditional, but not modified, DMM surgery when compared to sham operated mice. Both traditional and modified DMM surgery led to similar joint pathology. There was significant pain behaviour from 6 weeks following MMNX model compared to sham operated control rats. Synovitis was significant 4 weeks after MMNX surgery, whereas significant chondropathy was first evident 8 weeks post-surgery, compared to sham controls. Pain behaviour is not always present despite significant changes in medial tibial plateau cartilage damage and synovitis, reflecting the heterogeneity seen in human OA. The development of a slowly progressing surgical model of OA pain in the rat suggests that synovitis precedes pain behaviour and that chondropathy is evident later, providing the foundations for future mechanistic studies into the disease.
Collapse
Affiliation(s)
- Peter R. W. Gowler
- Pain Centre Versus Arthritis, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Paul I. Mapp
- Pain Centre Versus Arthritis, Academic Rheumatology, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - James J. Burston
- Pain Centre Versus Arthritis, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Mohsen Shahtaheri
- Pain Centre Versus Arthritis, Academic Rheumatology, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - David A. Walsh
- Pain Centre Versus Arthritis, Academic Rheumatology, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Adebayo OO, Holyoak DT, van der Meulen MCH. Mechanobiological Mechanisms of Load-Induced Osteoarthritis in the Mouse Knee. J Biomech Eng 2020; 141:2736041. [PMID: 31209459 DOI: 10.1115/1.4043970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions of people worldwide, yet its disease mechanism is not clearly understood. Animal models have been established to study disease progression by initiating OA through modified joint mechanics or altered biological activity within the joint. However, animal models often do not have the capability to directly relate the mechanical environment to joint damage. This review focuses on a novel in vivo approach based on controlled, cyclic tibial compression to induce OA in the mouse knee. First, we discuss the development of the load-induced OA model, its different loading configurations, and other techniques used by research laboratories around the world. Next, we review the lessons learned regarding the mechanobiological mechanisms of load-induced OA and relate these findings to the current understanding of the disease. Then, we discuss the role of specific genetic and cellular pathways involved in load-induced OA progression and the contribution of altered tissue properties to the joint response to mechanical loading. Finally, we propose using this approach to test the therapeutic efficacy of novel treatment strategies for OA. Ultimately, elucidating the mechanobiological mechanisms of load-induced OA will aid in developing targeted treatments for this disabling disease.
Collapse
Affiliation(s)
| | - Derek T Holyoak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, 113 Weill Hall, Ithaca, NY 14853.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853.,Research Division, Hospital for Special Surgery, New York, NY 10021 e-mail:
| |
Collapse
|
10
|
Li X, Sun Y, Zhou Z, Zhang D, Jiao J, Hu M, Hassan CR, Qin YX. Mitigation of Articular Cartilage Degeneration and Subchondral Bone Sclerosis in Osteoarthritis Progression Using Low-Intensity Ultrasound Stimulation. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:148-159. [PMID: 30322672 PMCID: PMC6289639 DOI: 10.1016/j.ultrasmedbio.2018.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to evaluate the effect of low-intensity ultrasound on articular cartilage and subchondral bone alterations in joints under normal and functional disuse conditions during osteoarthritis (OA) progression. Total of thirty 5-mo-old female Sprague-Dawley rats were randomly assigned to six groups (n = 5/group): age-matched group, OA group, OA + ultrasound (US) group, hindlimb suspension (HLS) group, HLS + OA group and HLS + OA + US group. The surgical anterior cruciate ligament was used to induce OA in the right knee joints. After 2 wk of OA induction, low-intensity ultrasound generated with a 3-MHz transducer with 20% pulse duty cycle and 30 mW/cm2 acoustic intensity was delivered to the right knee joints for 20 min a day, 5 d a week for a total of 6 wk. Then, the right tibias were harvested for micro-computed tomography, histologic and mechanical analysis. Micro-computed tomography results indicated that the thickness and sulfated glycosaminoglycan content of cartilage decreased, but the thickness of the subchondral cortical bone plate and the formation of subchondral trabecular bone increased in the OA group under the normal joint use condition. Furthermore, histologic results revealed that chondrocyte density and arrangement in cartilage corrupted and the underlying subchondral bone increased during OA progression. These changes were accompanied by reductions in mechanical parameters in OA cartilage. However, fewer OA symptoms were observed in the HLS + OA group under the joint disuse condition. The cartilage degeneration and subchondral bone sclerosis were alleviated in the US treatment group, especially under normal joint use condition. In conclusion, low-intensity ultrasound could improve cartilage degeneration and subchondral sclerosis during OA progression. Also, it could provide a promising strategy for future clinical treatment for OA patients.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Yueli Sun
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Zhilun Zhou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Dongye Zhang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Jian Jiao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Chaudhry Raza Hassan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
11
|
Korfiatis VC, Tassani S, Matsopoulos GK. An Independent Active Contours Segmentation framework for bone micro-CT images. Comput Biol Med 2017. [PMID: 28651071 DOI: 10.1016/j.compbiomed.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Micro-CT is an imaging technique for small tissues and objects that is gaining increased popularity especially as a pre-clinical application. Nevertheless, there is no well-established micro-CT segmentation method, while typical procedures lack sophistication and frequently require a degree of manual intervention, leading to errors and subjective results. To address these issues, a novel segmentation framework, called Independent Active Contours Segmentation (IACS), is proposed in this paper. The proposed IACS is based on two autonomous modules, namely automatic ROI extraction and IAC Evolution, which segments the ROI image using multiple Active Contours that evolve simultaneously and independently of one another. The proposed method is applied on a Phantom dataset and on real datasets. It is tested against several established segmentation methods that include Adaptive Thresholding, Otsu Thresholding, Region Growing, Chan-Vese (CV) AC, Geodesic AC and Automatic Local Ratio-CV AC, both qualitatively and quantitatively. The results prove its superior performance in terms of object identification capability, accuracy and robustness, under normal circumstances and under four types of artificially introduced noise. These enhancements can lead to more reliable analysis, better diagnostic procedures and treatment evaluation of several bone-related pathologies, and to the facilitation and further advancement of bone research.
Collapse
Affiliation(s)
- Vasileios Ch Korfiatis
- School of Electrical and Computer Engineering, National Technical University of Athens, Greece
| | - Simone Tassani
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - George K Matsopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, Greece.
| |
Collapse
|
12
|
|
13
|
Li Z, Liu SY, Xu L, Xu SY, Ni GX. Effects of treadmill running with different intensity on rat subchondral bone. Sci Rep 2017; 7:1977. [PMID: 28512292 PMCID: PMC5434052 DOI: 10.1038/s41598-017-02126-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 04/07/2017] [Indexed: 02/08/2023] Open
Abstract
Subchondral bone (SB) is recognized as a key factor in normal joint protection, not only does it provide a shock absorbing and supportive function for the cartilage, but it may also be important for cartilage metabolism. Mechanical loading is considered to be a critical regulator of skeletal homeostasis, including bone and cartilage. It is suggested that both cartilage and bone may respond to mechanical loading in an intensity-dependent manner. In this report, we have discovered that the subchondral plate became thicker with higher bone mineral density (BMD) and lower porosity, while trabecular bone became more plate-like and denser with higher BMD in high-intensity running (HIR) group. Further, HIR led to highly remodeled, less mineralized, and stiffer subchondral plate and trabecular bone. On the contrary, low-intensity running and moderate-intensity running failed to result in considerable changes in microstructure, composition and hardness. Our findings suggested that running affects SB in an intensity-dependent manner. In addition, HIR may induce change in organization and composition of SB, and consequently alter its mechanical properties. HIR-induced "brittle and stiff" SB may adversely affect the overlying articular cartilage.
Collapse
Affiliation(s)
- Zhe Li
- Department of Orthopaedics and Traumatology, Zhengzhou Orthopaedics Hospital, Zhengzhou, China
| | - Sheng-Yao Liu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Nanfang, China
| | - Lei Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Nanfang, China
| | - Shao-Yong Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Nanfang, China
| | - Guo-Xin Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fujian, China.
| |
Collapse
|
14
|
McCann MR, Yeung C, Pest MA, Ratneswaran A, Pollmann SI, Holdsworth DW, Beier F, Dixon SJ, Séguin CA. Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone. Osteoarthritis Cartilage 2017; 25:770-778. [PMID: 27840128 DOI: 10.1016/j.joca.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 11/02/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Low-amplitude, high-frequency whole-body vibration (WBV) has been adopted for the treatment of musculoskeletal diseases including osteoarthritis (OA); however, there is limited knowledge of the direct effects of vibration on joint tissues. Our recent studies revealed striking damage to the knee joint following exposure of mice to WBV. The current study examined the effects of WBV on specific compartments of the murine tibiofemoral joint over 8 weeks, including microarchitecture of the tibia, to understand the mechanisms associated with WBV-induced joint damage. DESIGN Ten-week-old male CD-1 mice were exposed to WBV (45 Hz, 0.3 g peak acceleration; 30 min/day, 5 days/week) for 4 weeks, 8 weeks, or 4 weeks WBV followed by 4 weeks recovery. The knee joint was evaluated histologically for tissue damage. Architecture of the subchondral bone plate, subchondral trabecular bone, primary and secondary spongiosa of the tibia was assessed using micro-CT. RESULTS Meniscal tears and focal articular cartilage damage were induced by WBV; the extent of damage increased between 4 and 8-week exposures to WBV. WBV did not alter the subchondral bone plate, or trabecular bone of the tibial spongiosa; however, a transient increase was detected in the subchondral trabecular bone volume and density. CONCLUSIONS The lack of WBV-induced changes in the underlying subchondral bone suggests that damage to the articular cartilage may be secondary to the meniscal injury we detected. Our findings underscore the need for further studies to assess the safety of WBV in the human population to avoid long-term joint damage.
