1
|
Nishimura Y, Ogawa M, Okamura K, Yamasaki T, Inagaki Y, Tanaka Y. Validation of compositional MRI from a histological standpoint: Advantages of three-dimensional T1ρ mapping for quantitative evaluation of articular cartilage. Magn Reson Imaging 2024; 110:210-217. [PMID: 38679298 DOI: 10.1016/j.mri.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE We aimed to investigate the relationship between quantitative evaluation by compositional MRI, including T1ρ, and histological and macroscopic assessments, to verify the validity of compositional MRI, and examine the relationship between compositional MRI evaluation reconstructed in three dimensions (3D) and histological and visual assessments. METHOD Twenty-seven patients with knee osteoarthritis underwent T1ρ and T2 magnetic resonance imaging (MRI). Histological and gross tissue evaluations were performed on the excised bone sections of total knee arthroplasty. Semi-quantitative histological evaluation of tissue changes were assessed by measuring the optical density of digitally captured safranin O-stained and Collagen type II antibody-stained paraffin sections. Macroscopic cartilage severity was determined on a 5-grade scale (G0-G5). T1ρ and T2 values (3D and 2D), and their correlation with each of these parameters were investigated. RESULTS 3D T1 ρ is negatively correlated with histological evaluations and positively correlated with visual assessments. Only 3D T1ρ values correlated with histological quantitative evaluation (Safranin-O staining; r = -0.53, P = 0.014, Collagen type II antibody staining; r = -0.60, P = 0.019). 2D T1ρ and 3D, 2D T2 values did not correlate with histological evaluation results. Macroscopic cartilage severity grade correlated with all T1ρ and T2 values (3D T1ρ; r = 0.61, P < 0.001, 2D T1ρ; r = 0.52, P < 0.001, 3D T2; r = 0.33, P = 0.045, 2D T2; r = 0.41, P = 0.01). CONCLUSIONS 3D T1ρ mapping reflects the changes in the molecular structure of the cartilage matrix that occur in arthropathic changes and may be an effective tool for detecting cartilage degeneration.
Collapse
Affiliation(s)
- Yuki Nishimura
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Munehiro Ogawa
- Department of Sports Medicine, Nara Medical University, Kashihara, Japan.
| | - Kensuke Okamura
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Tsuyoshi Yamasaki
- Department of Orthopaedic Surgery, Nara Seiwa Medical Center, Sango Town, Ikoma-Gun, Japan
| | - Yusuke Inagaki
- Department of Rehabilitation Medicine, Nara Medical University, Kashihara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
2
|
Periasamy S, Chen YJ, Hsu DZ, Hsieh DJ. Collagen type II solution extracted from supercritical carbon dioxide decellularized porcine cartilage: regenerative efficacy on post-traumatic osteoarthritis model. BIORESOUR BIOPROCESS 2024; 11:21. [PMID: 38647941 PMCID: PMC10992551 DOI: 10.1186/s40643-024-00731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 04/25/2024] Open
Abstract
Osteoarthritis (OA) of the knee is a common degenerative articular disorder and is one of the main causes of pain and functional disability. Cartilage damage is frequently linked to elevated osteoarthritis incidence. Supercritical carbon dioxide (scCO2) decellularized cartilage graft produced from the porcine cartilage is an ideal candidate for cartilage tissue engineering. In the present study, we derived collagen type II (Col II) solution from the scCO2 decellularized porcine cartilage graft (dPCG) and compared its efficacy with hyaluronic acid (HA) in the surgical medial meniscectomy (MNX) induced post-traumatic osteoarthritis (PTOA) model. Dose-dependent attenuation of the OA (12.3 ± 0.8) progression was observed in the intra-articular administration of Col II solution (7.3 ± 1.2) which significantly decreased the MNX-induced OA symptoms similar to HA. The pain of the OA group (37.4 ± 2.7) was attenuated dose-dependently by Col II solution (45.9 ± 4.1) similar to HA (43.1 ± 3.5) as evaluated by a capacitance meter. Micro-CT depicted a dose-dependent attenuation of articular cartilage damage by the Col II solution similar to HA treatment. A significant (p < 0.001) dose-dependent elevation in the bone volume was also observed in Col II solution-treated OA animals. The protective competence of Col II solution on articular cartilage damage is due to its significant (p < 0.001) increase in the expression of type II collagen, aggrecan and SOX-9 similar to HA. To conclude, intra-articular administration of type II collagen solution and HA reestablished the injured cartilage and decreased osteoarthritis progression in the experimental PTOA model.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- R&D Center, ACRO Biomedical Co., Ltd, 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung City, 82151, Taiwan
| | - Yun-Ju Chen
- R&D Center, ACRO Biomedical Co., Ltd, 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung City, 82151, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Rd., Tainan, 70428, Taiwan
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co., Ltd, 2nd. Floor, No.57, Luke 2nd. Rd., Luzhu District, Kaohsiung City, 82151, Taiwan.
| |
Collapse
|
3
|
Koushesh S, Shahtaheri SM, McWilliams DF, Walsh DA, Sheppard MN, Westaby J, Haybatollahi SM, Howe FA, Sofat N. The osteoarthritis bone score (OABS): a new histological scoring system for the characterisation of bone marrow lesions in osteoarthritis. Osteoarthritis Cartilage 2022; 30:746-755. [PMID: 35124198 PMCID: PMC9395274 DOI: 10.1016/j.joca.2022.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Bone marrow lesions (BMLs) are associated with pain in osteoarthritis (OA), but histological scores for OA focus on cartilage pathology. We developed a new scoring system, the Osteoarthritis Bone Score (OABS), to characterise OA-related BMLs. METHODS BML/non-BML tissues identified by Magnetic Resonance Imaging (MRI) in 10 knee OA subjects were harvested at total knee replacement (TKR). Osteochondral tissue from a further 140 TKR and 23 post-mortem (PM) cases was assessed. Histological features distinguishing MRI-defined BML/non-BML tissues on qualitative analysis were classified as present (0) or absent (1), summated for the OABS, validated by Rasch analysis and sensitivity to distinguish between sample groups. Immunohistochemistry for PGP9.5 assessed innervation. RESULTS Subchondral characteristics associated with BML tissues were cysts, fibrosis, hypervascularity, cartilage islands, trabecular thickening, loss of tidemark integrity and inflammatory cell infiltration. PGP9.5 immunoreactive perivascular nerves were associated with BMLs. OABS performed well as a measurement tool, displayed good reliability (Cronbach alpha = 0.68), had a 2-factor structure (trabecular/non-trabecular), with moderate correlation between the two factors (r = 0.56, 95% CI 0.46, 0.65). OABS scores were higher in TKR than PM cases with chondropathy, median difference 1.5 (95% CI -2, 0). OABS and Mankin scores similarly distinguished TKR from non-OA controls, but only OABS was higher in BML than non-BML tissues, median difference -4 (95% CI -5 to -2). CONCLUSIONS OABS identifies and validly quantifies histopathological changes associated with OA BMLs. Histopathology underlying BMLs may represent 2 inter-related pathological processes affecting trabecular/non-trabecular structures. Increased vascularity/perivascular innervation in BMLs might contribute to pain.
