1
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
2
|
Yuan SM, Yang XT, Zhang SY, Tian WD, Yang B. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World J Stem Cells 2022; 14:435-452. [PMID: 36157522 PMCID: PMC9350620 DOI: 10.4252/wjsc.v14.i7.435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Sheng-Meng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Ting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei-Dong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
3
|
Lawson TB, Mäkelä JTA, Klein T, Snyder BD, Grinstaff MW. Nanotechnology and osteoarthritis; part 1: Clinical landscape and opportunities for advanced diagnostics. J Orthop Res 2021; 39:465-472. [PMID: 32827322 DOI: 10.1002/jor.24817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disease of the entire joint, often triggered by cartilage injury, mediated by a cascade of inflammatory pathways involving a complex interplay among metabolic, genetic, and enzymatic factors that alter the biochemical composition, microstructure, and biomechanical performance. Clinically, OA is characterized by degradation of the articular cartilage, thickening of the subchondral bone, inflammation of the synovium, and degeneration of ligaments that in aggregate reduce joint function and diminish quality of life. OA is the most prevalent joint disease, affecting 140 million people worldwide; these numbers are only expected to increase, concomitant with societal and financial burden of care. We present a two-part review encompassing the applications of nanotechnology to the diagnosis and treatment of OA. Herein, part 1 focuses on OA treatment options and advancements in nanotechnology for the diagnosis of OA and imaging of articular cartilage, while part 2 (10.1002/jor.24842) summarizes recent advances in drug delivery, tissue scaffolds, and gene therapy for the treatment of OA. Specifically, part 1 begins with a concise review of the clinical landscape of OA, along with current diagnosis and treatments. We next review nanoparticle contrast agents for minimally invasive detection, diagnosis, and monitoring of OA via magnetic resonace imaging, computed tomography, and photoacoustic imaging techniques as well as for probes for cell tracking. We conclude by identifying opportunities for nanomedicine advances, and future prospects for imaging and diagnostics.
Collapse
Affiliation(s)
- Taylor B Lawson
- Departments of Biomedical Engineering, Mechanical Engineering, Chemistry, and Medicine Boston University, Boston, Massachusetts
- Orthopaedics Research Department, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Janne T A Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Brian D Snyder
- Orthopaedics Research Department, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Mechanical Engineering, Chemistry, and Medicine Boston University, Boston, Massachusetts
| |
Collapse
|
4
|
Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: effects of labelling and transplantation parameters. Sci Rep 2020; 10:13684. [PMID: 32792506 PMCID: PMC7426806 DOI: 10.1038/s41598-020-70291-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cell tracking with magnetic resonance imaging (MRI) is important for evaluating the biodistribution of transplanted cells. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) have emerged as a promising therapeutic tool in regenerative medicine. We examined the UC-MSCs labeled with superparamagnetic (SPIO) and ultrasmall superparamagnetic iron oxide (USPIO) in terms of cell functioning and imaging efficiency in vitro and in vivo. The UC-MSCs were co-incubated with SPIO or USPIO at a concentration of 50 or 100 µg/mL of label. Viability and proliferation were assessed by Trypan blue dye exclusion and MTT assay, respectively. Differentiation (chondrogenesis, osteogenesis, and adipogenesis) was induced to examine the impact of labelling on stemness. For in vitro experiments, we used 7-T MRI to assess the T2 values of phantoms containing various concentrations of cell suspensions. For in vivo experiments, nine neonatal rats were divided into the control, SPIO, and USPIO groups. The UC-MSCs were injected directly into the rat brains. MRI images were obtained immediately and at 7 and 14 days post injection. The UC-MSCs were successfully labeled with SPIO and USPIO after 24 h of incubation. Cell viability was not changed by labelling. Nevertheless, labelling with 100 µg/mL USPIO led to a significant decrease in proliferation. The capacity for differentiation into cartilage was influenced by 100 µg/mL of SPIO. MRI showed that labeled cells exhibited clear hypointense signals, unlike unlabeled control cells. In the USPIO-labeled cells, a significant (P < 0.05) decrease in T2 values (= improved contrast) was observed when compared with the controls and between phantoms containing the fewest and the most cells (0.5 × 106 versus 2.0 × 106 cells/mL). In vivo, the labeled cells were discernible on T2-weighted images at days 0, 7, and 14. The presence of SPIO and USPIO particles at day 14 was confirmed by Prussian blue staining. Microscopy also suggested that the regions occupied by the particles were not as large as the corresponding hypointense areas observed on MRI. Both labels were readily taken up by the UC-MSCs and identified well on MRI. While SPIO and USPIO provide improved results in MRI studies, care must be taken while labelling cells with high concentrations of these agents.
Collapse
|
5
|
Vasilichin VA, Tsymbal SA, Fakhardo AF, Anastasova EI, Marchenko AS, Shtil AA, Vinogradov VV, Koshel EI. Effects of Metal Oxide Nanoparticles on Toll-Like Receptor mRNAs in Human Monocytes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E127. [PMID: 32284505 PMCID: PMC7023015 DOI: 10.3390/nano10010127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 01/04/2023]
Abstract
For the widespread application of nanotechnology in biomedicine, it is necessary to obtain information about their safety. A critical problem is presented by the host immune responses to nanomaterials. It is assumed that the innate immune system plays a crucial role in the interaction of nanomaterials with the host organism. However, there are only fragmented data on the activation of innate immune system factors, such as toll-like receptors (TLRs), by some nanoparticles (NPs). In this study, we investigated TLRs' activation by clinically relevant and promising NPs, such as Fe3O4, TiO2, ZnO, CuO, Ag2O, and AlOOH. Cytotoxicity and effects on innate immunity factors were studied in THP-1(Tohoku Hospital Pediatrics-1) cell culture. NPs caused an increase of TLR-4 and -6 expression, which was comparable with the LPS-induced level. This suggests that the studied NPs can stimulate the innate immune system response inside the host. The data obtained should be taken into account in future research and to create safe-by-design biomedical nanomaterials.