Collapse
Affiliation(s)
- M R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - C Yeung
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - M A Pest
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - A Ratneswaran
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - S I Pollmann
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - D W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Surgery, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - F Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - S J Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - C A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Bone and Joint Institute, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
15
|
Kloefkorn HE, Allen KD. Quantitative histological grading methods to assess subchondral bone and synovium changes subsequent to medial meniscus transection in the rat. Connect Tissue Res 2017; 58:373-385. [PMID: 27797605 PMCID: PMC5568641 DOI: 10.1080/03008207.2016.1251425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/16/2016] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY The importance of the medial meniscus to knee health is demonstrated by studies which show meniscus injuries significantly increase the likelihood of developing osteoarthritis (OA), and knee OA can be modeled in rodents using simulated meniscus injuries. Traditionally, histological assessments of OA in these models have focused on damage to the articular cartilage; however, OA is now viewed as a disease of the entire joint as an organ system. The aim of this study was to develop quantitative histological measures of bone and synovial changes in a rat medial meniscus injury model of knee OA. MATERIALS AND METHODS To initiate OA, a medial meniscus transection (MMT) and a medial collateral ligament transection (MCLT) were performed in 32 male Lewis rats (MMT group). MCLT alone served as the sham procedure in 32 additional rats (MCLT sham group). At weeks 1, 2, 4, and 6 post-surgery, histological assessment of subchondral bone and synovium was performed (n = 8 per group per time point). RESULTS Trabecular bone area and the ossification width at the osteochondral interface increased in both the MMT and MCLT groups. Subintimal synovial cell morphology also changed in MMT and MCLT groups relative to naïve animals. CONCLUSIONS OA affects the joint as an organ system, and quantifying changes throughout an entire joint can improve our understanding of the relationship between joint destruction and painful OA symptoms following meniscus injury.
Collapse
Affiliation(s)
- Heidi E Kloefkorn
- a J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , Gainesville , FL , USA
| | - Kyle D Allen
- a J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , Gainesville , FL , USA
| |
Collapse
|
16
|
Parrilli A, Giavaresi G, Ferrari A, Salamanna F, Desando G, Grigolo B, Martini L, Fini M. Subchondral bone response to injected adipose-derived stromal cells for treating osteoarthritis using an experimental rabbit model. Biotech Histochem 2017; 92:201-211. [DOI: 10.1080/10520295.2017.1292366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
17
|
Mittelstaedt D, Kahn D, Xia Y. Topographical and depth-dependent glycosaminoglycan concentration in canine medial tibial cartilage 3 weeks after anterior cruciate ligament transection surgery-a microscopic imaging study. Quant Imaging Med Surg 2016; 6:648-660. [PMID: 28090443 DOI: 10.21037/qims.2016.06.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Medical imaging has become an invaluable tool to diagnose damage to cartilage. Depletion of glycosaminoglycans (GAG) has been shown to be one of the early signs of cartilage degradation. In order to investigate the topographical changes in GAG concentration caused by the anterior cruciate ligament transection (ACLT) surgery in a canine model, microscopic magnetic resonance imaging (µMRI) and microscopic computed tomography (µCT) were used to measure the GAG concentration with correlation from a biochemical assay, inductively coupled plasma optical emission spectroscopy (ICP-OES), to understand where the topographical and depth-dependent changes in the GAG concentration occur. METHODS This study used eight knee joints from four canines, which were examined 3 weeks after ACLT surgery. From right (n=3) and left (n=1) medial tibias of the ACLT and the contralateral side, two ex vivo specimens from each of four locations (interior, central, exterior and posterior) were imaged before and after equilibration in contrast agents. The cartilage blocks imaged using µMRI were approximately 3 mm × 5 mm and were imaged before and after eight hours submersion in a gadolinium (Gd) contrast agent with an in-plane pixel resolution of 17.6 µm2 and an image slice thickness of 1 mm. The cartilage blocks imaged using µCT were approximately 2 mm × 1 mm and were imaged before and after 24 hours submersed in ioxaglate with an isotropic voxel resolution of 13.4 µm3. ICP-OES was used to quantify the bulk GAG at each topographical location. RESULTS The pre-contrast µMRI and µCT results did not demonstrate significant differences in GAG between the ACLT and contralateral cartilage at all topographical locations. The post-contrast µMRI and µCT results demonstrated topographically similar significant differences in GAG concentrations between the ACLT and contralateral tibia. Using µMRI, the GAG concentrations (mg/mL) were measured for the ACLT and contralateral respectively, the exterior (54.0±3.6; 70.4±4.3; P=0.001) and interior (54.9±5.9; 71.0±5.9; P=0.029) demonstrated significant differences, but not for the central (61.0±12.0; 67.4±7.2; P=0.438) or posterior (61.6±6.3; 70.3±4.4; P=0.097) locations. Using µCT, the GAG concentrations (mg/mL) were measured for the ACLT and contralateral respectively, the exterior (68.8±0.4; 87.7±4.1; P=0.023) and interior (60.5±9.1; 82.6±8.7; P=0.039) demonstrated significant differences, but not for the central (53.5±5.5; 59.1±25.6; P=0.684) or posterior (52.3±6.2; 61.5±12.7; P=0.325) locations. The depth-dependent GAG (mg/mL) profiles showed significant differences in µMRI for the transitional zone (TZ) [exterior (28.1±4.7; 47.0±8.6; P=0.01) and interior (32.6±4.8; 43.8±8.7; P=0.025)], radial zone (RZ) 1 [exterior (49.6±4.8; 71.5±5.8; P=0.001) and interior (49.4±7.4; 66.7±6.8; P=0.041)], and RZ 2 [exterior (74.9±4.7; 91.8±2.9; P=0.001) and interior (77.1±6.0; 94.8±4.5; P=0.015)], and in µCT for the superficial zone (SZ) [interior (20.6±1.2; 40.4±5.4; P=0.004)], TZ [exterior (45.6±12.0; 61.8±0.5; P=0.049) and interior (36.3±11.7; 60.8±2.0; P=0.019)], and RZ 1 [exterior (61.1±4.1; 85.3±5.6; P=0.039) and interior (53.9±4.9; 78.0±5.1; P=0.041)] for the ACLT and contralateral, respectively. ICP-OES measured significant differences in GAG were found for the exterior (42.1±19.6; 65.3±16.2; P=0.017), central (43.4±4.4; 65.3±10.6; P=0.0111), and interior (46.8±5.6; 61.7±7.3; P=0.0445) but not for the posterior (52.6±12.1; 59.0±2.6; P=0.9252) medial tibia locations compared for the ACLT and contralateral, respectively. CONCLUSIONS The detection and correlation between the three techniques show a topographic depth-dependency on the initial GAG loss in injured cartilage. This topographic and high resolution investigation of ACLT cartilage demonstrated the potential of using µMRI and µCT to study and help diagnose cartilage with very early stages of osteoarthritis.
Collapse
Affiliation(s)
- Daniel Mittelstaedt
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - David Kahn
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
18
|
Chin KE, Karamchedu NP, Patel TK, Badger GJ, Akelman MR, Moore DC, Proffen BL, Murray MM, Fleming BC. Comparison of micro-CT post-processing methods for evaluating the trabecular bone volume fraction in a rat ACL-transection model. J Biomech 2016; 49:3559-3563. [PMID: 27594677 DOI: 10.1016/j.jbiomech.2016.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 11/30/2022]
Abstract
Trabecular bone volume fraction assessments are likely sensitive to the analysis method and selection of the region of interest. Currently, there are several methods for selecting the region of interest to analyze trabecular bone in animal models of post-traumatic osteoarthritis. The objective of this study was to compare three published methods for determining the trabecular bone volume fraction of the medial tibial epiphyses in ACL transected and contralateral ACL intact knees. Micro-computed tomography images of both knees were obtained five weeks post-operatively and evaluated using three methods: (1) the Whole Compartment Method that captured the entire medial compartment, (2) the centrally located Single Core Method, and (3) the Triplet Core Method that averaged focal locations in the anterior, central, and posterior regions. The Whole Compartment Method detected significant bone loss in the ACL transected knee compared to the ACL intact knee (p<0.001), with a loss of 15.2±3.9%. The Single Core and the Triplet Core Methods detected losses of 7.5±10.5% (p=0.061) and 14.1±13.7%(p=0.01), respectively. Details regarding segmentation methods are important for facilitating comparisons between studies, and for selecting methods to document trabecular bone changes and treatment outcomes. Based on these findings, the Whole Compartment Method is recommended, as it was least variable and more sensitive for detecting differences in the bone volume fraction in the medial compartment.