Collapse
Affiliation(s)
- S Koushesh
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| | - S M Shahtaheri
- Pain Centre Versus Arthritis and NIHR Nottingham BRC, Academic Rheumatology, University of Nottingham Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
| | - D F McWilliams
- Pain Centre Versus Arthritis and NIHR Nottingham BRC, Academic Rheumatology, University of Nottingham Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
| | - D A Walsh
- Pain Centre Versus Arthritis and NIHR Nottingham BRC, Academic Rheumatology, University of Nottingham Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
| | - M N Sheppard
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| | - J Westaby
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| | - S M Haybatollahi
- Pain Centre Versus Arthritis and NIHR Nottingham BRC, Academic Rheumatology, University of Nottingham Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK; School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - F A Howe
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| | - N Sofat
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| |
Collapse
|
4
|
Examining the role of transient receptor potential canonical 5 (TRPC5) in osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100119. [PMID: 33381767 PMCID: PMC7762818 DOI: 10.1016/j.ocarto.2020.100119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Osteo-arthritis (OA) involves joint degradation and usually pain; with mechanisms poorly understood and few treatment options. There is evidence that the transient receptor potential canonical 5 (TRPC5) mRNA expression is reduced in OA patients’ synovia. Here we examine the profile of TRPC5 in DRG and involvement in murine models of OA. Design TRPC5 KO mice were subjected to partial meniscectomy (PMNX) or injected with monoiodoacetate (MIA) and pain-related behaviours were determined. Knee joint pathological scores were analysed and gene expression changes in ipsilateral synovium and dorsal root ganglia (DRG) determined. c-Fos protein expression in the ipsilateral dorsal horn of the spinal cord was quantified. Results TRPC5 KO mice developed a discrete enhanced pain-related phenotype. In the MIA model, the pain-related phenotype correlated with c-Fos expression in the dorsal horn and increased expression of nerve injury markers ATF3, CSF1 and galanin in the ipsilateral DRG. There were negligible differences in the joint pathology between WT and TRPC5 KO mice, however detailed gene expression analysis determined increased expression of the mast cell marker CD117 as well as extracellular matrix remodelling proteinases MMP2, MMP13 and ADAMTS4 in MIA-treated TRPC5 KO mice. TRPC5 expression was defined to sensory subpopulations in DRG. Conclusions Deletion of TRPC5 receptor signalling is associated with exacerbation of pain-like behaviour in OA which correlates with increased expression of enzymes involved in extracellular remodelling, inflammatory cells in the synovium and increased neuronal activation and injury in DRG. Together, these results identify a modulating role for TRPC5 in OA-induced pain-like behaviours.
Collapse
|
5
|
Dai S, Liang T, Fujii T, He S, Zhang F, Jiang H, Liu B, Shi X, Luo Z, Yang H. Increased elastic modulus of the synovial membrane in a rat ACLT model of osteoarthritis revealed by atomic force microscopy. Braz J Med Biol Res 2020; 53:e10058. [PMID: 33053109 PMCID: PMC7552902 DOI: 10.1590/1414-431x202010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022] Open
Abstract
This study aimed to explore changes in nanoscale elastic modulus of the synovium using atomic force microscopy (AFM) in addition to investigate changes in synovial histomorphology and secretory function in osteoarthritis (OA) in a rat anterior cruciate ligament transection (ACLT) model. Sprague-Dawley rats were randomly assigned to sham control and ACLT OA groups. All right knee joints were harvested at 4, 8, or 12 weeks (W) after surgery for histological assessment of cartilage damage and synovitis in both the anterior and posterior capsules. AFM imaging and nanoscale biomechanical testing were conducted to measure the elastic modulus of the synovial collagen fibrils. Immunohistochemistry was used to visualize the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-3 (MMP-3) in the synovium. The OA groups exhibited progressive development of disease in the cartilage and synovium. Histopathological scores of the synovium in the OA groups increased gradually. Significant differences were observed between all OA groups except for the posterior 4W group. The synovial fibril arrangement in all OA groups was significantly disordered. The synovial fibrils in all ACLT OA groups at each time point were stiffer than those in the sham controls. OA rats displayed a significantly higher expression of IL-1β and MMP3 in the anterior capsule. In summary, synovial stiffening was closely associated with joint degeneration and might be a factor contributing to synovitis and increased production of proinflammatory mediators. Our data provided insights into the role of synovitis, particularly stiffening of the synovium, in OA pathogenesis.
Collapse
Affiliation(s)
- Shouqian Dai
- Orthopedic Institute, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Liang
- Orthopedic Institute, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tadashi Fujii
- Department of Orthopaedic Surgery, Kashiba Asahigaoka Hospital, Kashiba, Nara, Japan
| | - Shuangjun He
- Orthopedic Institute, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fan Zhang
- Orthopedic Institute, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huaye Jiang
- Orthopedic Institute, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bo Liu
- Orthopedic Institute, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zongping Luo
- Orthopedic Institute, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Orthopedic Institute, Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Aso K, Shahtaheri SM, Hill R, Wilson D, McWilliams DF, Nwosu LN, Chapman V, Walsh DA. Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthritis Cartilage 2020; 28:1245-1254. [PMID: 32470596 DOI: 10.1016/j.joca.2020.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Subchondral bone may contribute to knee osteoarthritis (OA) pain. Nerve growth factor (NGF) can stimulate nerve growth through TrkA. We aimed to identify how sensory nerve growth at the osteochondral junction in human and rat knees associates with OA pain. METHODS Eleven symptomatic chondropathy cases were selected from people undergoing total knee replacement for OA. Twelve asymptomatic chondropathy cases who had not presented with knee pain were selected post-mortem. OA was induced in rat knees by meniscal transection (MNX) and sham-operated rats were used as controls. Twice-daily oral doses (30 mg/kg) of TrkA inhibitor (AR786) or vehicle were administered from before and up to 28 days after OA induction. Joints were analysed for macroscopic appearances of articular surfaces, OA histopathology and calcitonin gene-related peptide-immunoreactive (CGRP-IR) sensory nerves in medial tibial plateaux, and rats were assessed for pain behaviors. RESULTS The percentage of osteochondral channels containing CGRP-IR nerves in symptomatic chondropathy was higher than in asymptomatic chondropathy (difference: 2.5% [95% CI: 1.1-3.7]), and in MNX-than in sham-operated rat knees (difference: 7.8% [95%CI: 1.7-15.0]). Osteochondral CGRP-IR innervation was significantly associated with pain behavior in rats. Treatment with AR786 prevented the increase in CGRP-IR nerves in osteochondral channels and reduced pain behavior in MNX-operated rats. Structural OA was not significantly affected by AR786 treatment. CONCLUSIONS CGRP-IR sensory nerves within osteochondral channels are associated with pain in human and rat knee OA. Reduced pathological innervation of the osteochondral junction might contribute to analgesic effects of reduced NGF activity achieved by blocking TrkA.
Collapse
Affiliation(s)
- K Aso
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku, 783-8505, Japan.
| | - S M Shahtaheri
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK
| | - R Hill
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - D Wilson
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - D F McWilliams
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK
| | - L N Nwosu
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, NE2 4HH, UK
| | - V Chapman
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, NG7 2UH, UK
| | - D A Walsh
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| |
Collapse
|
7
|
McCulloch K, Huesa C, Dunning L, Litherland GJ, Van 't Hof RJ, Lockhart JC, Goodyear CS. Accelerated post traumatic osteoarthritis in a dual injury murine model. Osteoarthritis Cartilage 2019; 27:1800-1810. [PMID: 31283983 DOI: 10.1016/j.joca.2019.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint injury involving destabilisation of the joint and damage to the articular cartilage (e.g., sports-related injury) can result in accelerated post-traumatic osteoarthritis (PTOA). Destabilised medial meniscotibial ligament (DMM) surgery is one of the most commonly used murine models and whilst it recapitulates Osteoarthritis (OA) pathology, it does not necessarily result in multi-tissue injury, as occurs in PTOA. We hypothesised that simultaneous cartilage damage and joint destabilisation would accelerate the onset of OA pathology. METHODS OA was induced in C57BL/6 mice via (a) DMM, (b) microblade scratches of articular cartilage (CS) or (c) combined DMM and cartilage scratch (DCS). Mice were culled 7, 14 and 28 days post-surgery. Microcomputed tomography (μCT) and histology were used to monitor bone changes and inflammation. Dynamic weight bearing, an indirect measure of pain, was assessed on day 14. RESULTS Osteophytogenesis analysis via μCT revealed that osteophytes were present in all groups at days 7 and 14 post-surgery. However, in DCS, osteophytes were visually larger and more numerous when compared with DMM and cartilage scratch (CS). Histological assessment of cartilage at day 14 and 28, revealed significantly greater damage in DCS compared with DMM and CS. Furthermore, a significant increase in synovitis was observed in DCS. Finally, at day 14 osteophyte numbers correlated with changes in dynamic weight bearing. CONCLUSION Joint destabilisation when combined with simultaneous cartilage injury accelerates joint deterioration, as seen in PTOA. Thus, DCS provides a novel and robust model for investigating multiple pathological hallmarks, including osteophytogenesis, cartilage damage, synovitis and OA-related pain.