Collapse
Affiliation(s)
- Vladislav A. Vasilichin
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 St. Petersburg, Russia; (V.A.V.); (S.A.T.); (A.F.F.); (E.I.A.); (A.S.M.); (A.A.S.)
| | - Sergey A. Tsymbal
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 St. Petersburg, Russia; (V.A.V.); (S.A.T.); (A.F.F.); (E.I.A.); (A.S.M.); (A.A.S.)
| | - Anna F. Fakhardo
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 St. Petersburg, Russia; (V.A.V.); (S.A.T.); (A.F.F.); (E.I.A.); (A.S.M.); (A.A.S.)
| | - Elizaveta I. Anastasova
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 St. Petersburg, Russia; (V.A.V.); (S.A.T.); (A.F.F.); (E.I.A.); (A.S.M.); (A.A.S.)
| | - Andrey S. Marchenko
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 St. Petersburg, Russia; (V.A.V.); (S.A.T.); (A.F.F.); (E.I.A.); (A.S.M.); (A.A.S.)
| | - Alexander A. Shtil
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 St. Petersburg, Russia; (V.A.V.); (S.A.T.); (A.F.F.); (E.I.A.); (A.S.M.); (A.A.S.)
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Vladimir V. Vinogradov
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 St. Petersburg, Russia; (V.A.V.); (S.A.T.); (A.F.F.); (E.I.A.); (A.S.M.); (A.A.S.)
| | - Elena I. Koshel
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 St. Petersburg, Russia; (V.A.V.); (S.A.T.); (A.F.F.); (E.I.A.); (A.S.M.); (A.A.S.)
| |
Collapse
|
6
|
Elkhenany H, Abd Elkodous M, Ghoneim NI, Ahmed TA, Ahmed SM, Mohamed IK, El-Badri N. Comparison of different uncoated and starch-coated superparamagnetic iron oxide nanoparticles: Implications for stem cell tracking. Int J Biol Macromol 2019; 143:763-774. [PMID: 31626822 DOI: 10.1016/j.ijbiomac.2019.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
However, labelling of stem cells using nanoparticles (NPs) for tracking purpose has been intensively investigated, the biosafety of these materials needs more clarification. Herein, different forms of iron oxide Fe2O3, Fe3O4, and CoxNi1-x Fe2O4 NPs either uncoated or starch-coated (ST-coated) were prepared. We successfully labelled adipose-derived stem cells (ASCs) using these NPs with the aid of lipofectamine as a transfection agent (TA). We then evaluated the effect of these NPs on stem cell proliferation, viability, migration and angiogenesis. Results showed that ASCs labelled with Fe2O3, Fe3O4, ST-Fe2O3 and ST-Fe3O4 did not show any significant difference in proliferation compared to that of TA-treated cells. Moreover, they have shown a protective effect against apoptosis. Conversely, CoxNi1-x Fe2O4 NPs caused a significant decrease in cell proliferation. Compared to that of the TA-treated cells, the migration capacity of cells labelled with Fe2O3, Fe3O4 and CoxNi1-xFe2O4 was significantly compromised. Interestingly, the ST-coated composites reversed this effect. Among the groups treated with different NPs, the angiogenic potential of the ASCs was most robust in the ST-Fe2O3-treated group. In conclusion, labelling ASCs with ST-Fe2O3 NPs enhanced cell migration and angiogenic potential and conferred higher resistance to apoptosis than labelling the cells with the other tested NPs.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt; Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Ihab K Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt.
| |
Collapse
|
7
|
Xie M, Luo S, Li Y, Lu L, Deng C, Cheng Y, Yin F. Intra-articular tracking of adipose-derived stem cells by chitosan-conjugated iron oxide nanoparticles in a rat osteoarthritis model. RSC Adv 2019; 9:12010-12019. [PMID: 35517009 PMCID: PMC9063530 DOI: 10.1039/c8ra09570a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/22/2019] [Indexed: 12/05/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) hold great potential in cartilage tissue engineering due to their multipotency and ease of availability. MRI is an effective and noninvasive imaging approach to track cells and observe new tissue regeneration. It is essential to find a compatible and efficient imaging reagent without affecting the stemness of ADSCs. Herein, we developed chitosan-modified iron oxide nanoparticles (IO-CS) as the T 2 contrast reagent with good cell compatibility and high cellular uptake efficiency and used IO-CS for ADSC intra-articular imaging in a rat osteoarthritis (OA) model. TEM demonstrated the great morphology and size distribution of IO-CS nanoparticles with the size of 17 nm. Magnetization (29.4 emu per g) and MRI tests confirmed (R 2 of 184 mM-1 s-1) the feasibility of IO-CS nanoparticles as an MRI contrast reagent. In addition, the IO-CS nanoparticles showed good cellular compatibility and high labeling efficiency as compared to the commercial agent ferumoxytol. Moreover, incorporation of IO-CS nanoparticles did not alter the adipogenic, osteogenic and chondrogenic differentiation ability of ADSCs. Furthermore, the MRI transverse R 2 maps showed a persistence time of the IO-CS nanoparticles in ADSCs of 6 days in vitro. Then, we investigated the imaging capability of the IO-CS nanoparticle-labeled ADSCs in vivo with MRI for 5 weeks. The histological studies demonstrated the intra-articular biodistribution of the IO-CS nanoparticles, including in the cartilage superficial layer, synovial sublining layer, periosteum and bone marrow cavity. They provided systemic distribution information of the ADSCs in the OA rat model. In summary, we developed an accessible and effective T 2 imaging reagent with good biocompatibility and maintenance of the stemness of ADSCs. This showed the potential translational application of IO-CS nanoparticles as an MRI reagent in cartilage tissue engineering.