Collapse
Affiliation(s)
- K E Chin
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - N P Karamchedu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - T K Patel
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - G J Badger
- Department of Medical Biostatistics, University of Vermont, Burlington, VT, USA
| | - M R Akelman
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - D C Moore
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - B L Proffen
- Department of Orthopaedic Surgery, Boston Children׳s Hospital, Boston, MA, USA
| | - M M Murray
- Department of Orthopaedic Surgery, Boston Children׳s Hospital, Boston, MA, USA
| | - B C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA; School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
19
|
De Lasalle J, Alexander K, Olive J, Laverty S. COMPARISONS AMONG RADIOGRAPHY, ULTRASONOGRAPHY AND COMPUTED TOMOGRAPHY FOR EX VIVO CHARACTERIZATION OF STIFLE OSTEOARTHRITIS IN THE HORSE. Vet Radiol Ultrasound 2016; 57:489-501. [DOI: 10.1111/vru.12370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 01/28/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Julie De Lasalle
- Department of Clinical Sciences, Faculty of Veterinary Medicine; University of Montreal; 3200 Sicotte, PO Box 5000 Saint-Hyacinthe QC Canada
- Comparative Orthopedic Research Laboratory, Faculty of Veterinary Medicine; University of Montreal; 3200 Sicotte, PO Box 5000 Saint-Hyacinthe J2S 7C6, QC Canada
| | - Kate Alexander
- Department of Clinical Sciences, Faculty of Veterinary Medicine; University of Montreal; 3200 Sicotte, PO Box 5000 Saint-Hyacinthe QC Canada
| | - Julien Olive
- Department of Clinical Sciences, Faculty of Veterinary Medicine; University of Montreal; 3200 Sicotte, PO Box 5000 Saint-Hyacinthe QC Canada
| | - Sheila Laverty
- Department of Clinical Sciences, Faculty of Veterinary Medicine; University of Montreal; 3200 Sicotte, PO Box 5000 Saint-Hyacinthe QC Canada
- Comparative Orthopedic Research Laboratory, Faculty of Veterinary Medicine; University of Montreal; 3200 Sicotte, PO Box 5000 Saint-Hyacinthe J2S 7C6, QC Canada
| |
Collapse
|
20
|
Yu DG, Nie SB, Liu FX, Wu CL, Tian B, Wang WG, Wang XQ, Zhu ZA, Mao YQ. Dynamic Alterations in Microarchitecture, Mineralization and Mechanical Property of Subchondral Bone in Rat Medial Meniscal Tear Model of Osteoarthritis. Chin Med J (Engl) 2016; 128:2879-86. [PMID: 26521785 PMCID: PMC4756896 DOI: 10.4103/0366-6999.168045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: The properties of subchondral bone influence the integrity of articular cartilage in the pathogenesis of osteoarthritis (OA). However, the characteristics of subchondral bone alterations remain unresolved. The present study aimed to observe the dynamic alterations in the microarchitecture, mineralization, and mechanical properties of subchondral bone during the progression of OA. Methods: A medial meniscal tear (MMT) operation was performed in 128 adult Sprague Dawley rats to induce OA. At 2, 4, 8, and 12 weeks following the MMT operation, cartilage degeneration was evaluated using toluidine blue O staining, whereas changes in the microarchitecture indices and tissue mineral density (TMD), mineral-to-collagen ratio, and intrinsic mechanical properties of subchondral bone plates (BPs) and trabecular bones (Tbs) were measured using micro-computed tomography scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: Cartilage degeneration occurred and worsened progressively from 2 to 12 weeks after OA induction. Microarchitecture analysis revealed that the subchondral bone shifted from bone resorption early (reduced trabecular BV/TV, trabecular number, connectivity density and trabecular thickness [Tb.Th], and increased trabecular spacing (Tb.Sp) at 2 and 4 weeks) to bone accretion late (increased BV/TV, Tb.Th and thickness of subchondral bone plate, and reduced Tb.Sp at 8 and 12 weeks). The TMD of both the BP and Tb displayed no significant changes at 2 and 4 weeks but decreased at 8 and 12 weeks. The mineral-to-collagen ratio showed a significant decrease from 4 weeks for the Tb and from 8 weeks for the BP after OA induction. Both the elastic modulus and hardness of the Tb showed a significant decrease from 4 weeks after OA induction. The BP showed a significant decrease in its elastic modulus from 8 weeks and its hardness from 4 weeks. Conclusion: The microarchitecture, mineralization and mechanical properties of subchondral bone changed in a time-dependent manner as OA progressed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuan-Qing Mao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
21
|
Bertuglia A, Lacourt M, Girard C, Beauchamp G, Richard H, Laverty S. Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthritis Cartilage 2016; 24:555-66. [PMID: 26505663 DOI: 10.1016/j.joca.2015.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 02/02/2023]
Abstract
UNLABELLED The role of osteoclasts in osteochondral degeneration in osteoarthritis (OA) has rarely been investigated in spontaneous disease or animal models of OA. OBJECTIVE The objectives of the current study were to investigate osteoclast density and location in post-traumatic OA (PTOA) and control specimens from racehorses. METHOD Cores were harvested from a site in the equine third carpal bone, that undergoes repetitive, high intensity loading. Histological and immunohistochemical (Cathepsin K and Receptor-activator of Nuclear Factor kappa-β ligand (RANKL)) stained sections were scored (global and subregional) and the osteoclast density calculated. The cartilage histological scores were compared with osteoclast density and RANKL scores. RESULTS There was a greater density of osteoclasts in PTOA samples and they were preferentially located in the subchondral bone plate. RANKL scores positively correlated to the scores of cartilage degeneration and the osteoclast density. The relationship between hyaline articular cartilage RANKL score and osteoclast density was stronger than that of the subchondral bone RANKL score suggesting that cartilage RANKL may have a role in recruiting osteoclasts. The RANKL score in the articular calcified cartilage correlated with the number of microcracks also suggesting that osteoclasts recruited by RANKL may contribute to calcified cartilage degeneration in PTOA. CONCLUSION Our results support the hypothesis that osteoclasts are recruited during the progression of spontaneous equine carpal PTOA by cartilage RANKL, contributing to calcified cartilage microcracks and focal subchondral bone loss.
Collapse
Affiliation(s)
- A Bertuglia
- Comparative Orthopaedic Research Laboratory, Département de sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| | - M Lacourt
- Comparative Orthopaedic Research Laboratory, Département de sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - C Girard
- Département de Pathologie et Microbiologie Vétérinaires, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - G Beauchamp
- Département de Pathologie et Microbiologie Vétérinaires, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - H Richard
- Comparative Orthopaedic Research Laboratory, Département de sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| | - S Laverty
- Comparative Orthopaedic Research Laboratory, Département de sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
22
|
Walker WT, Silverberg JL, Kawcak CE, Nelson BB, Fortier LA. Morphological characteristics of subchondral bone cysts in medial femoral condyles of adult horses as determined by computed tomography. Am J Vet Res 2016; 77:265-74. [DOI: 10.2460/ajvr.77.3.265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Pauly HM, Larson BE, Coatney GA, Button KD, DeCamp CE, Fajardo RS, Haut RC, Donahue TLH. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis. J Orthop Res 2015; 33:1835-45. [PMID: 26147652 PMCID: PMC4628602 DOI: 10.1002/jor.22975] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/29/2015] [Indexed: 02/04/2023]
Abstract
Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans.