Collapse
Affiliation(s)
- K McCulloch
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - C Huesa
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - L Dunning
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - G J Litherland
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - R J Van 't Hof
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - J C Lockhart
- Institute of Biomedical & Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - C S Goodyear
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| |
Collapse
|
8
|
Aso K, Shahtaheri SM, Hill R, Wilson D, McWilliams DF, Walsh DA. Associations of Symptomatic Knee Osteoarthritis With Histopathologic Features in Subchondral Bone. Arthritis Rheumatol 2019; 71:916-924. [DOI: 10.1002/art.40820] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Koji Aso
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham, Nottingham, UK, and Kochi Medical School, Kochi University Nankoku Japan
| | - S. Mohsen Shahtaheri
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham Nottingham UK
| | - Roger Hill
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham, Nottingham, UK, and Sherwood Forest Hospitals NHS Foundation Trust Sutton‐in‐Ashfield UK
| | - Deborah Wilson
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham, Nottingham, UK, and Sherwood Forest Hospitals NHS Foundation Trust Sutton‐in‐Ashfield UK
| | - Daniel F. McWilliams
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham Nottingham UK
| | - David A. Walsh
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham, Nottingham, UK, and Sherwood Forest Hospitals NHS Foundation Trust Sutton‐in‐Ashfield UK
| |
Collapse
|
9
|
Wyatt LA, Nwosu LN, Wilson D, Hill R, Spendlove I, Bennett AJ, Scammell BE, Walsh DA. Molecular expression patterns in the synovium and their association with advanced symptomatic knee osteoarthritis. Osteoarthritis Cartilage 2019; 27:667-675. [PMID: 30597276 DOI: 10.1016/j.joca.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a major source of knee pain. Mechanisms of OA knee pain are incompletely understood but include synovial pathology. We aimed to identify molecular expression patterns in the synovium associated with symptomatic knee OA. DESIGN Snap frozen synovia were from people undergoing total knee replacement (TKR) for advanced OA, or from post-mortem (PM) cases who had not sought help for knee pain. Associations with OA symptoms were determined using discovery and validation samples, each comprising TKR and post mortem (PM) cases matched for chondropathy (Symptomatic or Asymptomatic Chondropathy). Associations with OA were determined by comparing age matched TKR and PM control cases. Real-time quantitative PCR for 96 genes involved in inflammation and nerve sensitisation used TaqMan® Array Cards in discovery and validation samples, and protein expression for replicated genes was quantified using Luminex bead assay. RESULTS Eight genes were differentially expressed between asymptomatic and symptomatic chondropathy cases and replicated between discovery and validation samples (P<0.05 or >3-fold change). Of these, matrix metalloprotease (MMP)-1 was also increased whereas interleukin-1 receptor 1 (IL1R1) and vascular endothelial growth factor (VEGF) were decreased at the protein level in the synovium of symptomatic compared to asymptomatic chondropathy cases. MMP1 protein expression was also increased in OA compared to PM controls. CONCLUSION Associations of symptomatic OA may suggest roles of MMP1 expression and IL1R1 and VEGF pathways in OA pain. Better understanding of which inflammation-associated molecules mediate OA pain should inform refinement of existing therapies and development of new treatments.
Collapse
Affiliation(s)
- L A Wyatt
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham, Nottingham, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, University of Nottingham, Nottingham, UK.
| | - L N Nwosu
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham, Nottingham, UK
| | - D Wilson
- Department of Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - R Hill
- Department of Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - I Spendlove
- Divison of Cancer and Stem Cells, University of Nottingham, UK
| | - A J Bennett
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; School of Life Sciences, University of Nottingham, Nottingham, NG5 1PB, UK
| | - B E Scammell
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham, Nottingham, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, University of Nottingham, Nottingham, UK; NIHR Nottingham, Biomedical Research Centre, University of Nottingham, UK
| | - D A Walsh
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham, Nottingham, UK; Department of Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK; NIHR Nottingham, Biomedical Research Centre, University of Nottingham, UK
| |
Collapse
|
10
|
Macfadyen MA, Daniel Z, Kelly S, Parr T, Brameld JM, Murton AJ, Jones SW. The commercial pig as a model of spontaneously-occurring osteoarthritis. BMC Musculoskelet Disord 2019; 20:70. [PMID: 30744620 PMCID: PMC6371556 DOI: 10.1186/s12891-019-2452-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Preclinical osteoarthritis models where damage occurs spontaneously may better reflect the initiation and development of human osteoarthritis. The aim was to assess the commercial pig as a model of spontaneous osteoarthritis development by examining pain-associated behaviour, joint cartilage integrity, as well as the use of porcine cartilage explants and isolated chondrocytes and osteoblasts for ex vivo and in vitro studies. METHODS Female pigs (Large white x Landrace x Duroc) were examined at different ages from 6 weeks to 3-4 years old. Lameness was assessed as a marker of pain-associated behaviour. Femorotibial joint cartilage integrity was determined by chondropathy scoring and histological staining of proteoglycan. IL-6 production and proteoglycan degradation was assessed in cartilage explants and primary porcine chondrocytes by ELISA and DMMB assay. Primary porcine osteoblasts from damaged and non-damaged joints, as determined by chondropathy scoring, were assessed for mineralisation, proliferative and mitochondrial function as a marker of metabolic capacity. RESULTS Pigs aged 80 weeks and older exhibited lameness. Osteoarthritic lesions in femoral condyle and tibial plateau cartilage were apparent from 40 weeks and increased in severity with age up to 3-4 years old. Cartilage from damaged joints exhibited proteoglycan loss, which positively correlated with chondropathy score. Stimulation of porcine cartilage explants and primary chondrocytes with either IL-1β or visfatin induced IL-6 production and proteoglycan degradation. Primary porcine osteoblasts from damaged joints exhibited reduced proliferative, mineralisation, and metabolic capacity. CONCLUSION In conclusion, the commercial pig represents an alternative model of spontaneous osteoarthritis and an excellent source of tissue for in vitro and ex vivo studies.
Collapse
Affiliation(s)
- Mhairi A Macfadyen
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Zoe Daniel
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Sara Kelly
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Tim Parr
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - John M Brameld
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Andrew J Murton
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Biosciences, University of Nottingham, Sutton Bonington, UK.,Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA.,Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Sousa-Valente J, Calvo L, Vacca V, Simeoli R, Arévalo JC, Malcangio M. Role of TrkA signalling and mast cells in the initiation of osteoarthritis pain in the monoiodoacetate model. Osteoarthritis Cartilage 2018; 26:84-94. [PMID: 28844566 DOI: 10.1016/j.joca.2017.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Aiming to delineate novel neuro-immune mechanisms for NGF/TrkA signalling in osteoarthritis (OA) pain, we evaluated inflammatory changes in the knee joints following injection of monoiodoacetate (MIA) in mice carrying a TrkA receptor mutation (P782S; TrkA KI mice). METHOD In behavioural studies we monitored mechanical hypersensitivity following intra-articular MIA and oral prostaglandin D2 (PGD2) synthase inhibitor treatments. In immunohistochemical studies we quantified joint mast cell numbers, calcitonin gene-related peptide expression in synovia and dorsal root ganglia, spinal cord neuron activation and microgliosis. We quantified joint leukocyte infiltration by flow cytometry analysis, and PGD2 generation and cyclooxygenase-2 (COX-2) expression in mast cell lines by ELISA and Western blot. RESULTS In TrkA KI mice we observed rapid development of mechanical hypersensitivity and amplification of dorsal horn neurons and microglia activation 7 days after MIA. In TrkA KI knee joints we detected significant leukocyte infiltration and mast cells located in the vicinity of synovial nociceptive fibres. We demonstrated that mast cells exposure to NGF results in up-regulation of COX-2 and increase of PGD2 production. Finally, we observed that a PGD2 synthase inhibitor prevented MIA-mechanical hypersensitivity in TrkA KI, at doses which were ineffective in wild type (WT) mice. CONCLUSION Using the TrkA KI mouse model, we delineated a novel neuro-immune pathway and suggest that NGF-induced production of PGD2 in joint mast cells is critical for referred mechanical hypersensitivity in OA, probably through the activation of PGD2 receptor 1 in nociceptors: TrkA blockade in mast cells constitutes a potential target for OA pain.