Collapse
Affiliation(s)
- Meihua Xie
- Institute for Regenerative Medicine, The Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine 1800 Yuntai Road Shanghai 200123 China
| | - ShuLin Luo
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University Shanghai China
| | - Ying Li
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University Shanghai China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University Shanghai China
| | - Cuijun Deng
- Institute for Regenerative Medicine, The Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine 1800 Yuntai Road Shanghai 200123 China
| | - Yu Cheng
- Institute for Regenerative Medicine, The Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine 1800 Yuntai Road Shanghai 200123 China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University Shanghai China
| |
Collapse
|
8
|
Gong X, Wang F, Huang Y, Lin X, Chen C, Wang F, Yang L. Magnetic-targeting of polyethylenimine-wrapped iron oxide nanoparticle labeled chondrocytes in a rabbit articular cartilage defect model. RSC Adv 2018; 8:7633-7640. [PMID: 35539110 PMCID: PMC9078383 DOI: 10.1039/c7ra12039g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent form of joint disease and lacks effective treatment. Cell-based therapy through intra-articular injection holds great potential for effective intervention at its early stage. Despite the promising outcomes, major barriers for successful clinical application such as lack of specific targeting of transplanted cells still remain. Here, novel polyethylenimine-wrapped iron oxide nanoparticles (PEI/IONs) were utilized as a magnetic agent, and the in vitro efficiency of PEI/ION labeling, and the influence on the chondrogenic properties of chondrocytes were evaluated; the in vivo feasibility of magnetic-targeting intra-articular injection with PEI/ION labeled autologous chondrocytes was investigated using a rabbit articular cartilage defect model. Our data showed that chondrocytes were conveniently labeled with PEI/IONs in a time- and dose-dependent manner, while the viability was unaffected. No significant decrease in collagen type-II synthesis of labeled chondrocytes was observed at low concentration. Macrographic and histology evaluation at 1 week post intra-articular injection revealed efficient cell delivery at chondral defect sites in the magnetic-targeting group. In addition, chondrocytes in the defect area presented a normal morphology, and the origin of cells within was confirmed by immunohistochemistry staining against BrdU and Prussian blue staining. The present study shows proof of concept experiments in magnetic-targeting of PEI/ION labeled chondrocytes for articular cartilage repair, which might provide new insight to improve current cartilage repair strategies. Magnetic-targeting outcome in the knee joint of experimental rabbit model at 1 week post intra-articular injection.![]()
Collapse
Affiliation(s)
- Xiaoyuan Gong
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Fengling Wang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Yang Huang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Xiao Lin
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Cheng Chen
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Fuyou Wang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Liu Yang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| |
Collapse
|
9
|
MRI-Based Assessment of Intralesional Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Equine Tendonitis. Stem Cells Int 2016; 2016:8610964. [PMID: 27746821 PMCID: PMC5056306 DOI: 10.1155/2016/8610964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Ultrasound-guided intralesional injection of mesenchymal stem cells (MSCs) is held as the benchmark for cell delivery in tendonitis. The primary objective of this study was to investigate the immediate cell distribution following intralesional injection of MSCs. Unilateral superficial digital flexor tendon (SDFT) lesions were created in the forelimb of six horses and injected with 10 × 106 MSCs labeled with superparamagnetic iron oxide nanoparticles (SPIOs) under ultrasound guidance. Assays were performed to confirm that there were no significant changes in cell viability, proliferation, migration, or trilineage differentiation due to the presence of SPIOs. Limbs were imaged on a 1.5-tesla clinical MRI scanner postmortem before and after injection to determine the extent of tendonitis and detect SPIO MSCs. Clusters of labeled cells were visible as signal voids in 6/6 subjects. Coalescing regions of signal void were diffusely present in the peritendinous tissues. Although previous reports have determined that local injury retains cells within a small radius of the site of injection, our study shows greater than expected delocalization and relatively few cells retained within collagenous tendon compared to surrounding fascia. Further work is needed if this is a reality in vivo and to determine if directed intralesional delivery of MSCs is as critical as presently thought.