Collapse
Affiliation(s)
- Hannah M Pauly
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Blair E Larson
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO USA
| | - Garrett A Coatney
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA,Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
| | - Keith D. Button
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI USA
| | - Charlie E DeCamp
- Small Animal Clinical Sciences, College of Veterinary, Michigan State University, East Lansing, MI USA
| | - Ryan S Fajardo
- Department of Radiology, Michigan State University, East Lansing, MI USA
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI USA,Department of Radiology, Michigan State University, East Lansing, MI USA
| | - Tammy L Haut Donahue
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA,Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
24
|
Burnett WD, Kontulainen SA, McLennan CE, Hazel D, Talmo C, Hunter DJ, Wilson DR, Johnston JD. Response to Letter to the Editor: 'Is subchondral bone mineral density associated with nocturnal pain in knee osteoarthritis patients?'. Osteoarthritis Cartilage 2015; 23:2299-2301. [PMID: 26162805 DOI: 10.1016/j.joca.2015.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/29/2015] [Indexed: 02/02/2023]
Affiliation(s)
- W D Burnett
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - S A Kontulainen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada; College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - C E McLennan
- Division of Research, New England Baptist Hospital, Boston, MA, USA
| | - D Hazel
- Division of Research, New England Baptist Hospital, Boston, MA, USA
| | - C Talmo
- Division of Research, New England Baptist Hospital, Boston, MA, USA
| | - D J Hunter
- Institute of Bone and Joint Research, University of Sydney, Sydney, NSW, Australia
| | - D R Wilson
- Department of Orthopaedics and Centre for Hip Health and Mobility, University of British Columbia and Vancouver Costal Health Research Institute, Vancouver, BC, Canada
| | - J D Johnston
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Department of Mechanical Engineering, University of Saskatchewan, SK, Canada.
| |
Collapse
|
25
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
26
|
Iijima H, Aoyama T, Ito A, Yamaguchi S, Nagai M, Tajino J, Zhang X, Kuroki H. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis. Osteoarthritis Cartilage 2015; 23:1563-74. [PMID: 25916553 DOI: 10.1016/j.joca.2015.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/04/2015] [Accepted: 04/15/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Subchondral bone cyst (SBC) growth, caused by osteoclast activity during early knee osteoarthritis (OA) pathogenesis, should be treated to prevent further progressions of OA. In the present study, we evaluated the effects of gentle treadmill walking on subchondral bone and cartilage changes in an experimental rat model of destabilized medial meniscus (DMM). METHOD Twelve-week-old Wistar rats underwent DMM surgery in their right knee and sham surgery in their left knee and were assigned to either the sedentary group or walking group (n = 42/group). Animals in the walking group were subjected to treadmill exercise 2 days after surgery, which included walking for 12 m/min, 30 min/day, 5 days/week for 1, 2, and 4 week(s). Subchondral bone and cartilage changes were evaluated by micro-CT analysis, histological analysis, and biomechanical analysis. RESULTS Treadmill walking had a tendency to suppress SBC growth, which was confirmed by micro-CT (P = 0.06) and positive staining for tartrate-resistant acid phosphatase (TRAP) activity for the osteoclast number per bone surface (P = 0.09) 4 weeks after surgery. These changes coincide with the prevention of cartilage degeneration as evaluated by the Osteoarthritis Research Society International (OARSI) score (P < 0.05) and biomechanically softening (P < 0.05). Furthermore, treadmill walking could suppressed increasing osteocyte deaths (P < 0.01), which was positively correlated with the OARSI score (r = 0.77; P < 0.01). CONCLUSION These results indicate biomechanical and biological links exist between cartilage and subchondral bone; preventive effects of treadmill walking on subchondral bone deterioration might be partly explained by the chondroprotective effects.
Collapse
Affiliation(s)
- H Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - T Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - A Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - S Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - M Nagai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - J Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - X Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - H Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| |
Collapse
|
27
|
Hamilton CB, Pest MA, Pitelka V, Ratneswaran A, Beier F, Chesworth BM. Weight-bearing asymmetry and vertical activity differences in a rat model of post-traumatic knee osteoarthritis. Osteoarthritis Cartilage 2015; 23:1178-85. [PMID: 25771150 DOI: 10.1016/j.joca.2015.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study used a rat model of post-traumatic knee osteoarthritis (OA) created by anterior cruciate ligament transection with partial medial meniscectomy (ACLT + pMMx). In this model, mild to moderate structural changes that are typical of knee OA have been observed within 2 and 8 weeks post-surgery. We aimed to determine whether pain-related behaviours can distinguish between an ACLT + pMMx and a sham surgery group. DESIGN Three-month old male Sprague-Dawley rats underwent ACLT + pMMx on their right hindlimb within two groups of n = 6 each, and sham surgery within two groups of n = 5 each. Assessments evaluated percent ipsilateral weight-bearing for static weight-bearing and 18 different variables of exploratory motor behaviour at multiple time points between 1 and 8 weeks post-surgery. Histology was performed on the right hindlimbs at 4 and 8 weeks post-surgery. RESULTS Histology confirmed mild to moderate knee OA changes in the ACLT + pMMx group and the absence of knee OA changes in the sham group. Compared to the sham group, the ACLT + pMMx group had significantly lower percent ipsilateral weight-bearing from 1 through 8 weeks post-surgery. Compared to the sham group, the ACLT + pMMx group had significantly lower vertical activity (episode count, time, and count) values. CONCLUSIONS These findings suggest that ipsilateral weight-bearing deficit and vertical activity limitations resulted from the presence of knee OA-like changes in this model. When using the ACLT + pMMx-induced rat model of knee OA, percent ipsilateral weight-bearing and vertical activity distinguished between rats with and without knee OA changes. These variables may be useful outcome measures in preclinical research performed with this experimental post-traumatic knee OA model.
Collapse
Affiliation(s)
- C B Hamilton
- Graduate Program in Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada; Collaborative Graduate Program in Musculoskeletal Health Research, University of Western Ontario, London, ON, Canada.
| | - M A Pest
- Collaborative Graduate Program in Musculoskeletal Health Research, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - V Pitelka
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - A Ratneswaran
- Collaborative Graduate Program in Musculoskeletal Health Research, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - F Beier
- Collaborative Graduate Program in Musculoskeletal Health Research, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - B M Chesworth
- Graduate Program in Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada; Collaborative Graduate Program in Musculoskeletal Health Research, University of Western Ontario, London, ON, Canada; School of Physical Therapy, Faculty of Health Science Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
28
|
Harris KP, Driban JB, Sitler MR, Cattano NM, Balasubramanian E, Hootman JM. Tibiofemoral Osteoarthritis After Surgical or Nonsurgical Treatment of Anterior Cruciate Ligament Rupture: A Systematic Review. J Athl Train 2015; 52:507-517. [PMID: 25562459 DOI: 10.4085/1062-6050-49.3.89] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine if surgical or nonsurgical treatment of anterior cruciate ligament rupture affects the prevalence of posttraumatic tibiofemoral osteoarthritis (OA). DATA SOURCES Studies published between 1983 and April 2012 were identified via EBSCOhost and OVID. Reference lists were then screened in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. STUDY SELECTION Studies were included if (a) treatment outcomes focused on a direct comparison of surgical versus nonsurgical treatment of anterior cruciate ligament rupture, (b) the prevalence of tibiofemoral OA was reported, and (c) they were written in English. Studies were excluded if (a) the included patients were treated with cast immobilization after surgery, (b) the mean follow-up was less than 10 years, or (c) the patients underwent anterior cruciate ligament revision surgery. DATA EXTRACTION Two independent investigators reviewed the included articles using the Newcastle-Ottawa Scale. Frequency of OA, surgical procedure, nonsurgical treatments, and participant characteristics were extracted and summarized. We calculated prevalence (%) and 95% confidence intervals for treatment groups for each individual study and overall. We developed 2 × 2 contingency tables to assess the association between treatment groups (exposed had surgery, referent was nonsurgical treatment) and the prevalence of OA. DATA SYNTHESIS Four retrospective studies were identified (140 surgical patients, 240 nonsurgical patients). The mean Newcastle-Ottawa Scale score was 5 (range = 4-6 [of 10] points). Average length of follow-up was 11.8 years (range = 10-14 years). The prevalence of OA for surgically treated patients ranged from 32.6% to 51.2% (overall = 41.4%, 95% confidence interval = 35.0%, 48.1%) and for nonsurgical patients ranged from 24.5% to 42.3% (overall = 30.9%, 95% confidence interval = 24.4%, 38.3%). CONCLUSIONS Although OA prevalence was higher in the surgical treatment group at a mean follow-up of 11.8 years, no definitive evidence supports surgical or nonsurgical treatment after anterior cruciate ligament injury to prevent posttraumatic OA. Current studies have been limited by small sample sizes, low methodologic quality, and a lack of data regarding confounding factors.
Collapse
Affiliation(s)
- Kyle P Harris
- Department of Health, Physical Education and Nursing, Bucks County Community College, Newtown, PA
| | | | - Michael R Sitler
- Department of Health, Physical Education and Nursing, Bucks County Community College, Newtown, PA
| | - Nicole M Cattano
- Department of Sports Medicine, West Chester University of Pennsylvania
| | | | - Jennifer M Hootman
- Division of Adult and Community Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
29
|
Sevilla RS, Cruz F, Chiu CS, Xue D, Bettano KA, Zhu J, Chakravarthy K, Faltus R, Wang S, Vanko A, Robinson G, Zielstorff M, Miao J, Leccese E, Conway D, Moy LY, Dogdas B, Cicmil M, Zhang W. Development and optimization of a high-throughput micro-computed tomography imaging method incorporating a novel analysis technique to evaluate bone mineral density of arthritic joints in a rodent model of collagen induced arthritis. Bone 2015; 73:32-41. [PMID: 25482211 DOI: 10.1016/j.bone.2014.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease resulting in joint inflammation, pain, and eventual bone loss. Bone loss and remodeling caused by symmetric polyarthritis, the hallmark of RA, is readily detectable by bone mineral density (BMD) measurement using micro-CT. Abnormalities in these measurements over time reflect the underlying pathophysiology of the bone. To evaluate the efficacy of anti-rheumatic agents in animal models of arthritis, we developed a high throughput knee and ankle joint imaging assay to measure BMD as a translational biomarker. A bone sample holder was custom designed for micro-CT scanning, which significantly increased assay throughput. Batch processing 3-dimensional image reconstruction, followed by automated image cropping, significantly reduced image processing time. In addition, we developed a novel, automated image analysis method to measure BMD and bone volume of knee and ankle joints. These improvements significantly increased the throughput of ex vivo bone sample analysis, reducing data turnaround from 5 days to 24 hours for a study with 200 rat hind limbs. Taken together, our data demonstrate that BMD, as quantified by micro-CT, is a robust efficacy biomarker with a high degree of sensitivity. Our innovative approach toward evaluation of BMD using optimized image acquisition and novel image processing techniques in preclinical models of RA enables high throughput assessment of anti-rheumatic agents offering a powerful tool for drug discovery.