Collapse
Affiliation(s)
| | - L Calvo
- Department of Cell Biology and Pathology, Institute of Neurosciences Castilla y León, University of Salamanca, Salamanca, 37007, Spain; Institute of Biomedical Research of Salamanca, Salamanca, 37007, Spain.
| | - V Vacca
- Wolfson CARD, King's College London, SE1 1UL, UK; Institute of Cell Biology and Neurobiology, National Research Council, IRCCS Fondazione Santa Lucia, Rome, 00143, Italy.
| | - R Simeoli
- Wolfson CARD, King's College London, SE1 1UL, UK.
| | - J C Arévalo
- Department of Cell Biology and Pathology, Institute of Neurosciences Castilla y León, University of Salamanca, Salamanca, 37007, Spain; Institute of Biomedical Research of Salamanca, Salamanca, 37007, Spain.
| | - M Malcangio
- Wolfson CARD, King's College London, SE1 1UL, UK.
| |
Collapse
|
12
|
Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage 2017; 25:858-865. [PMID: 28087412 DOI: 10.1016/j.joca.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate serum biomarkers, tartrate resistant acid phosphatase 5b (TRAcP5b) and cathepsin K (cath-K), indicative of osteoclastic bone resorption, and their relationship to pain and pain change in knee osteoarthritis (OA). METHODS Sera and clinical data were collected from 129 people (97 with 3-year follow-up) with knee OA from the Prediction of Osteoarthritis Progression (POP) cohort. Knee OA-related outcomes in POP included: WOMAC pain, National Health and Nutrition Examination Survey (NHANES) I (pain, aching and stiffness), subchondral sclerosis, and radiographically determined tibiofemoral and patellofemoral OA. Two putative osteoclast biomarkers were measured in sera: TRAcP5b and cath-K. Medial tibia plateaux were donated at knee arthroplasty for symptomatic OA (n = 84) or from 16 post mortem (PM) controls from the Arthritis Research UK (ARUK) Pain Centre joint tissue repository. Osteoclasts were stained for tartrate resistant acid phosphatase (TRAcP) within the subchondral bone of the medial tibia plateaux. RESULTS Serum TRAcP5b activity, but not cath-K-immunoreactivity, was associated with density of TRAcP-positive osteoclasts in the subchondral bone of medial tibia plateaux. TRAcP-positive osteoclasts were more abundant in people with symptomatic OA compared to controls. Serum TRAcP5b activity was associated with baseline pain and pain change. CONCLUSIONS Our observations support a role for subchondral osteoclast activity in the generation of OA pain. Serum TRAcP5b might be a clinically relevant biomarker of disease activity in OA.
Collapse
|
13
|
Wyatt LA, Moreton BJ, Mapp PI, Wilson D, Hill R, Ferguson E, Scammell BE, Walsh DA. Histopathological subgroups in knee osteoarthritis. Osteoarthritis Cartilage 2017; 25:14-22. [PMID: 27720884 DOI: 10.1016/j.joca.2016.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 09/01/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a heterogeneous, multi-tissue disease. We hypothesised that different histopathological features characterise different stages during knee OA progression, and that discrete subgroups can be defined based on validated measures of OA histopathological features. DESIGN Medial tibial plateaux and synovium were from 343 post-mortem (PM) and 143 OA arthroplasty donations. A 'chondropathy/osteophyte' group (n = 217) was classified as PM cases with osteophytes or macroscopic medial tibiofemoral chondropathy lesions ≥grade 3 to represent pre-surgical (early) OA. 'Non-arthritic' controls (n = 48) were identified from the remaining PM cases. Mankin histopathological scores were subjected to Rasch analysis and supplemented with histopathological scores for subchondral bone marrow replacement and synovitis. Item weightings were derived by principle components analysis (PCA). Histopathological subgroups were sought using latent class analysis (LCA). RESULTS Chondropathy, synovitis and osteochondral pathology were each associated with OA at arthroplasty, but each was also identified in some 'non-arthritic' controls. Tidemark breaching in the chondropathy/osteophyte group was greater than in non-arthritic controls. Three histopathological subgroups were identified, characterised as 'mild OA', or 'severe OA' with mild or moderate/severe synovitis. CONCLUSIONS Presence and severity of synovitis helps define distinct histopathological OA subgroups. The absence of a discrete 'normal' subgroup indicates a pathological continuum between normality and OA status. Identifying specific pathological processes and their clinical correlates in OA subgroups has potential to accelerate the development of more effective therapies.
Collapse
Affiliation(s)
- L A Wyatt
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham, Nottingham, UK.
| | - B J Moreton
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rehabilitation and Ageing, University of Nottingham, Nottingham, UK
| | - P I Mapp
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham, Nottingham, UK
| | - D Wilson
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Department of Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - R Hill
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Department of Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - E Ferguson
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; School of Psychology, University of Nottingham, Nottingham, UK
| | - B E Scammell
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham, Nottingham, UK
| | - D A Walsh
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, NG5 1PB, UK; Division of Rheumatology, Orthopaedics and Dermatology, University of Nottingham, Nottingham, UK; Department of Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| |
Collapse
|
14
|
Herrero-Beaumont G, Roman-Blas JA, Bruyère O, Cooper C, Kanis J, Maggi S, Rizzoli R, Reginster JY. Clinical settings in knee osteoarthritis: Pathophysiology guides treatment. Maturitas 2016; 96:54-57. [PMID: 28041596 DOI: 10.1016/j.maturitas.2016.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is the most common chronic joint disorder and its prevalence increases rapidly during midlife. Complex interactions of genetic alterations, sex hormone deficit, and aging with mechanical factors and systemic inflammation-associated metabolic syndrome lead to joint damage. Thus, the expression of a clinical phenotype in the early stages of OA relies on the main underlying pathway and predominant joint tissue involved at a given time. Moreover, OA often coexists with other morbidities in the same patient, which in turn condition the OA process. In this scenario, an appropriate identification of clinical phenotypes, especially in the early stages of the disease, may optimize the design of individualized treatments in OA. An ESCEO-EUGMS (European Union Geriatric Medicine Society) working group has recently suggested possible patient profiles in OA. Hereby, we propose the existence of 4 clinical phenotypes - biomechanical, osteoporotic, metabolic and inflammatory - whose characterization would help to properly stratify patients with OA in clinical trials or studies. Further research in this field is warranted.
Collapse
Affiliation(s)
- Gabriel Herrero-Beaumont
- Joint and Bone Research Unit, Rheumatology Department, Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain.
| | - Jorge A Roman-Blas
- Joint and Bone Research Unit, Rheumatology Department, Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Olivier Bruyère
- Support Unit in Epidemiology and Biostatistics, Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; NHIR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - John Kanis
- WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| | | | - René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Pearson MJ, Philp AM, Heward JA, Roux BT, Walsh DA, Davis ET, Lindsay MA, Jones SW. Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage. Arthritis Rheumatol 2016; 68:845-56. [PMID: 27023358 PMCID: PMC4950001 DOI: 10.1002/art.39520] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To identify long noncoding RNAs (lncRNAs), including long intergenic noncoding RNAs (lincRNAs), antisense RNAs, and pseudogenes, associated with the inflammatory response in human primary osteoarthritis (OA) chondrocytes and to explore their expression and function in OA. METHODS OA cartilage was obtained from patients with hip or knee OA following joint replacement surgery. Non-OA cartilage was obtained from postmortem donors and patients with fracture of the neck of the femur. Primary OA chondrocytes were isolated by collagenase digestion. LncRNA expression analysis was performed by RNA sequencing (RNAseq) and quantitative reverse transcriptase-polymerase chain reaction. Modulation of lncRNA chondrocyte expression was achieved using LNA longRNA GapmeRs (Exiqon). Cytokine production was measured with Luminex. RESULTS RNAseq identified 983 lncRNAs in primary human hip OA chondrocytes, 183 of which had not previously been identified. Following interleukin-1β (IL-1β) stimulation, we identified 125 lincRNAs that were differentially expressed. The lincRNA p50-associated cyclooxygenase 2-extragenic RNA (PACER) and 2 novel chondrocyte inflammation-associated lincRNAs (CILinc01 and CILinc02) were differentially expressed in both knee and hip OA cartilage compared to non-OA cartilage. In primary OA chondrocytes, these lincRNAs were rapidly and transiently induced in response to multiple proinflammatory cytokines. Knockdown of CILinc01 and CILinc02 expression in human chondrocytes significantly enhanced the IL-1-stimulated secretion of proinflammatory cytokines. CONCLUSION The inflammatory response in human OA chondrocytes is associated with widespread changes in the profile of lncRNAs, including PACER, CILinc01, and CILinc02. Differential expression of CILinc01 and CIinc02 in hip and knee OA cartilage, and their role in modulating cytokine production during the chondrocyte inflammatory response, suggest that they may play an important role in mediating inflammation-driven cartilage degeneration in OA.