Collapse
|
10
|
Harrison R, Markides H, Morris RH, Richards P, El Haj AJ, Sottile V. Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications. J Tissue Eng Regen Med 2016; 11:2333-2348. [PMID: 27151571 PMCID: PMC5573958 DOI: 10.1002/term.2133] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica‐coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP‐based approaches to cell targeting. The potential of these silica‐coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica‐coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Richard Harrison
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, UK
| | - Hareklea Markides
- Institute of Science and Technology in Medicine, Keele University, UK
| | - Robert H Morris
- School of Science and Technology, Nottingham Trent University, UK
| | - Paula Richards
- Institute of Science and Technology in Medicine, Keele University, UK
| | - Alicia J El Haj
- Institute of Science and Technology in Medicine, Keele University, UK
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, University of Nottingham, UK
| |
Collapse
|
11
|
Potential stem cell labeling ability of poly-L-lysine complexed to ultrasmall iron oxide contrast agent: An optimization and relaxometry study. Exp Cell Res 2015; 339:427-36. [DOI: 10.1016/j.yexcr.2015.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022]
|
12
|
Will S, Martirosian P, Eibofner F, Schick F, Bantleon R, Vaegler M, Grözinger G, Claussen CD, Kramer U, Schmehl J. Viability and MR detectability of iron labeled mesenchymal stem cells used for endoscopic injection into the porcine urethral sphincter. NMR IN BIOMEDICINE 2015; 28:1049-1058. [PMID: 26147577 DOI: 10.1002/nbm.3339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
Direct stem cell therapies for functionally impaired tissue require a sufficient number of cells in the target region and a method for verifying the fate of the cells in the subsequent time course. In vivo MRI of iron labeled mesenchymal stem cells has been suggested to comply with these requirements. The study was conducted to evaluate proliferation, migration, differentiation and adhesion effects as well as the obtained iron load of an iron labeling strategy for mesenchymal stem cells. After injection into the porcine urethral sphincter, the labeled cells were monitored for up to six months using MRI. Mesenchymal stem cells were labeled with ferucarbotran (60/100/200 µg/mL) and ferumoxide (200 µg/mL) for the analysis of migration and viability. Phantom MR measurements were made to evaluate effects of iron labeling. For short and long term studies, the iron labeled cells were injected into the porcine urethral sphincter and monitored by MRI. High resolution anatomical images of the porcine urethral sphincter were applied for detection of the iron particles with a turbo-spin-echo sequence and a gradient-echo sequence with multiple TE values. The MR images were then compared with histological staining. The analysis of cell function after iron labeling showed no effects on proliferation or differentiation of the cells. Although the adherence increases with higher iron dose, the ability to migrate decreases as a presumed effect of iron labeling. The iron labeled mesenchymal stem cells were detectable in vivo in MRI and histological staining even six months after injection. Labeling with iron particles and subsequent evaluation with highly resolved three dimensional data acquisition allows sensitive tracking of cells injected into the porcine urethral sphincter for several months without substantial biological effects on mesenchymal stem cells.
Collapse
Affiliation(s)
- Susanne Will
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Tübingen, Germany
| | - Petros Martirosian
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Tübingen, Germany
| | - Frank Eibofner
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Tübingen, Germany
| | - Fritz Schick
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Tübingen, Germany
| | - Rüdiger Bantleon
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| | - Martin Vaegler
- University of Tuebingen, Department of Urology, Laboratory of Tissue Engineering, Tübingen, Germany
| | - Gerd Grözinger
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| | - Claus D Claussen
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| | - Ulrich Kramer
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| | - Jörg Schmehl
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| |
Collapse
|
13
|
Eichaker LR, Cho H, Duvall CL, Werfel TA, Hasty KA. Future nanomedicine for the diagnosis and treatment of osteoarthritis. Nanomedicine (Lond) 2015; 9:2203-15. [PMID: 25405797 DOI: 10.2217/nnm.14.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current treatments for osteoarthritis (OA) are largely palliative until the joints become totally dysfunctional and prosthetic replacement becomes necessary. Effective methods are needed for diagnosing OA and monitoring its progression during its early stages, when the effects of therapeutic drugs or biological agents are most likely to be effective. Theranostic nanosomes and nanoparticles have the potential to noninvasively detect, track and treat the early stages of OA. As articular cartilage does not regenerate once it is degraded, cell-based treatments aided by superparamagnetic iron oxide nanoparticle tracking are attractive future treatment modalities for the later stages of OA progression, when significant cartilage replacement is needed. This article will describe the current and future translational approaches for the detection and noninvasive treatment of degenerative OA.
Collapse
Affiliation(s)
- Lauren R Eichaker
- Department of Biomedical Engineering & Orthopaedic Surgery/Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
14
|
Scharf A, Holmes S, Thoresen M, Mumaw J, Stumpf A, Peroni J. Superparamagnetic iron oxide nanoparticles as a means to track mesenchymal stem cells in a large animal model of tendon injury. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:388-97. [PMID: 26033748 DOI: 10.1002/cmmi.1642] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/12/2015] [Accepted: 03/15/2015] [Indexed: 12/11/2022]
Abstract
The goal of this study was to establish an SPIO-based cell-tracking method in an ovine model of tendonitis and to determine if this method may be useful for further study of cellular therapies in tendonitis in vivo. Functional assays were performed on labeled and unlabeled cells to ensure that no significant changes were induced by intracellular SPIOs. Following biosafety validation, tendon lesions were mechanically (n = 4) or chemically (n = 4) induced in four sheep and scanned ex vivo at 7 and 14 days to determine the presence and distribution of intralesional cells. Ovine MSCs labeled with 50 µg SPIOs/mL remained viable, proliferate, and undergo tri-lineage differentiation (p < 0.05). Labeled ovine MSCs remained detectable in vitro in concentrated cell numbers as low as 10 000 and in volumetric distributions as low as 100 000 cells/mL. Cells remained detectable by MRI at 7 days, as confirmed by correlative histology for dually labeled SPIO+/GFP+ cells. Histological evidence at 14 days suggested that SPIO particles remained embedded in tissue, providing MRI signal, although cells were no longer present. SPIO labeling has proven to be an effective method for cell tracking for a large animal model of tendon injury for up to 7 days post-injection. The data obtained in this study justify further investigation into the effects of MSC survival and migration on overall tendon healing and tissue regeneration.