Collapse
Affiliation(s)
- Raquel S Sevilla
- Imaging-Boston, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Francisco Cruz
- Informatics IT, Merck Research Laboratories, 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065, USA
| | - Chi-Sung Chiu
- Respiratory & Immunology Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Dahai Xue
- Imaging-West Point, Merck Research Laboratories, Sumneytown Pike, West Point, PA 19486, USA
| | - Kimberly A Bettano
- Imaging-Boston, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Joe Zhu
- Imaging-Boston, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kalyan Chakravarthy
- Respiratory & Immunology Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Robert Faltus
- Respiratory & Immunology Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Shubing Wang
- Biometrics Research, Merck Research Laboratories, RY34-300, 126 Lincoln Avenue, Rahway, NJ 07065, USA
| | - Amy Vanko
- Imaging-Boston, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Gain Robinson
- Imaging-Boston, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Mark Zielstorff
- Respiratory & Immunology Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John Miao
- Respiratory & Immunology Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Erica Leccese
- Respiratory & Immunology Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Donald Conway
- Compound Management and Engineering, Merck Research Laboratories, 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065, USA
| | - Lily Y Moy
- Respiratory & Immunology Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Belma Dogdas
- Informatics IT, Merck Research Laboratories, 126 E. Lincoln Avenue, PO Box 2000, Rahway, NJ 07065, USA
| | - Milenko Cicmil
- Respiratory & Immunology Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Weisheng Zhang
- Imaging-Boston, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Clark DP, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 2014; 30:619-34. [PMID: 24974176 PMCID: PMC4138257 DOI: 10.1016/j.ejmp.2014.05.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g., measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality.
Collapse
Affiliation(s)
- D P Clark
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA
| | - C T Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Boudenot A, Presle N, Uzbekov R, Toumi H, Pallu S, Lespessailles E. Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model. Osteoarthritis Cartilage 2014; 22:1176-85. [PMID: 24928318 DOI: 10.1016/j.joca.2014.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/20/2014] [Accepted: 05/28/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The role of subchondral bone in osteoarthritis (OA) development is well admitted. Cross-talk between subchondral bone and cartilage may be disrupted in OA, leading to altered subchondral bone remodeling. Osteocytes are involved in bone remodeling control and could play a key role in OA progression. Our purpose of this study was to evaluate the preventive effect of interval-training exercise on subchondral bone and osteocyte in monosodium iodoacetate (MIA) model of experimental OA. METHODS At baseline, 48 male Wistar rats (8 weeks old) were separated into two groups: interval-training exercise or no exercise for 10 weeks. After this training period, each group was divided into two subgroups: MIA-injected knee (1 mg/100 μl saline) and saline-injected knee. Four weeks later, rats were sacrificed and carefully dissected. Evaluated parameters were: cartilage degeneration by OA scoring, bone mineral density (BMD) by Dual energy X-ray Absorptiometry (DXA), trabecular subchondral bone microarchitecture by micro-computed tomography (μCT), cortical subchondral bone lacunar osteocyte occupancy (by Toluidine Blue staining) and cleaved caspase-3 positive apoptosis (by epifluorescence). RESULTS Our results showed deleterious effects of MIA on cartilage. OA induced a decrease in proximal tibia (PT) BMD which was prevented by exercise. Exercise induced increase in full osteocyte lacunae surface and osteocyte occupancy (+60%) of cortical subchondral bone independently of OA. Osteocyte apoptosis (<1%) in cortical subchondral bone was not different whatever the group at sacrifice. CONCLUSION Our results suggest that preliminary interval-training improved BMD and osteocytes lacunar occupancy in subchondral bone. Our interval-training did not prevent MIA-induced cartilage degeneration.
Collapse
Affiliation(s)
- A Boudenot
- EA 4708 I3MTO, University of Orléans, Orléans, France.
| | - N Presle
- UMR 7365 CNRS, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - R Uzbekov
- Department of Microscopy, University of Francois Rabelais, Tours, France
| | - H Toumi
- EA 4708 I3MTO, University of Orléans, Orléans, France
| | - S Pallu
- EA 4708 I3MTO, University of Orléans, Orléans, France
| | - E Lespessailles
- EA 4708 I3MTO, University of Orléans, Orléans, France; Service de rhumatologie, Centre hospitalier régional d'Orléans, Orléans, France
| |
Collapse
|
32
|
Iijima H, Aoyama T, Ito A, Tajino J, Nagai M, Zhang X, Yamaguchi S, Akiyama H, Kuroki H. Destabilization of the medial meniscus leads to subchondral bone defects and site-specific cartilage degeneration in an experimental rat model. Osteoarthritis Cartilage 2014; 22:1036-43. [PMID: 24857975 DOI: 10.1016/j.joca.2014.05.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/12/2014] [Accepted: 05/07/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to investigate subchondral bone changes using micro-computed tomography (micro-CT) and regional differences in articular cartilage degeneration, focusing on changes of cartilage covered by menisci, in the early phase using a destabilization of the medial meniscus (DMM) model. METHOD The DMM model was created as an experimental rat osteoarthritis (OA) model (12 weeks old; n = 24). At 1, 2, and 4 weeks after surgery, the rats were sacrificed, and knee joints were scanned using a Micro-CT system. Histological sections of the medial tibial plateau, which was divided into inner, middle, and outer regions, were prepared and scored using the modified OARSI scoring system. The cartilage thickness was also calculated, and matrix metalloproteinase 13 (MMP13), Col2-3/4c, and vascular endothelial growth factor (VEGF) expression was assessed immunohistochemically. RESULTS Subchondral bone defects were observed in the middle region, in which the cartilage thickness decreased over time after surgery, and these defects were filled with MMP13- and VEGF-expressing fibrous tissue. The OARSI score increased over time in the middle region, and the score was significantly higher in the middle region than in the inner and outer regions at 1, 2, and 4 weeks after surgery. Col2-3/4c and MMP13 expression was observed primarily in the meniscus-covered outer region, in which the cartilage thickness increased over time. CONCLUSION Loss of meniscal function caused cartilage degeneration and subchondral bone defects in the early phase site-specifically in the middle region. Furthermore, our results might indicate cartilage covered by menisci is easily degraded resulting in osmotic swelling of the cartilage in early OA.
Collapse
Affiliation(s)
- H Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - T Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - A Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - J Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - M Nagai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - X Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - S Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - H Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, Japan.
| | - H Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| |
Collapse
|
33
|
Kim JE, Lee SM, Kim SH, Tatman P, Gee AO, Kim DH, Lee KE, Jung Y, Kim SJ. Effect of self-assembled peptide-mesenchymal stem cell complex on the progression of osteoarthritis in a rat model. Int J Nanomedicine 2014; 9 Suppl 1:141-57. [PMID: 24872709 PMCID: PMC4024982 DOI: 10.2147/ijn.s54114] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate the efficacy of mesenchymal stem cells (MSCs) encapsulated in self-assembled peptide (SAP) hydrogels in a rat knee model for the prevention of osteoarthritis (OA) progression. MATERIALS AND METHODS Nanostructured KLD-12 SAPs were used as the injectable hydrogels. Thirty-three Sprague Dawley rats were used for the OA model. Ten rats were used for the evaluation of biotin-tagged SAP disappearance. Twenty-three rats were divided into four groups: MSC (n=6), SAP (n=6), SAP-MSC (n=6), and no treatment (n=5). MSCs, SAPs, and SAP-MSCs were injected into the knee joints 3 weeks postsurgery. Histologic examination, immunofluorescent staining, measurement of cytokine levels, and micro-computed tomography analysis were conducted 6 weeks after injections. Behavioral studies were done to establish baseline measurements before treatment, and repeated 3 and 6 weeks after treatment to measure the efficacy of SAP-MSCs. RESULTS Concentration of biotinylated SAP at week 1 was not significantly different from those at week 3 and week 6 (P=0.565). Bone mineral density was significantly lower in SAP-MSC groups than controls (P=0.002). Significant differences in terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling staining between the control group and all other groups were observed. Caspase-8, tissue inhibitor of metalloproteinases 1, and matrix metalloproteinase 9 were diffusely stained in controls, whereas localized or minimal staining was observed in other groups. Modified Mankin scores were significantly lower in the SAP and SAP-MSC groups than in controls (P=0.001 and 0.013). Although not statistically significant, synovial inflammation scores were lower in the SAP (1.3±0.3) and SAP-MSC (1.3±0.2) groups than in controls (2.6±0.2). However, neither the cytokine level nor the behavioral score was significantly different between groups. CONCLUSION Injection of SAP-MSC hydrogels showed evidence of chondroprotection, as measured by the histologic grading and decreased expression of biochemical markers of inflammation and apoptosis. It also lowered subchondral bone mineral density, which can be increased by OA. This suggests that the SAP-MSC complex may have clinical potential to inhibit OA progression.