Collapse
|
16
|
Nganvongpanit K, Buddhachat K, Brown JL. Comparison of Bone Tissue Elements Between Normal and Osteoarthritic Pelvic Bones in Dogs. Biol Trace Elem Res 2016; 171:344-353. [PMID: 26537116 DOI: 10.1007/s12011-015-0556-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/22/2015] [Indexed: 12/27/2022]
Abstract
Physiochemical analysis of bones affected with osteoarthritis (OA) can be used to better understand the etiology of this disease. We investigated the percentage of chemical elements in canine pelvic bone affected with varying degrees of OA using a handheld X-ray fluorescence (XRF) analyzer that discriminates magnesium (Mg(12)) through bismuth (Bi(83)). A total of 45 pelvic bones, including both ilium and subchondral acetabular bone plates, were categorized as normal (n = 20), mild grade OA (n = 5), moderate grade OA (n = 15), and severe grade OA (n = 5). In normal pelvic, seven elements (P, Ca, Mn, Ag, Cd, Sn, and Sb) differed (p < 0.005) in percentage between ilium and acetabulum. Comparisons among the four OA groups found Mn and Fe to be highest in severe grades (p < 0.05) in both ilium and acetabulum. Three heavy metals (Ag, Sn, and Sb) were detected in high percentages (p < 0.05) in the severe OA group in the acetabulum, but in ilium only Sn was high (p < 0.05) in severe OA. In conclusion, the percentages of several elements differed between pelvic types in dogs, and also with increasing severity of OA. The finding of high Mn and Fe in severe grade OA bone suggests these two elements may be useful in future studies of the etiology and pathophysiology of OA.
Collapse
Affiliation(s)
- Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Kittisak Buddhachat
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Janine L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park 1500 Remount Road, Front Royal, VA, 22630, USA
| |
Collapse
|
17
|
Nwosu LN, Mapp PI, Chapman V, Walsh DA. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis. Ann Rheum Dis 2016; 75:1246-54. [PMID: 26286016 PMCID: PMC4893148 DOI: 10.1136/annrheumdis-2014-207203] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/04/2015] [Accepted: 07/13/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Tropomyosin receptor kinase A (TrkA) mediates nociceptor sensitisation by nerve growth factor (NGF), but it is unknown whether selective TrkA inhibition will be an effective strategy for treating osteoarthritis (OA) pain. We determined the effects of a TrkA inhibitor (AR786) on pain behaviour, synovitis and joint pathology in two rat OA models. METHODS Knee OA was induced in rats by intra-articular monosodium-iodoacetate (MIA) injection or meniscal transection (MNX) and compared with saline-injected or sham-operated controls. Pain behaviour was assessed as weight-bearing asymmetry and paw withdrawal threshold to punctate stimulation. Oral doses (30 mg/kg) of AR786 or vehicle were administered twice daily in either preventive (day -1 to -27) or treatment (day 14-28) protocols. Effect maintenance was evaluated for 2 weeks after treatment discontinuation. Alterations in knee structure (cartilage, subchondral bone and synovium) were examined by macroscopic visualisation of articular surfaces and histopathology. RESULTS Preventive AR786 treatment inhibited pain behaviour development and therapeutic treatment attenuated established pain behaviour. Weight-bearing asymmetry increased 1 week after treatment discontinuation, but remained less than in vehicle-treated arthritic rats, whereas paw withdrawal thresholds returned to levels of untreated rats within 5 days of treatment discontinuation. AR786 treatment reduced MIA-induced synovitis and did not significantly affect osteochondral pathology in either model. CONCLUSIONS Blocking NGF activity by inhibiting TrkA reduced pain behaviour in two rat models of OA. Analgesia was observed both using preventive and treatment protocols, and was sustained after treatment discontinuation. Selective inhibitors of TrkA therefore hold potential for OA pain relief.
Collapse
Affiliation(s)
- Lilian N Nwosu
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Paul I Mapp
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Victoria Chapman
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - David A Walsh
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
18
|
Walsh DA. Editorial: Synovitis and Pain Sensitization. Arthritis Rheumatol 2016; 68:561-2. [DOI: 10.1002/art.39487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/22/2015] [Indexed: 12/26/2022]
|
19
|
Prieto-Potin I, Largo R, Roman-Blas JA, Herrero-Beaumont G, Walsh DA. Characterization of multinucleated giant cells in synovium and subchondral bone in knee osteoarthritis and rheumatoid arthritis. BMC Musculoskelet Disord 2015; 16:226. [PMID: 26311062 PMCID: PMC4550054 DOI: 10.1186/s12891-015-0664-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022] Open
Abstract
Background Multinucleated giant cells have been noticed in diverse arthritic conditions since their first description in rheumatoid synovium. However, their role in the pathogenesis of osteoarthritis (OA) or rheumatoid arthritis (RA) still remains broadly unknown. We aimed to study the presence and characteristics of multinucleated giant cells (MGC) both in synovium and in subchondral bone tissues of patients with OA or RA. Methods Knee synovial and subchondral bone samples were from age-matched patients undergoing total joint replacement for OA or RA, or non-arthritic post mortem (PM) controls. OA synovium was stratified by histological inflammation grade using index tissue sections. Synovitis was assessed by Krenn score. Histological studies employed specific antibodies against macrophage markers or cathepsin K, or TRAP enzymatic assay. Results Inflamed OA and RA synovia displayed more multinucleated giant cells than did non-inflamed OA and PM synovia. There was a significant association between MGC numbers and synovitis severity. A TRAP negative/cathepsin K negative Langhans-like subtype was predominant in OA, whereas both Langhans-like and TRAP-positive/cathepsin K-negative foreign-body-like subtypes were most commonly detected in RA. Plasma-like and foam-like subtypes also were observed in OA and RA synovia, and the latter was found surrounding adipocytes. TRAP positive/cathepsin K positive osteoclasts were only identified adjacent to subchondral bone surfaces. TRAP positive osteoclasts were significantly increased in subchondral bone in OA and RA compared to PM controls. Conclusions Multinucleated giant cells are associated with synovitis severity, and subchondral osteoclast numbers are increased in OA, as well as in RA. Further research targeting multinucleated giant cells is warranted to elucidate their contributions to the symptoms and joint damage associated with arthritis. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0664-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Prieto-Potin
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Avda Reyes Católicos, 2, Madrid, 28040, Spain.
| | - Raquel Largo
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Avda Reyes Católicos, 2, Madrid, 28040, Spain.
| | - Jorge A Roman-Blas
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Avda Reyes Católicos, 2, Madrid, 28040, Spain.
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Avda Reyes Católicos, 2, Madrid, 28040, Spain.
| | - David A Walsh
- Arthritis Research UK Pain Centre, Department of Academic Rheumatology, University of Nottingham, City Hospital, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
20
|
Walsh DA, Mapp PI, Kelly S. Calcitonin gene-related peptide in the joint: contributions to pain and inflammation. Br J Clin Pharmacol 2015; 80:965-78. [PMID: 25923821 DOI: 10.1111/bcp.12669] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Arthritis is the commonest cause of disabling chronic pain, and both osteoarthritis (OA) and rheumatoid arthritis (RA) remain major burdens on both individuals and society. Peripheral release of calcitonin gene-related peptide (CGRP) contributes to the vasodilation of acute neurogenic inflammation. Contributions of CGRP to the pain and inflammation of chronic arthritis, however, are only recently being elucidated. Animal models of arthritis are revealing the molecular and pathophysiological events that accompany and lead to progression of both arthritis and pain. Peripheral actions of CGRP in the joint might contribute to both inflammation and joint afferent sensitization. CGRP and its specific receptors are expressed in joint afferents and up-regulated following arthritis induction. Peripheral CGRP release results in activation of synovial vascular cells, through which acute vasodilatation is followed by endothelial cell proliferation and angiogenesis, key features of chronic inflammation. Local administration of CGRP to the knee also increases mechanosensitivity of joint afferents, mimicking peripheral sensitization seen in arthritic joints. Increased mechanosensitivity in OA knees and pain behaviour can be reduced by peripherally acting CGRP receptor antagonists. Effects of CGRP pathway blockade on arthritic joint afferents, but not in normal joints, suggest contributions to sensitization rather than normal joint nociception. CGRP therefore might make key contributions to the transition from normal to persistent synovitis, and the progression from nociception to sensitization. Targeting CGRP or its receptors within joint tissues to prevent these undesirable transitions during early arthritis, or suppress them in established disease, might prevent persistent inflammation and relieve arthritis pain.