Collapse
Affiliation(s)
- Alexandra Scharf
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA.,Department of Biological and Agricultural Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Shannon Holmes
- Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Merrilee Thoresen
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA
| | - Jennifer Mumaw
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA
| | - Alaina Stumpf
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA
| | - John Peroni
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA, 30602, USA
| |
Collapse
|
15
|
Soshnikova YM, Shekhter AB, Baum OI, Shcherbakov EM, Omelchenko AI, Lunin VV, Sobol EN. Laser radiation effect on chondrocytes and intercellular matrix of costal and articular cartilage impregnated with magnetite nanoparticles. Lasers Surg Med 2015; 47:243-51. [PMID: 25689939 DOI: 10.1002/lsm.22331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVE Magnetic nanoparticles with the ability to absorb laser radiation are the perspective agents for the early diagnostics and laser therapy of degenerative cartilage. The effect of starch stabilized magnetite nanoparticles (SSNPs) on the cartilage structure components has never been studied before. The aim of the work is to establish the Erbium:glass laser effect on costal and articular cartilage impregnated with SSNPs. MATERIALS AND METHODS Porcine articular and costal cartilage disks (2.0 mm in diameter and 1.5-2 mm in thickness) were impregnated with SSNPs and irradiated using a 1.56 μm laser in therapeutic laser setting. The one sample group underwent the second irradiation after the SSNPs impregnation. The samples were analyzed by the means of histology, histochemistry and transmission electron microscopy (TEM) to reveal the alterations of cells, glycosaminoglycans and collagen network. RESULTS The irradiated cartilage demonstrates the higher content of cell alterations than the intact one due to the heat and mechanical affection in the course of laser irradiation. However the alterations are localized at the areas near the irradiated surfaces and not dramatic. The impregnation of SSNPs does not cause any additional cell alterations. For both costal and articular cartilage the matrix alterations of irradiated samples are not critical: there is the slight decrease in acid proteoglycan content at the irradiated areas while the collagen network is not altered. Distribution and localization of impregnated SSNPs is described: agglomerates of 150-230 nm are observed located at the borders between matrix and cell lacunas of articular cartilage; SSNPs of 15-45 nm are found in the collagen network of costal cartilage. CONCLUSIONS It was shown that SSNPs do not appreciably affect the structural components of both articular and costal cartilage and can be safely used for the laser diagnostics and therapy. The area of structural alterations is diffuse and local as the result of the mechanical and heat effect of laser impact. SSNPs reveal the areas of the structural alterations of cartilage matrix and give information about the size of the pores and defects.
Collapse
Affiliation(s)
- Yulia M Soshnikova
- Institute on Laser and Information Technologies, Russian Academy of Sciences, Troitsk, 142190, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
16
|
Danhier P, De Preter G, Magat J, Godechal Q, Porporato PE, Jordan BF, Feron O, Sonveaux P, Gallez B. Multimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:143-53. [PMID: 24523059 DOI: 10.1002/cmmi.1553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022]
Abstract
MRI cell tracking is a promising technique for tracking various cell types in living animals. Usually, cells are incubated with iron oxides so that the particles are taken up before the cells are injected in vivo. In the present study, we aimed to monitor migration of luciferase-expressing mouse renal cancer cells (RENCA-luc) after intrarenal or intrasplenic injection. These cells were labelled using Molday Ion Rhodamine B (MIRB) fluorescent superparamagnetic iron oxide particles. Their fate after injection was first assessed using ex vivo X-band electron paramagnetic resonance (EPR) spectroscopy. This biodistribution study showed that RENCA-luc cells quickly colonized the lungs and the liver after intrarenal and intrasplenic injection, respectively. Bioluminescence imaging (BLI) studies confirmed that this cell line preferentially metastasized to these organs. Early tracking of labelled RENCA-luc cells in the liver using high-field MRI (11.7 T) was not feasible because of a lack of sensitivity. MRI of MIRB-labelled RENCA-luc cells after injection in the left kidney was then performed. T2 - and T2 *-weighted images showed that the labelled cells induced hypointense signals at the injection site. Nevertheless, the hypointense regions tended to disappear after several days, mainly owing to dilution of the MIRB iron oxides with cell proliferation. In conclusion, EPR is well adapted to ex vivo analysis of tissues after cell tracking experiments and allows short-term monitoring of metastasizing cells. MRI is a suitable tool for checking labelled cells at their injection site, but dilution of the iron oxides owing to cell division remains a major limitation. BLI remains the most suitable technique for long-term monitoring of metastatic cells.
Collapse
Affiliation(s)
- Pierre Danhier
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ruggiero A, Guenoun J, Smit H, Doeswijk GN, Klein S, Krestin GP, Kotek G, Bernsen MR. In vivo MRI mapping of iron oxide-labeled stem cells transplanted in the heart. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 8:487-94. [PMID: 24375904 DOI: 10.1002/cmmi.1582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/20/2013] [Accepted: 10/26/2013] [Indexed: 12/19/2022]
Abstract
In various stem cell therapy approaches poor cell survival has been recognized as an important factor limiting therapeutic efficacy. Therefore noninvasive monitoring of cell fate is warranted for developing clinically effective stem cell therapy. In this study we investigated the use of voxel-based R₂ mapping as a tool to monitor the fate of iron oxide-labeled cells in the myocardium. Mesenchymal stem cells were transduced with the luciferase gene, labeled with ferumoxide particles and injected in the myocardium of healthy rats. Cell fate was monitored over a period of 8 weeks by bioluminescence and quantitative magnetic resonance imaging. Bioluminescence signal increased during the first week followed by a steep decrease to undetectable levels during the second week. MR imaging showed a sharp increase in R₂ values shortly after injection at the injection site, followed by a very gradual decrease of R₂ over a period of 8 weeks. No difference in the appearances on R₂-weighted images was observed between living and dead cells over the entire time period studied. No significant correlation between the bioluminescence optical data and R₂ values was observed and quantitative R₂ mapping appeared not suitable for the in vivo assessment of stem cell. These results do not follow previous in vitro reports where it was proposed that living cells may be distinguished from dead cells on the basis of the R₂ relaxivities (intracellular and extracellular iron oxides). Cell proliferation, cell migration, cell death, extracellular superparamagnetic iron oxide dispersion and aggregation exhibit different relaxivities. In vivo these processes happen simultaneously, making quantification very complex, if not impossible.