Collapse
Affiliation(s)
- Ji Eun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Sang Mok Lee
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Seoul, South Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Phil Tatman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert O Gee
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA ; Institute for Stem Cell and Regenerative Medicine and Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Sang Jun Kim
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
34
|
Chityala R, Pudipeddi S, Arensten L, Hui S. Segmentation and visualization of a large, high-resolution micro-CT data of mice. J Digit Imaging 2013; 26:302-8. [PMID: 22766797 DOI: 10.1007/s10278-012-9498-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
High-resolution large datasets were acquired to improve the understanding of murine bone physiology. The purpose of this work is to present the challenges and solutions in segmenting and visualizing bone in such large datasets acquired using micro-CT scan of mice. The analyzed dataset is more than 50 GB in size with more than 6,000 2,048 × 2,048 slices. The study was performed to automatically measure the bone mineral density (BMD) of the entire skeleton. A global Renyi entropy (GREP) method was initially used for bone segmentation. This method consistently oversegmented skeletal region. A new method called adaptive local Renyi entropy (ALREP) is proposed to improve the segmentation results. To study the efficacy of the ALREP, manual segmentation was performed. Finally, a specialized high-end remote visualization system along with the software, VirtualGL, was used to perform remote rendering of this large dataset. It was determined that GREP overestimated the bone cross-section by around 30 % compared with ALREP. The manual segmentation process took 6,300 min for 6,300 slices while ALREP took only 150 min for segmentation. Automatic image processing with ALREP method may facilitate BMD measurement of the entire skeleton in a significantly reduced time, compared with manual process.
Collapse
Affiliation(s)
- Ravishankar Chityala
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
35
|
Reilingh ML, Blankevoort L, van Eekeren ICM, van Dijk CN. Morphological analysis of subchondral talar cysts on microCT. Knee Surg Sports Traumatol Arthrosc 2013; 21:1409-17. [PMID: 23328990 DOI: 10.1007/s00167-013-2377-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/04/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Osteochondral talar defects often present in conjunction with subchondral bone cysts. The exact aetiology of these cysts is unknown. Recently was shown in a computational bone model that pressurized fluid and osteocyte death could lead to cyst growth, through mechanoregulated bone adaptation. However, a difference in cyst morphology was present between the mechanisms. The purpose of this study was to evaluate and compare the cyst morphology of human cadaveric tali by using microCT with the morphological simulation results previously reported. MATERIALS AND METHODS Sixty-six fresh-frozen human cadaveric tali were screened in a regular CT for subchondral bone cysts, radiologically defined as unexpected rounded radiolucent area. Subsequently, the tali with a cyst were scanned in a microCT. The shape of the cysts, the presence of an opening through the subchondral bone plate, and the bone volume fraction around and next to the cyst were analysed. RESULTS In total, six tali were found to have a single cyst. Four cysts had an irregular shape, and two cysts were rounded. A clear opening from the cyst through the subchondral bone plate was found (diameter 0.5-1.7 mm) in four cysts. The bone volume fraction was higher (p = 0.025) around the cyst then next to the cyst. CONCLUSIONS The morphological findings that we found are only compatible with the previously reported simulation results of cyst growth in response to pressurized fluid, or pressurized fluid in combination with osteocyte death. It is therefore most likely that pressurized fluid plays a role in the pathoaetiology of cyst growth. A better understanding of cyst growth may improve treatment and prevent further cyst formation.
Collapse
Affiliation(s)
- M L Reilingh
- Department of Orthopaedic Surgery, Orthopaedic Research Center Amsterdam, Academic Medical Center, University of Amsterdam, PO Box 22660, 1100 DD, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Wu Q, Henry JL. Peripheral drive in Aα/β-fiber neurons is altered in a rat model of osteoarthritis: changes in following frequency and recovery from inactivation. J Pain Res 2013; 6:207-21. [PMID: 23671396 PMCID: PMC3650889 DOI: 10.2147/jpr.s40445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To determine conduction fidelity of Aα/β-fiber low threshold mechanoreceptors in a model of osteoarthritis (OA). Methods Four weeks after cutting the anterior cruciate ligament and removing the medial meniscus to induce the model, in vivo intracellular recordings were made in ipsilateral L4 dorsal root ganglion neurons. L4 dorsal roots were stimulated to determine the refractory interval and the maximum following frequency of the evoked action potential (AP). Neurons exhibited two types of response to paired pulse stimulation. Results One type of response was characterized by fractionation of the evoked AP into an initial nonmyelinated-spike and a later larger-amplitude somatic-spike at shorter interstimulus intervals. The other type of response was characterized by an all-or-none AP, where the second evoked AP failed altogether at shorter interstimulus intervals. In OA versus control animals, the refractory interval measured in paired pulse testing was less in all low threshold mechanoreceptors. With train stimulation, the maximum rising rate of the nonmyelinated-spike was greater in OA nonmuscle spindle low threshold mechanoreceptors, possibly due to changes in fast kinetics of currents. Maximum following frequency in Pacinian and muscle spindle neurons was greater in model animals compared to controls. Train stimulation also induced an inactivation and fractionation of the AP in neurons that showed fractionation of the AP in paired pulse testing. However, with train stimulation this fractionation followed a different time course, suggesting more than one type of inactivation. Conclusion The data suggest that joint damage can lead to changes in the fidelity of AP conduction of large diameter sensory neurons, muscle spindle neurons in particular, arising from articular and nonarticular tissues in OA animals compared to controls. These changes might influence peripheral drive of spinal excitability and plasticity, thus contributing to OA sensory abnormalities, including OA pain.
Collapse
Affiliation(s)
- Qi Wu
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
37
|
Chen K, Man C, Zhang B, Hu J, Zhu SS. Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. Int J Oral Maxillofac Surg 2012; 42:240-8. [PMID: 22763137 DOI: 10.1016/j.ijom.2012.05.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/08/2012] [Accepted: 05/31/2012] [Indexed: 12/24/2022]
Abstract
This study investigated the effects of in vitro chondrogenic differentiated mesenchymal stem cells (MSCs) on cartilage and subchondral cancellous bone in temporomandibular joint osteoarthritis (TMJOA). Four weeks after induction of osteoarthritis (OA), the joints received hylartin solution, non-chondrogenic MSCs or in vitro chondrogenic differentiated MSCs. The changes in cartilage and subchondral cancellous bone were evaluated by histology, reverse transcription polymerase chain reaction and micro-computed tomography (CT). Implanted cells were tracked using Adeno-LacZ labelling. The differentiated MSC-treated group had better histology than the MSC-treated group at 4 and 12 weeks, but no difference at 24 weeks. Increased mRNA expression of collegan II, aggeran, Sox9 and decreased matrix metalloproteinase 13 (MMP13) were observed in differentiated MSC-treated groups compared to the undifferentiated MSC-treated group at 4 weeks. The differentiated MSC-treated group had decreased bone volume fraction, trabecular thickness and bone surface density, and increased trabecular spacing in the subchondral cancellous bone than the undifferentiated MSC-treated group. Transplanted cells were observed at cartilage, subchondral bone, and the synovial membrane lining at 4 weeks. Intra-articular injection of MSCs could delay the progression of TMJOA, and in vitro chondrogenic induction of MSCs could enhance the therapeutic effects. This provides new insights into the role of MSCs in cell-based therapies for TMJOA.
Collapse
Affiliation(s)
- K Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Lacourt M, Gao C, Li A, Girard C, Beauchamp G, Henderson JE, Laverty S. Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis. Osteoarthritis Cartilage 2012; 20:572-83. [PMID: 22343573 DOI: 10.1016/j.joca.2012.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/22/2011] [Accepted: 02/09/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To correlate degenerative changes in cartilage and subchondral bone in the third carpal bone (C3) of Standardbred racehorses with naturally occurring repetitive trauma-induced osteoarthritis. DESIGN Fifteen C3, collected from Standardbred horses postmortem, were assessed for cartilage lesions by visual inspection and divided into Control (CO), Early Osteoarthritis (EOA) and Advanced Osteoarthritis (AOA) groups. Two osteochondral cores were harvested from corresponding dorsal sites on each bone and scanned with a micro-computed tomography (CT) instrument. 2D images were assembled into 3D reconstructions that were used to quantify architectural parameters from selected regions of interest, including bone mineral density and bone volume fraction. 2D images, illustrating the most severe lesion per core, were scored for architectural appearance by blinded observers. Thin sections of paraffin-embedded decalcified cores stained with Safranin O-Fast Green, matched to the micro-CT images, were scored using a modified Mankin scoring system. RESULTS Subchondral bone pits with deep focal areas of porosity were seen more frequently in AOA than EOA but never in CO. Articular cartilage damage was seen in association with a reduction in bone mineral and loss of bone tissue. Histological analyses revealed significant numbers of microcracks in the calcified cartilage of EOA and AOA groups and a progressive increase in the score compared with CO bones. CONCLUSION The data reveal corresponding, progressive degenerative changes in articular cartilage and subchondral bone, including striking focal resorptive lesions, in the third carpal bone of racehorses subjected to repetitive, high impact trauma.