Collapse
Affiliation(s)
- David A Walsh
- Professor of Rheumatology, Director Arthritis Research UK Pain Centre University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB
| | - Paul I Mapp
- Research Fellow, Arthritis UK Pain Centre, University of Nottingham, NG5 1PB
| | - Sara Kelly
- Assistant Professor in Neuroscience, School of Biosciences, University of Nottingham, Sutton Bonnington Campus, Nr Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
21
|
Stoppiello LA, Mapp PI, Wilson D, Hill R, Scammell BE, Walsh DA. Structural associations of symptomatic knee osteoarthritis. Arthritis Rheumatol 2015; 66:3018-27. [PMID: 25049144 PMCID: PMC4309484 DOI: 10.1002/art.38778] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/03/2014] [Indexed: 01/01/2023]
Abstract
Objective Structural changes of osteoarthritis (OA) may occur in the absence of pain. In this study, we aimed to identify histopathologic features that are associated with symptomatic knee OA. Methods Medial tibial plateaus and synovium samples were obtained at the time of total knee replacement (TKR) surgery for OA (advanced OA group) or were obtained postmortem from subjects who had not sought medical attention for knee pain during the last year of life (non-OA control group). To identify features of OA, we compared the patients with advanced OA with the age-matched non-OA controls (n = 26 per group). To identify OA features associated with symptoms, we compared two additional groups of subjects who were matched for severity of chondropathy (n = 29 per group): patients undergoing TKR for symptomatic OA (symptomatic chondropathy group) and postmortem subjects with similar severity of chondropathy who were asymptomatic during the last year of life (asymptomatic chondropathy group). The histologic features of the samples were graded, and immunoreactivities for macrophages (CD68) and nerve growth factor (NGF) in the synovium were quantified. The cellular localization of synovial NGF was determined by double immunofluorescence analysis. Results Advanced OA cases displayed more severe changes in the synovium (synovitis, increased synovial NGF, and CD68-immunoreactive macrophages) and cartilage (loss of cartilage surface integrity, loss of proteoglycan, tidemark breaching, and alterations in chondrocyte morphology) than did the non-OA controls. Synovial NGF was localized predominantly to fibroblasts and to some macrophages. The symptomatic chondropathy group displayed greater levels of synovitis, synovial NGF, and loss of cartilage integrity, in addition to alterations in chondrocyte morphology, than did the asymptomatic chondropathy group (P < 0.05 for each comparison). Conclusion Synovitis, increased synovial NGF, alterations in chondrocyte morphology, and loss of cartilage integrity are features of knee OA that may be associated with symptoms.
Collapse
Affiliation(s)
- Laura A Stoppiello
- Arthritis Research UK Pain Centre and University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
22
|
Ashraf S, Mapp PI, Burston J, Bennett AJ, Chapman V, Walsh DA. Augmented pain behavioural responses to intra-articular injection of nerve growth factor in two animal models of osteoarthritis. Ann Rheum Dis 2014; 73:1710-8. [PMID: 23852764 PMCID: PMC4145450 DOI: 10.1136/annrheumdis-2013-203416] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/15/2013] [Accepted: 06/29/2013] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Nerve growth factor (NGF) is a promising analgesic target, particularly in osteoarthritis (OA) where existing therapies are inadequate. We hypothesised that pain responses to NGF are increased in OA joints. Here, NGF-evoked pain behaviour was compared in two rodent models of OA, and possible mechanisms underlying altered pain responses were examined. METHODS OA was induced in rat knees by meniscal transection (MNX) or intra-articular monosodium iodoacetate injection (MIA). Once OA pathology was fully established (day 20), we assessed pain behaviour (hindlimb weight-bearing asymmetry and hindpaw mechanical withdrawal thresholds) evoked by intra-articular injection of NGF (10 µg). Possible mechanisms underlying alterations in NGF-induced pain behaviour were explored using indomethacin pretreatment, histopathological evaluation of synovitis, and rtPCR for NGF receptor (tropomyosin receptor kinase (Trk)-A) expression in dorsal root ganglia (DRG). RESULTS Both the MIA and MNX models of OA displayed reduced ipsilateral weight bearing and hindpaw mechanical withdrawal thresholds, mild synovitis and increased TrkA expression in DRG. NGF injection into OA knees produced a prolonged augmentation of weight-bearing asymmetry, compared to NGF injection in non-osteoarthritic knees. However, hindpaw mechanical withdrawal thresholds were not further decreased by NGF. Pretreatment with indomethacin attenuated NGF-facilitated weight-bearing asymmetry and reversed OA-induced ipsilateral TrkA mRNA up-regulation. CONCLUSIONS OA knees were more sensitive to NGF-induced pain behaviour compared to non-osteoarthritic knees. Cyclo-oxygenase products may contribute to increased TrkA expression during OA development, and the subsequent increased NGF sensitivity. Treatments that reduce sensitivity to NGF have potential to improve OA pain.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Arthritis, Experimental/complications
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Behavior, Animal/drug effects
- Dose-Response Relationship, Drug
- Ganglia, Spinal/metabolism
- Indomethacin/therapeutic use
- Injections, Intra-Articular
- Male
- Nerve Growth Factor/administration & dosage
- Nerve Growth Factor/toxicity
- Osteoarthritis/complications
- Osteoarthritis/drug therapy
- Osteoarthritis/metabolism
- Pain/chemically induced
- Pain/etiology
- Pain Measurement/methods
- Pain Threshold/drug effects
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/biosynthesis
- Receptor, trkA/genetics
- Synovitis/chemically induced
- Up-Regulation/drug effects
- Weight-Bearing/physiology
Collapse
Affiliation(s)
- Sadaf Ashraf
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Department of Academic Rheumatology, University of Nottingham, Nottingham, UK Centre for Vision and Vascular Sciences, Institute of Clinical Science, Royal Victoria Hospital, Belfast, UK
| | - Paul Ian Mapp
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Department of Academic Rheumatology, University of Nottingham, Nottingham, UK
| | - James Burston
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | - Victoria Chapman
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | - David Andrew Walsh
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK Department of Academic Rheumatology, University of Nottingham, Nottingham, UK
| |
Collapse
|
23
|
Pesesse L, Sanchez C, Walsh DA, Delcour JP, Baudouin C, Msika P, Henrotin Y. Bone sialoprotein as a potential key factor implicated in the pathophysiology of osteoarthritis. Osteoarthritis Cartilage 2014; 22:547-56. [PMID: 24530278 DOI: 10.1016/j.joca.2014.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We previously identified an association between bone sialoprotein (BSP) and osteoarthritic (OA) chondrocyte hypertrophy but the precise role of BSP in ostearthritis (OA) has not been extensively studied. This study aimed to confirm the association between BSP and OA chondrocyte hypertrophy, to define its effect on molecules produced by chondrocytes and to analyse its association with cartilage degradation and vascular density at the osteochondral junction. METHOD Human OA chondrocytes were cultivated in order to increase hypertrophic differentiation. The effect of parathyroid hormone-related peptide (PTHrP), interleukin (IL)-1β or tumour necrosis factor (TNF)-α on BSP was analysed by real-time reverse transcription polymerase chain reaction (RT-PCR) and western blot. The effects of BSP on OA chondrocytes production of inflammatory response mediators (IL-6, nitric oxide), major matrix molecule (aggrecan), matrix metalloprotease-3 and angiogenic factors (vascular endothelial growth factor, basic fibroblast growth factor, IL-8, and thrombospondin-1) were investigated. BSP was detected by immunohistochemistry and was associated with cartilage lesions severity and vascular density. RESULTS PTHrP significantly decreased BSP, confirming its association with chondrocyte hypertrophy. In presence of IL-1β, BSP stimulated IL-8 synthesis, a pro-angiogenic cytokine but decreased the production of TSP-1, an angiogenesis inhibitor. The presence of BSP-immunoreactive chondrocytes in cartilage was associated with the severity of histological cartilage lesions and with vascular density at the osteochondral junction. CONCLUSION This study supports the implication of BSP in the pathology of OA and suggests that it could be a key mediator of the hypertrophic chondrocytes-induced angiogenesis. To control chondrocyte hypertrophic differentiation is promising in the treatment of OA.