Collapse
Affiliation(s)
- A Ruggiero
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Roeder E, Henrionnet C, Goebel JC, Gambier N, Beuf O, Grenier D, Chen B, Vuissoz PA, Gillet P, Pinzano A. Dose-response of superparamagnetic iron oxide labeling on mesenchymal stem cells chondrogenic differentiation: a multi-scale in vitro study. PLoS One 2014; 9:e98451. [PMID: 24878844 PMCID: PMC4039474 DOI: 10.1371/journal.pone.0098451] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/03/2014] [Indexed: 11/18/2022] Open
Abstract
Aim The aim of this work was the development of successful cell therapy techniques for cartilage engineering. This will depend on the ability to monitor non-invasively transplanted cells, especially mesenchymal stem cells (MSCs) that are promising candidates to regenerate damaged tissues. Methods MSCs were labeled with superparamagnetic iron oxide particles (SPIO). We examined the effects of long-term labeling, possible toxicological consequences and the possible influence of progressive concentrations of SPIO on chondrogenic differentiation capacity. Results No influence of various SPIO concentrations was noted on human bone marow MSC viability or proliferation. We demonstrated long-term (4 weeks) in vitro retention of SPIO by human bone marrow MSCs seeded in collagenic sponges under TGF-β1 chondrogenic conditions, detectable by Magnetic Resonance Imaging (MRI) and histology. Chondrogenic differentiation was demonstrated by molecular and histological analysis of labeled and unlabeled cells. Chondrogenic gene expression (COL2A2, ACAN, SOX9, COL10, COMP) was significantly altered in a dose-dependent manner in labeled cells, as were GAG and type II collagen staining. As expected, SPIO induced a dramatic decrease of MRI T2 values of sponges at 7T and 3T, even at low concentrations. Conclusions This study clearly demonstrates (1) long-term in vitro MSC traceability using SPIO and MRI and (2) a deleterious dose-dependence of SPIO on TGF-β1 driven chondrogenesis in collagen sponges. Low concentrations (12.5–25 µg Fe/mL) seem the best compromise to optimize both chondrogenesis and MRI labeling.
Collapse
Affiliation(s)
- Emilie Roeder
- Ingénierie Moléculaire et Physiopathologie Articulaire – Unité Mixte de Recherches 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Vandoeuvre Lès Nancy, France
| | - Christel Henrionnet
- Ingénierie Moléculaire et Physiopathologie Articulaire – Unité Mixte de Recherches 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Vandoeuvre Lès Nancy, France
| | - Jean Christophe Goebel
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Centre National de la Recherche Scientifique 5220, Institut National de la Santé et de la Recherche Médicale U1044, Université de Lyon, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Nicolas Gambier
- Ingénierie Moléculaire et Physiopathologie Articulaire – Unité Mixte de Recherches 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Vandoeuvre Lès Nancy, France
| | - Olivier Beuf
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Centre National de la Recherche Scientifique 5220, Institut National de la Santé et de la Recherche Médicale U1044, Université de Lyon, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Denis Grenier
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé, Centre National de la Recherche Scientifique 5220, Institut National de la Santé et de la Recherche Médicale U1044, Université de Lyon, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Bailiang Chen
- Imagerie Adaptative Diagnostique Interventionelle, Institut National de la Santé et de la Recherche Médicale U947, Vandoeuvre-Lès-Nancy, France
| | - Pierre-André Vuissoz
- Imagerie Adaptative Diagnostique Interventionelle, Institut National de la Santé et de la Recherche Médicale U947, Vandoeuvre-Lès-Nancy, France
| | - Pierre Gillet
- Ingénierie Moléculaire et Physiopathologie Articulaire – Unité Mixte de Recherches 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Vandoeuvre Lès Nancy, France
- * E-mail:
| | - Astrid Pinzano
- Ingénierie Moléculaire et Physiopathologie Articulaire – Unité Mixte de Recherches 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Vandoeuvre Lès Nancy, France
| |
Collapse
|
19
|
Jensen EC. Technical review, types of imaging, part 4--magnetic resonance imaging. Anat Rec (Hoboken) 2014; 297:973-8. [PMID: 24753495 DOI: 10.1002/ar.22927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/06/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Ellen C Jensen
- 35 Southern Cross Road Kohimarama Auckland, 1071, New Zealand
| |
Collapse
|
20
|
Kolosnjaj-Tabi J, Wilhelm C, Clément O, Gazeau F. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnology 2013; 11 Suppl 1:S7. [PMID: 24564857 PMCID: PMC4029272 DOI: 10.1186/1477-3155-11-s1-s7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.