Collapse
Affiliation(s)
- M Lacourt
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe (QC), J2S 7C6, Canada.
| | | | | | | | | | | | | |
Collapse
|
39
|
An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis. Arthritis Res Ther 2012; 14:R26. [PMID: 22304985 PMCID: PMC3392819 DOI: 10.1186/ar3727] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/10/2012] [Accepted: 02/03/2012] [Indexed: 01/25/2023] Open
Abstract
Introduction Subchondral bone cysts (SBC) have been identified in patients with knee osteoarthritis (OA) as a cause of greater pain, loss of cartilage and increased chance of joint replacement surgery. Few studies monitor SBC longitudinally, and clinical research using three-dimensional imaging techniques, such as magnetic resonance imaging (MRI), is limited to retrospective analyses as SBC are identified within an OA patient cohort. The purpose of this study was to use dual-modality, preclinical imaging to monitor the initiation and progression of SBC occurring within an established rodent model of knee OA. Methods Eight rodents underwent anterior cruciate ligament transection and partial medial meniscectomy (ACLX) of the right knee. In vivo 9.4 T MRI and micro-computed tomography (micro-CT) scans were performed consecutively prior to ACLX and 4, 8, and 12 weeks post-ACLX. Resultant images were co-registered using anatomical landmarks, which allowed for precise tracking of SBC size and composition throughout the study. The diameter of the SBC was measured, and the volumetric bone mineral density (vBMD) was calculated within the bone adjacent to SBC. At 12 weeks, the ACLX and contralateral knees were processed for histological analysis, immunohistochemistry, and Osteoarthritis Research Society International (OARSI) pathological scoring. Results At 4 weeks post-ACLX, 75% of the rodent knees had at least 1 cyst that formed in the medial tibial plateau; by 12 weeks all ACLX knees contained SBC. Imaging data revealed that the SBC originate in the presence of a subchondral bone plate breach, with evolving composition over time. The diameter of the SBC increased significantly over time (P = 0.0033) and the vBMD significantly decreased at 8 weeks post-ACLX (P = 0.033). Histological analysis demonstrated positive staining for bone resorption and formation surrounding the SBC, which were consistently located beneath the joint surface with the greatest cartilage damage. Trabecular bone adjacent the SBC lacked viable osteocytes and, combined with bone marrow changes, indicated osteonecrosis. Conclusions This study provides insight into the mechanisms leading to SBC formation in knee OA. The expansion of these lesions is due to stress-induced bone resorption from the incurred mechanical instability. Therefore, we suggest these lesions can be more accurately described as a form of OA-induced osteonecrosis, rather than 'subchondral cysts'.
Collapse
|
40
|
Mohan G, Perilli E, Kuliwaba JS, Humphries JM, Parkinson IH, Fazzalari NL. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis. Arthritis Res Ther 2011; 13:R210. [PMID: 22185204 PMCID: PMC3334663 DOI: 10.1186/ar3543] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 11/08/2011] [Accepted: 12/21/2011] [Indexed: 01/15/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo micro-CT is a non-destructive imaging technique that can track structural changes in the tibial subchondral bone in this animal model, and could also be used to track changes in bone in preclinical drug intervention studies for OA treatments.
Collapse
Affiliation(s)
- Geetha Mohan
- Bone and Joint Research Laboratory, Directorate of Surgical Pathology, SA Pathology and Hanson Institute, Frome Road, Adelaide, SA 5000, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Cox LGE, Lagemaat MW, van Donkelaar CC, van Rietbergen B, Reilingh ML, Blankevoort L, van Dijk CN, Ito K. The role of pressurized fluid in subchondral bone cyst growth. Bone 2011; 49:762-8. [PMID: 21742072 DOI: 10.1016/j.bone.2011.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 11/23/2022]
Abstract
Pressurized fluid has been proposed to play an important role in subchondral bone cyst development. However, the exact mechanism remains speculative. We used an established computational mechanoregulated bone adaptation model to investigate two hypotheses: 1) pressurized fluid causes cyst growth through altered bone tissue loading conditions, 2) pressurized fluid causes cyst growth through osteocyte death. In a 2D finite element model of bone microarchitecture, a marrow cavity was filled with fluid to resemble a cyst. Subsequently, the fluid was pressurized, or osteocyte death was simulated, or both. Rather than increasing the load, which was the prevailing hypothesis, pressurized fluid decreased the load on the surrounding bone, thereby leading to net bone resorption and growth of the cavity. In this scenario an irregularly shaped cavity developed which became rounded and obtained a rim of sclerotic bone after removal of the pressurized fluid. This indicates that cyst development may occur in a step-wise manner. In the simulations of osteocyte death, cavity growth also occurred, and the cavity immediately obtained a rounded shape and a sclerotic rim. Combining both mechanisms increased the growth rate of the cavity. In conclusion, both stress-shielding by pressurized fluid, and osteocyte death may cause cyst growth. In vivo observations of pressurized cyst fluid, dead osteocytes, and different appearances of cysts similar to our simulation results support the idea that both mechanisms can simultaneously play a role in the development and growth of subchondral bone cysts.
Collapse
Affiliation(s)
- L G E Cox
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Botter SM, van Osch GJVM, Clockaerts S, Waarsing JH, Weinans H, van Leeuwen JPTM. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: An in vivo microfocal computed tomography study. ACTA ACUST UNITED AC 2011; 63:2690-9. [DOI: 10.1002/art.30307] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Tremoleda JL, Khalil M, Gompels LL, Wylezinska-Arridge M, Vincent T, Gsell W. Imaging technologies for preclinical models of bone and joint disorders. EJNMMI Res 2011; 1:11. [PMID: 22214535 PMCID: PMC3251252 DOI: 10.1186/2191-219x-1-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/29/2011] [Indexed: 11/24/2022] Open
Abstract
Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy.
Collapse
Affiliation(s)
- Jordi L Tremoleda
- Biological Imaging Centre (BIC), Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Marchand C, Chen H, Buschmann MD, Hoemann CD. Standardized Three-Dimensional Volumes of Interest with Adapted Surfaces for More Precise Subchondral Bone Analyses by Micro-Computed Tomography. Tissue Eng Part C Methods 2011; 17:475-84. [DOI: 10.1089/ten.tec.2010.0417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Catherine Marchand
- Institute of Biomedical Engineering, École Polytechnique de Montreal, Québec, Canada
| | - Hongmei Chen
- Institute of Biomedical Engineering, École Polytechnique de Montreal, Québec, Canada
| | - Michael D. Buschmann
- Institute of Biomedical Engineering, École Polytechnique de Montreal, Québec, Canada
- Department of Chemical Engineering, École Polytechnique de Montreal, Québec, Canada
- Groupe de Recherche en Sciences et Technologies Biomédicales, École Polytechnique de Montréal, Québec, Canada
| | - Caroline D. Hoemann
- Institute of Biomedical Engineering, École Polytechnique de Montreal, Québec, Canada
- Department of Chemical Engineering, École Polytechnique de Montreal, Québec, Canada
- Groupe de Recherche en Sciences et Technologies Biomédicales, École Polytechnique de Montréal, Québec, Canada
| |
Collapse
|
45
|
McErlain DD, Milner JS, Ivanov TG, Jencikova-Celerin L, Pollmann SI, Holdsworth DW. Subchondral cysts create increased intra-osseous stress in early knee OA: A finite element analysis using simulated lesions. Bone 2011; 48:639-46. [PMID: 21094285 DOI: 10.1016/j.bone.2010.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/13/2010] [Accepted: 11/11/2010] [Indexed: 11/22/2022]
Abstract
AIM OF STUDY To investigate the role of intra-osseous lesions in advancing the pathogenesis of Osteoarthritis (OA) of the knee, using Finite Element Modeling (FEM) in conjunction with high-resolution imaging techniques. METHODS Twenty early stage OA patients (≤ Grade 2 radiographic score) were scanned with a prototype, cone-beam CT system. Scans encompassed the mid-shaft of the femur to the diaphysis of the proximal tibia. Individual bones were segmented to create 3D geometric models that were transferred to FE software for loading experiments. Patient-specific, inhomogeneous material properties were derived from the CT images and mapped directly to the FE models. Duplicate models were also created, with a 3D sphere (range 3-12 mm) introduced into a weight-bearing region of the joint, mimicking the size, location, and composition of a subchondral bone cyst (SBC). A spherical shell extending 1mm radially around the SBC served as the sample volume for measurements of von Mises equivalent stress. Both models were vertically loaded with 750 N, or approximately 1 body weight during a single-leg stance. RESULTS All FE models exhibited a physiologically realistic weight-bearing distribution of stress, which initiated at the joint surface and extended to the cortical bone. Models that contained the SBC experienced a nearly two-fold increase in stress (0.934 ± 0.073 and 1.69 ± 0.159 MPa, for the non-SBC and SBC models, respectively) within the bone adjacent to the SBC. In addition, there was a positive correlation found between the diameter of the SBC and the resultant intra-osseous stress under load (p = 0.004). CONCLUSIONS Our results provide insights into the mechanism by which SBC may accelerate OA, leading to greater pain and disability. Based on these findings, we feel that patient-derived FE models of the OA knee - utilizing in vivo imaging data - present a tremendous potential for monitoring joint mechanics under physiological loads.