Collapse
Affiliation(s)
- L Pesesse
- Bone and Cartilage Research Unit, University of Liege, Liege, Belgium.
| | - C Sanchez
- Bone and Cartilage Research Unit, University of Liege, Liege, Belgium.
| | - D A Walsh
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Nottingham, United Kingdom.
| | - J-P Delcour
- Bois de l'Abbaye Hospital, Seraing, Belgium.
| | - C Baudouin
- Expanscience Laboratories, IRD Direction, Epernon, France.
| | - P Msika
- Expanscience Laboratories, IRD Direction, Epernon, France.
| | - Y Henrotin
- Bone and Cartilage Research Unit, University of Liege, Liege, Belgium; Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium.
| |
Collapse
|
24
|
Burston JJ, Sagar DR, Shao P, Bai M, King E, Brailsford L, Turner JM, Hathway GJ, Bennett AJ, Walsh DA, Kendall DA, Lichtman A, Chapman V. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint. PLoS One 2013; 8:e80440. [PMID: 24282543 PMCID: PMC3840025 DOI: 10.1371/journal.pone.0080440] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/02/2013] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis (OA) of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2) receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation of chronic OA pain. These findings suggest that targeting CB2 receptors may have therapeutic potential for treating OA pain.
Collapse
Affiliation(s)
- James J. Burston
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Devi Rani Sagar
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Pin Shao
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mingfeng Bai
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Emma King
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Louis Brailsford
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jenna M. Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Gareth J. Hathway
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrew J. Bennett
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David A. Walsh
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, United Kingdom
| | - David A. Kendall
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aron Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Victoria Chapman
- Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Takayama Y, Hatakenaka M, Tsushima H, Okazaki K, Yoshiura T, Yonezawa M, Nishikawa K, Iwamoto Y, Honda H. T1ρ is superior to T2 mapping for the evaluation of articular cartilage denaturalization with osteoarthritis: Radiological–pathological correlation after total knee arthroplasty. Eur J Radiol 2013; 82:e192-8. [DOI: 10.1016/j.ejrad.2012.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/13/2012] [Accepted: 11/20/2012] [Indexed: 12/22/2022]
|
26
|
Walsh DA, Verghese P, Cook GJ, McWilliams DF, Mapp PI, Ashraf S, Wilson D. Lymphatic vessels in osteoarthritic human knees. Osteoarthritis Cartilage 2012; 20:405-412. [PMID: 22326896 DOI: 10.1016/j.joca.2012.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/08/2011] [Accepted: 01/17/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The distribution and function of lymphatic vessels in normal and diseased human knees are understood incompletely. This study aimed to investigate whether lymphatic density is associated with clinical, histological or radiographic parameters in osteoarthritis (OA). METHODS Sections of synovium from 60 knees from patients with OA were compared with 60 post mortem control knees (from 37 individuals). Lymphatic vessels were identified using immunohistochemistry for podoplanin, and quantified as lymphatic vessel density (LVD) and lymphatic endothelial cell (LEC) fractional area. Effusion status was determined by clinical examination, radiographs were scored for OA changes, and inflammation grading used haematoxylin and eosin stained sections of synovium. RESULTS Lymphatic vessels were present in synovia from both disease groups, but were not identified in subchondral bone. Synovial lymphatic densities were independent of radiological severity and age. Synovia from patients with OA displayed lower LVD (z=-3.4, P=0.001) and lower LEC fractional areas (z=-4.5, P<0.0005) than non-arthritic controls. In patients with OA, low LVD was associated with clinically detectable effusion (z=-2.2, P=0.027), but not with histological evidence of synovitis. The negative associations between lymphatics and OA/effusion appeared to be independent of other measured confounders. CONCLUSION Lymphatic vessels are present in lower densities in OA synovia. Abnormalities of synovial fluid drainage may confound the value of effusion as a clinical sign of synovitis in OA.
Collapse
Affiliation(s)
- D A Walsh
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG5 1PB, UK; Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield NG17 4JL, UK.
| | - P Verghese
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG5 1PB, UK
| | - G J Cook
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG5 1PB, UK
| | - D F McWilliams
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG5 1PB, UK
| | - P I Mapp
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG5 1PB, UK
| | - S Ashraf
- Arthritis Research UK Pain Centre, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG5 1PB, UK
| | - D Wilson
- Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield NG17 4JL, UK
| |
Collapse
|
27
|
Ashraf S, Mapp PI, Walsh DA. Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. ACTA ACUST UNITED AC 2011; 63:2700-10. [PMID: 21538326 DOI: 10.1002/art.30422] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the contributions of angiogenesis to inflammation, joint damage, and pain behavior in a rat meniscal transection model of osteoarthritis (OA). METHODS OA was induced in male Lewis rats (n=8 per group) by meniscal transection. Animals were orally dosed with dexamethasone (0.1 mg/kg/day), indomethacin (2 mg/kg/day), or the specific angiogenesis inhibitor PPI-2458 (5 mg/kg every other day). Controls consisted of naive and vehicle-treated rats. Synovial inflammation was measured as the macrophage fractional area (expressed as the percentage), thickness of the synovial lining, and joint swelling. Synovial angiogenesis was measured using the endothelial cell proliferation index and vascular density. Channels positive for vessels at the osteochondral junction were assessed (osteochondral angiogenesis). Medial tibial plateaus were assessed for chondropathy, osteophytosis, and channels crossing the osteochondral junction. Pain behavior was measured as weight-bearing asymmetry. RESULTS Dexamethasone and indomethacin each reduced pain behavior, synovial inflammation, and synovial angiogenesis 35 days after meniscal transection. Dexamethasone reduced, but indomethacin had no significant effect on, the total joint damage score. PPI-2458 treatment reduced synovial and osteochondral angiogenesis, synovial inflammation, joint damage, and pain behavior. CONCLUSION Our findings indicate that synovial inflammation and joint damage are closely associated with pain behavior in the meniscal transection model of OA. Inhibition of angiogenesis may reduce pain behavior both by reducing synovitis and by preventing structural change. Targeting angiogenesis could therefore prove useful in reducing pain and structural damage in OA.
Collapse
Affiliation(s)
- Sadaf Ashraf
- Arthritis Research UK Pain Centre, Department of Academic Rheumatology, University of Nottingham, City Hospital, Nottingham, UK.
| | | | | |
Collapse
|
28
|
Correlation of protease-activated receptor-2 expression and synovitis in rheumatoid and osteoarthritis. Rheumatol Int 2011; 32:3077-86. [PMID: 21913036 DOI: 10.1007/s00296-011-2102-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/21/2011] [Indexed: 12/14/2022]
Abstract
Protease-activated receptor-2 (PAR-2) is known to be pro-inflammatory and increasing evidence points to an inflammatory component in osteoarthritis. This investigation examined the relationship between synovitis and PAR-2 expression, histological and immunohistochemical analysis being performed on synovial samples obtained from OA and RA patients, along with non-arthritic samples obtained by post mortem (PM). Samples were also analysed for PAR-4 expression, this receptor also having putative pro-inflammatory roles. Analysis involved comparison of inflammatory indices (synovial thickness and monocyte infiltration) with expression of PAR-2 and PAR-4. Synovial explants were also analysed for TNFα generation in the presence of a PAR-2 antagonist (ENMD-1068) or vehicle. OA synovia showed heterogeneity of inflammatory indicators, some samples overlapping with those from the RA cohort whilst others appeared similar to the PM cohort. PAR-2 expression, both in the lining layer and the interstitium, correlated strongly and significantly with synovial thickness (r = 0.91) and monocyte infiltration (r = 0.83), respectively (P < 0.001 in both cases), and this remains significant on individual cohort analysis. PAR-2 was co-localised to CD3 and CD68 cells in RA and OA synovium as well as fibroblasts derived from these synovia. PAR-4 was also expressed, but the relationship with inflammatory indicators was substantially weaker. Inflammatory indicators in OA synovia showed considerable variability, but correlated strongly with PAR-2 expression, suggesting PAR-2 upregulation in synovitis. Heterogeneity of inflammatory indicators was paralleled by wide variation in TNFα generation between samples. Secretion of this cytokine was dose-dependently inhibited by ENMD-1068, providing evidence of a functional role for PAR-2 in promoting synovitis.