Collapse
|
21
|
Markides H, Kehoe O, Morris RH, El Haj AJ. Whole body tracking of superparamagnetic iron oxide nanoparticle-labelled cells--a rheumatoid arthritis mouse model. Stem Cell Res Ther 2013; 4:126. [PMID: 24406201 PMCID: PMC3854718 DOI: 10.1186/scrt337] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/11/2013] [Indexed: 12/29/2022] Open
Abstract
Introduction The application of mesenchymal stem cells (MSCs) in treating rheumatoid arthritis (RA) has been made possible by the immunosuppressive and differentiation abilities of these cells. A non-invasive means of assessing cell integration and bio-distribution is fundamental in evaluating the risks and success of this therapy, thereby enabling clinical translation. This paper defines the use of superparamagnetic iron oxide nanoparticles (SPIONs) in conjunction with magnetic resonance imaging (MRI) to image and track MSCs in vivo within a murine model of RA. Methods Murine MSCs (mMSCs) were isolated, expanded and labelled with SiMAG, a commercially available particle. In vitro MRI visibility thresholds were investigated by labelling mMSCs with SiMAG with concentrations ranging from 0 to 10 μg/ml and resuspending varying cell doses (103 to 5 × 105 cells) in 2 mg/ml collagen prior to MR-imaging. Similarly, in vivo detection thresholds were identified by implanting 3 × 105 mMSCs labelled with 0 to 10 μg/ml SiMAG within the synovial cavity of a mouse and MR-imaging. Upon RA induction, 300,000 mMSCs labelled with SiMAG (10 μg/ml) were implanted via intra-articular injection and joint swelling monitored as an indication of RA development over seven days. Furthermore, the effect of SiMAG on cell viability, proliferation and differentiation was investigated. Results A minimum particle concentration of 1 μg/ml (300,000 cells) and cell dose of 100,000 cells (5 and 10 μg/ml) were identified as the in vitro MRI detection threshold. Cell viability, proliferation and differentiation capabilities were not affected, with labelled populations undergoing successful differentiation down osteogenic and adipogenic lineages. A significant decrease (P < 0.01) in joint swelling was measured in groups containing SiMAG-labelled and unlabelled mMSCs implying that the presence of SPIONs does not affect the immunomodulating properties of the cells. In vivo MRI scans demonstrated good contrast and the identification of SiMAG-labelled populations within the synovial joint up to 7 days post implantation. This was further confirmed using histological analysis. Conclusions We have been able to monitor and track the migration of stem cell populations within the rheumatic joint in a non-invasive manner. This manuscript goes further to highlight the key characteristics (biocompatible and the ability to create significant contrast at realistic doses within a clinical relevant system) demonstrated by SiMAG that should be incorporated into the design of a new clinically approved tracking agent.
Collapse
|
22
|
Kotecha M, Klatt D, Magin RL. Monitoring cartilage tissue engineering using magnetic resonance spectroscopy, imaging, and elastography. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:470-84. [PMID: 23574498 DOI: 10.1089/ten.teb.2012.0755] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A key technical challenge in cartilage tissue engineering is the development of a noninvasive method for monitoring the composition, structure, and function of the tissue at different growth stages. Due to its noninvasive, three-dimensional imaging capabilities and the breadth of available contrast mechanisms, magnetic resonance imaging (MRI) techniques can be expected to play a leading role in assessing engineered cartilage. In this review, we describe the new MR-based tools (spectroscopy, imaging, and elastography) that can provide quantitative biomarkers for cartilage tissue development both in vitro and in vivo. Magnetic resonance spectroscopy can identify the changing molecular structure and alternations in the conformation of major macromolecules (collagen and proteoglycans) using parameters such as chemical shift, relaxation rates, and magnetic spin couplings. MRI provides high-resolution images whose contrast reflects developing tissue microstructure and porosity through changes in local relaxation times and the apparent diffusion coefficient. Magnetic resonance elastography uses low-frequency mechanical vibrations in conjunction with MRI to measure soft tissue mechanical properties (shear modulus and viscosity). When combined, these three techniques provide a noninvasive, multiscale window for characterizing cartilage tissue growth at all stages of tissue development, from the initial cell seeding of scaffolds to the development of the extracellular matrix during construct incubation, and finally, to the postimplantation assessment of tissue integration in animals and patients.
Collapse
Affiliation(s)
- Mrignayani Kotecha
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois
| | | | | |
Collapse
|
23
|
Bernsen MR, Ruggiero A, van Straten M, Kotek G, Haeck JC, Wielopolski PA, Krestin GP. Computed tomography and magnetic resonance imaging. Recent Results Cancer Res 2013. [PMID: 23179877 DOI: 10.1007/978-3-642-10853-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.
Collapse
Affiliation(s)
- Monique R Bernsen
- Department of Radiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chou CH, Lee HS, Siow TY, Lin MH, Kumar A, Chang YC, Chang C, Huang GS. Temporal MRI characterization of gelatin/hyaluronic acid/chondroitin sulfate sponge for cartilage tissue engineering. J Biomed Mater Res A 2012; 101:2174-80. [DOI: 10.1002/jbm.a.34522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/22/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
|
25
|
Ren J, Zhang Z, Wang F, Yang Y, Liu Y, Wei G, Yang A, Zhang R, Huan Y, Cui Y, Larson AC. MRI of prostate stem cell antigen expression in prostate tumors. Nanomedicine (Lond) 2012; 7:691-703. [PMID: 22630152 DOI: 10.2217/nnm.11.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The prostate stem cell antigen (PSCA) is broadly overexpressed on the surface of prostate cancer cells. MATERIALS & METHODS Anti-human PSCA monoclonal antibody (mAb 7F5) was bound to Fe(3)O(4)/Au (GoldMag) nanoparticles to serve as a PSCA-specific molecular MRI probe (mAb 7F5@GoldMag) for in vivo detection of prostate cancer cells. First, the efficacy of the antibody immobilization for the binding was assessed. Next, PC-3 (human prostate cancer cell line with PSCA overexpression) tumor-bearing mice were injected with mAb 7F5@GoldMag for MRI measurements while using mouse anti-human IgG bound to the particles (IgG@GoldMag) to serve as a nonspecific control. MRI examinations were conducted before and after injection of these probes at 6, 12 and 24 h; T2-weighted signal intensity within the tumors was measured. RESULTS Targeted binding of the mAb 7F5@GoldMag probe to PC-3 tumors was verified with optical images and MRI; selective binding was not observed for the nonspecific IgG@GoldMag probe. CONCLUSION MRI measurements suggest the promising efficacy of this new approach for targeted molecular imaging of prostate tumors.