Collapse
Affiliation(s)
- David D McErlain
- Imaging Laboratories, Robarts Research Institute,Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Rutges JPHJ, Jagt van der OP, Oner FC, Verbout AJ, Castelein RJM, Kummer JA, Weinans H, Creemers LB, Dhert WJA. Micro-CT quantification of subchondral endplate changes in intervertebral disc degeneration. Osteoarthritis Cartilage 2011; 19:89-95. [PMID: 20950699 DOI: 10.1016/j.joca.2010.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/15/2010] [Accepted: 09/24/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND The intervertebral disc (IVD) is dependent on nutrient provision through a cartilage layer with underlying subchondral bone, analogous to joint cartilage. In the joint, subchondral bone remodeling has been associated with osteoarthritis (OA) progression due to compromised nutrient and gas diffusion and reduced structural support of the overlaying cartilage. However, subchondral bone changes in IVD degeneration have never been quantified before. OBJECTIVE The aim of this study is to determine the subchondral bone changes at different stages of IVD degeneration by micro-CT. METHODS Twenty-seven IVDs including the adjacent vertebral endplates were obtained at autopsy. Midsagittal slices, graded according the Thompson score, were scanned. Per scan 12 standardized cylindrical volumes of interest (VOI) were selected. Six VOIs contained the bony endplate and trabeculae (endplate VOIs) and six accompanying VOIs only contained trabecular bone (vertebral VOIs). Bone volume as percentage of the total volume (BV/TV) of the VOI, trabecular thickness (TrTh) and connectivity density (CD) were determined. RESULTS An increase in BV/TV and TrTh was found in endplate VOIs of IVDs with higher Thompson score whereas these values remained stable or decreased in the vertebral VOIs. CONCLUSION The increase in bone volume combined with the increase in TrTh in endplate VOIs strongly suggest that the subchondral endplate condenses to a more dense structure in degenerated IVDs. This may negatively influence the diffusion and nutrition of the IVD. The endplate differences between intact and mild degenerative IVDs (grade II) indicate an early association of subchondral endplate changes with IVD degeneration.
Collapse
Affiliation(s)
- J P H J Rutges
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Goebel JC, Bolbos R, Pham M, Galois L, Rengle A, Loeuille D, Netter P, Gillet P, Beuf O, Watrin-Pinzano A. In vivo high-resolution MRI (7T) of femoro-tibial cartilage changes in the rat anterior cruciate ligament transection model of osteoarthritis: a cross-sectional study. Rheumatology (Oxford) 2010; 49:1654-64. [PMID: 20488927 DOI: 10.1093/rheumatology/keq154] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To assess OA-related changes in mean compartmental femorotibial cartilage thickness in rat knees by three-dimensional (3D) MRI (7T). METHODS MRI was performed in vivo at 7T on OA and untouched contralateral knee joints. Gradient Echo Fast Imaging 3D MR images were acquired sequentially in surgically induced OA (D0) in 40 Wistar rats (anterior cruciate ligament transection). Mean femoral (trochlear, lateral and medial) and tibial (lateral and medial) cartilage thicknesses were quantified from a 2D MRI slide in weight-bearing areas and from a 3D MRI data set. At each time-point [Day (D)8, D14, D21, D40 and D60], eight animals (16 knees) were sacrificed for concomitant histomorphometry. RESULTS As body weight dramatically increased throughout the experiment (+150%, baseline vs endpoint), all compartmental mean cartilage thicknesses noticeably decreased (D8, D14) and then remained relatively stable. Femoral compartments in OA knees were thinner at the end of the experiment than in contralateral age-matched knees. Conversely, lateral and medial tibial cartilages were thicker than controls. Histological correlation was significant only in untouched healthy cartilages (3D better than 2D). CONCLUSIONS 3D MRI (7T) enables in vivo monitoring of compartmental changes in OA-related femorotibial rat cartilage thickness vs contralateral age-matched knees.
Collapse
Affiliation(s)
- Jean C Goebel
- UMR 7561 CNRS - Nancy University, Physiopathologie, Pharmacologie et Ingénierie Articulaires, Faculté de Médecine de Nancy, BP 184, Avenue de la Foret de Haye, F54505 Vandoeuvre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
A bony connection signals laryngeal echolocation in bats. Nature 2010; 463:939-42. [PMID: 20098413 DOI: 10.1038/nature08737] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/07/2009] [Indexed: 11/08/2022]
Abstract
Echolocation is an active form of orientation in which animals emit sounds and then listen to reflected echoes of those sounds to form images of their surroundings in their brains. Although echolocation is usually associated with bats, it is not characteristic of all bats. Most echolocating bats produce signals in the larynx, but within one family of mainly non-echolocating species (Pteropodidae), a few species use echolocation sounds produced by tongue clicks. Here we demonstrate, using data obtained from micro-computed tomography scans of 26 species (n = 35 fluid-preserved bats), that proximal articulation of the stylohyal bone (part of the mammalian hyoid apparatus) with the tympanic bone always distinguishes laryngeally echolocating bats from all other bats (that is, non-echolocating pteropodids and those that echolocate with tongue clicks). In laryngeally echolocating bats, the proximal end of the stylohyal bone directly articulates with the tympanic bone and is often fused with it. Previous research on the morphology of the stylohyal bone in the oldest known fossil bat (Onychonycteris finneyi) suggested that it did not echolocate, but our findings suggest that O. finneyi may have used laryngeal echolocation because its stylohyal bones may have articulated with its tympanic bones. The present findings reopen basic questions about the timing and the origin of flight and echolocation in the early evolution of bats. Our data also provide an independent anatomical character by which to distinguish laryngeally echolocating bats from other bats.
Collapse
|
49
|
Wu Q, Henry JL. Delayed onset of changes in soma action potential genesis in nociceptive A-beta DRG neurons in vivo in a rat model of osteoarthritis. Mol Pain 2009; 5:57. [PMID: 19785765 PMCID: PMC2761878 DOI: 10.1186/1744-8069-5-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 09/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical data on osteoarthritis (OA) suggest widespread changes in sensory function that vary during the progression of OA. In previous studies on a surgically-induced animal model of OA we have observed that changes in structure and gene expression follow a variable trajectory over the initial days and weeks. To investigate mechanisms underlying changes in sensory function in this model, the present electrophysiological study compared properties of primary sensory nociceptive neurons at one and two months after model induction with properties in naïve control animals. Pilot data indicated no difference in C- or Adelta-fiber associated neurons and therefore the focus is on Abeta-fiber nociceptive neurons. RESULTS At one month after unilateral derangement of the knee by cutting the anterior cruciate ligament and removing the medial meniscus, the only changes observed in Abeta-fiber dorsal root ganglion (DRG) neurons were in nociceptor-like unresponsive neurons bearing a hump on the repolarization phase; these changes consisted of longer half width, reflecting slowed dynamics of AP genesis, a depolarized Vm and an increased AP amplitude. At two months, changes observed were in Abeta-fiber high threshold mechanoreceptors, which exhibited shorter AP duration at base and half width, shorter rise time and fall time, and faster maximum rising rate/maximum falling rate, reflecting accelerated dynamics of AP genesis. CONCLUSION These data indicate that Abeta nociceptive neurons undergo significant changes that vary in time and occur later than changes in structure and in nociceptive scores in this surgically induced OA model. Thus, if changes in Abeta-fiber nociceptive neurons in this model reflect a role in OA pain, they may relate to mechanisms underlying pain associated with advanced OA.
Collapse
Affiliation(s)
- Qi Wu
- Michael G DeGroote Institute for Pain Research and Care, McMaster University, 1200 Main Street West, HSC 4N35, Hamilton ON, L8N 3Z5, Canada.
| | | |
Collapse
|
50
|
Umoh JU, Sampaio AV, Welch I, Pitelka V, Goldberg HA, Underhill TM, Holdsworth DW. In vivomicro-CT analysis of bone remodeling in a rat calvarial defect model. Phys Med Biol 2009; 54:2147-61. [DOI: 10.1088/0031-9155/54/7/020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|