Collapse
|
29
|
Tsushima H, Okazaki K, Takayama Y, Hatakenaka M, Honda H, Izawa T, Nakashima Y, Yamada H, Iwamoto Y. Evaluation of cartilage degradation in arthritis using T1ρ magnetic resonance imaging mapping. Rheumatol Int 2011; 32:2867-75. [PMID: 21881979 DOI: 10.1007/s00296-011-2140-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/22/2011] [Indexed: 12/16/2022]
Abstract
T1ρ magnetic resonance imaging (MRI) can be used to map proteoglycan (PG) loss in cartilage. Here, we used T1ρ MRI to map cartilage degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). Tissue samples were obtained from five RA patients and 14 OA patients following total knee arthroplasty (TKA). Three parameters were measured: First, macroscopic grading of cartilage sample tissues was performed on a 5-grade scale (G0: normal, G1: swelling, G2: superficial fibrillation, G3: deep fibrillation, G4: subchondral bone exposure). Second, semi-quantitative values of PG were assessed by measuring the optical density of Safranin-O-stained paraffin sections that had been digitally photographed. Third, cartilage was divided into superficial and deep layers and the T1ρ values were quantified. T1ρ values of OA and RA in the superficial layers showed significant differences between groups (G0/1 and G0/2 for OA; G0/2 and G1/2 for RA). In the deep layers, T1ρ values of OA and RA also differed significantly between groups. In both the superficial and deep layers, there was a significant correlation between the mean T1ρ values and macroscopic grading (P < 0.01 for OA, P < 0.001 for RA). We found a negative correlation between the score of Safranin-O staining and T1ρ values (r = -0.61 for OA, r = -0.79 for RA). In addition, RA subjects had significantly higher T1ρ values than OA subjects of similar morphologic grade. In conclusion, T1ρ MRI is able to detect and map the early stages of cartilage degradation in OA and RA. This method is reliable and useful for the evaluation of macromolecular changes in arthritic cartilage.
Collapse
Affiliation(s)
- Hidetoshi Tsushima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ashraf S, Wibberley H, Mapp PI, Hill R, Wilson D, Walsh DA. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann Rheum Dis 2011; 70:523-9. [PMID: 21081524 DOI: 10.1136/ard.2010.137844] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Meniscal damage is a recognised feature of knee osteoarthritis (OA), although its clinical relevance remains uncertain. This study describes vascular penetration and nerve growth in human menisci, providing a potential mechanism for the genesis of pain in knee OA. METHODS Menisci obtained post mortem were screened on the basis of high or low macroscopic tibiofemoral chondropathy as a measure of the presence and degree of OA. Forty cases (20 per group) were selected for the study of meniscal vascularity, and 16 (eight per group) for the study of meniscal innervation. Antibodies directed against α-actin and calcitonin gene-related peptide (CGRP) were used to localise blood vessels and nerves by histochemistry. Image analysis was used to compare vascular and nerve densities between groups. Data are presented as median (IQR). RESULTS Menisci from knees with high chondropathy displayed degeneration of collagen bundles in their outer regions, which were more vascular than the inner regions, with an abrupt decrease in vascularity at the fibrocartilage junction. Vascular densities were increased in menisci from the high compared with low chondropathy group both in the synovium (3.8% (IQR 2.6-5.2), 2.0% (IQR 1.4-2.9), p=0.002) and at the fibrocartilage junction (2.3% (IQR 1.7-3.1), 1.1% (IQR 0.8-1.9), p=0.003), with a greater density of perivascular sensory nerve profiles in the outer region (high chondropathy group, 144 nerve profiles/mm(2) (IQR 134-189); low chondropathy group, 119 nerve profiles/mm(2) (IQR 104-144), p=0.049). CONCLUSION Tibiofemoral chondropathy is associated with altered matrix structure, increased vascular penetration, and increased sensory nerve densities in the medial meniscus. The authors suggest therefore that angiogenesis and associated sensory nerve growth in menisci may contribute to pain in knee OA.
Collapse
Affiliation(s)
- Sadaf Ashraf
- Academic Rheumatology, Arthritis Research UK Pain Centre, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham NG5 1PB, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Histopathology grading systems for characterisation of human knee osteoarthritis--reproducibility, variability, reliability, correlation, and validity. Osteoarthritis Cartilage 2011; 19:324-31. [PMID: 21172446 DOI: 10.1016/j.joca.2010.12.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 11/09/2010] [Accepted: 12/06/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the reliability, reproducibility, variability and validity of the Osteoarthritis Cartilage Histopathology (OACH) assessment system and Mankin Histological-Histochemical Grading System (HHGS) when applied to the characterisation of the osteoarthritic human knee. METHOD Osteoarthritic knees of 10 patients undergoing unilateral knee arthroplasty were assessed, and assigned Kellgren-Lawrence and Line Drawing Atlas (LDA) radiology scores. The tibial plateaux were scored using the Modified Collins (MC) and Société Française d'Arthroscopie (SFA). Three observers twice scored both the OACH and HHGS across a single complete medial and lateral tibial plateau transect taken to include the region with the most severe osteoarthritis (OA) lesion. Intra- and inter-observer reliability, reproducibility, variability and validity were assessed, and the correlation between the two histopathology scoring systems was calculated. RESULT Both histopathology scoring systems were determined to be reliable and reproducible exhibiting similar variability, when applied to characterise OA specimens sampled from a well defined patient group with knee OA. A strong correlation between the mean OACH and mean HHGS scores was identified (Spearman's ρ 0.980, P<0.0001). CONCLUSION Both scoring systems implemented provide useful measures in the characterisation of knee osteoarthritis. It is of note that an additional parameter within the OACH score over the HHGS defines the extent of the disease, where the HHGS is a grade attributed to the most representative level of the biological aggression within the OA lesions. This study has confirmed the OACH system's utility in human knee OA and is supported by a significant correlation with the established HHGS.
Collapse
|
32
|
Fransès R, McWilliams D, Mapp P, Walsh D. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthritis Cartilage 2010; 18:563-71. [PMID: 20060952 PMCID: PMC2877870 DOI: 10.1016/j.joca.2009.11.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/26/2009] [Accepted: 11/27/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Normal cartilage is resistant to vascular invasion and anti-angiogenic protease inhibitors may contribute to its avascular status. We hypothesized that dysregulated expression of four key anti-angiogenic protease inhibitors may contribute to increased osteochondral vascularity in osteoarthritis (OA). DESIGN Medial tibial plateaux from OA patients (n=40) were compared with those from non-arthritic controls collected post-mortem (PM, n=10). Immunohistochemistry was performed for protease inhibitors TIMP-1, TIMP-3, PAI-1 and SLPI and the pro-angiogenic factor vascular endothelial growth factor (VEGF). Immunoreactivity in articular chondrocytes was scored. Chondropathy was measured as a modified Mankin score, and osteochondral vascular density as number of channels crossing each mm of tidemark. Non-parametric analyses were used for all data. RESULTS All protease inhibitors and VEGF were localised to chondrocytes near the articular surface, less often in the middle zone, and rarely to deep chondrocytes. Scores for VEGF, TIMP-1, TIMP-3, SLPI and PAI-1 were all increased in OA compared with PM, and higher scores were associated with greater chondropathy. Chondrocyte expression of VEGF was associated with higher osteochondral vascular density (r=0.32, P<0.05), whereas protease inhibitors were not. CONCLUSIONS The resistance of normal articular cartilage to vascular invasion may be more due to its matrix environment than ongoing protease inhibitor expression. Upregulation of protease inhibitors by superficial chondrocytes in OA may moderate the angiogenic effects of growth factors such as VEGF. However, failure of deep chondrocytes to express anti-angiogenic protease inhibitors may permit vascular invasion into the articular cartilage.
Collapse
Affiliation(s)
| | | | | | - D.A. Walsh
- Address correspondence and reprint requests to: D.A. Walsh, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK. Tel: 44-(0)-115-8231751; Fax: 44-(0)-115-8231757.
| |
Collapse
|