Collapse
Affiliation(s)
- Jing Ren
- Department of Radiology, Fourth Military Medical University, Xian 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Richards JMJ, Shaw CA, Lang NN, Williams MC, Semple SIK, MacGillivray TJ, Gray C, Crawford JH, Alam SR, Atkinson APM, Forrest EK, Bienek C, Mills NL, Burdess A, Dhaliwal K, Simpson AJ, Wallace WA, Hill AT, Roddie PH, McKillop G, Connolly TA, Feuerstein GZ, Barclay GR, Turner ML, Newby DE. In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans. Circ Cardiovasc Imaging 2012; 5:509-17. [PMID: 22787016 DOI: 10.1161/circimaging.112.972596] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cell therapy is an emerging and exciting novel treatment option for cardiovascular disease that relies on the delivery of functional cells to their target site. Monitoring and tracking cells to ensure tissue delivery and engraftment is a critical step in establishing clinical and therapeutic efficacy. The study aims were (1) to develop a Good Manufacturing Practice-compliant method of labeling competent peripheral blood mononuclear cells with superparamagnetic particles of iron oxide (SPIO), and (2) to evaluate its potential for magnetic resonance cell tracking in humans. METHODS AND RESULTS Peripheral blood mononuclear cells 1-5 × 10(9) were labeled with SPIO. SPIO-labeled cells had similar in vitro viability, migratory capacity, and pattern of cytokine release to unlabeled cells. After intramuscular administration, up to 10(8) SPIO-labeled cells were readily identifiable in vivo for at least 7 days using magnetic resonance imaging scanning. Using a phased-dosing study, we demonstrated that systemic delivery of up to 10(9) SPIO-labeled cells in humans is safe, and cells accumulating in the reticuloendothelial system were detectable on clinical magnetic resonance imaging. In a healthy volunteer model, a focus of cutaneous inflammation was induced in the thigh by intradermal injection of tuberculin. Intravenously delivered SPIO-labeled cells tracked to the inflamed skin and were detectable on magnetic resonance imaging. Prussian blue staining of skin biopsies confirmed iron-laden cells in the inflamed skin. CONCLUSIONS Human peripheral blood mononuclear cells can be labeled with SPIO without affecting their viability or function. SPIO labeling for magnetic resonance cell tracking is a safe and feasible technique that has major potential for a range of cardiovascular applications including monitoring of cell therapies and tracking of inflammatory cells. Clinical Trial Registration- URL: http://www.clinicaltrials.gov; Unique identifier: NCT00972946, NCT01169935.
Collapse
Affiliation(s)
- Jennifer M J Richards
- Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom .
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ren J, Wang F, Wei G, Yang Y, Liu Y, Wei M, Huan Y, Larson AC, Zhang Z. MRl of prostate cancer antigen expression for diagnosis and immunotherapy. PLoS One 2012; 7:e38350. [PMID: 22761679 PMCID: PMC3384648 DOI: 10.1371/journal.pone.0038350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/03/2012] [Indexed: 12/03/2022] Open
Abstract
Background Tumor antigen (TA)–targeted monoclonal antibody (mAb) immunotherapy can be effective for the treatment of a broad range of cancer etiologies; however, these approaches have demonstrated variable clinical efficacy for the treatment of patients with prostate cancer (PCa). An obstacle currently impeding translational progress has been the inability to quantify the mAb dose that reaches the tumor site and binds to the targeted TAs. The coupling of mAb to nanoparticle-based magnetic resonance imaging (MRI) probes should permit in vivo measurement of patient-specific biodistributions; these measurements could facilitate future development of novel dosimetry paradigms wherein mAb dose is titrated to optimize outcomes for individual patients. Methods The prostate stem cell antigen (PSCA) is broadly expressed on the surface of prostate cancer (PCa) cells. Anti-human PSCA monoclonal antibodies (mAb 7F5) were bound to Au/Fe3O4 (GoldMag) nanoparticles (mAb 7F5@GoldMag) to serve as PSCA-specific theragnostic MRI probe permitting visualization of mAb biodistribution in vivo. First, the antibody immobilization efficiency of the GoldMag particles and the efficacy for PSCA-specific binding was assessed. Next, PC-3 (prostate cancer with PSCA over-expression) and SMMC-7721 (hepatoma cells without PSCA expression) tumor-bearing mice were injected with mAb 7F5@GoldMag for MRI. MRI probe biodistributions were assessed at increasing time intervals post-infusion; therapy response was evaluated with serial tumor volume measurements. Results Targeted binding of the mAb 7F5@GoldMag probes to PC-3 cells was verified using optical images and MRI; selective binding was not observed for SMMC-7721 tumors. The immunotherapeutic efficacy of the mAb 7F5@GoldMag in PC-3 tumor-bearing mice was verified with significant inhibition of tumor growth compared to untreated control animals. Conclusion Our promising results suggest the feasibility of using mAb 7F5@GoldMag probes as a novel paradigm for the detection and immunotherapeutic treatment of PCa. We optimistically anticipate that the approaches have the potential to be translated into the clinical settings.
Collapse
MESH Headings
- Animals
- Antibodies, Immobilized
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Ferric Compounds/chemistry
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gold/chemistry
- Humans
- Immunotherapy
- Magnetic Resonance Imaging
- Male
- Metal Nanoparticles
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Imaging
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/therapy
- Tissue Distribution
Collapse
Affiliation(s)
- Jing Ren
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Fang Wang
- Department of Microbiology, Fourth Military Medical University, Xian, China
| | - Guangquan Wei
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Yong Yang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Ying Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Mengqi Wei
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Yi Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xian, China
- * E-mail: (YH); (ZZ)
| | - Andrew C. Larson
- Department of Radiology, Northwestern University. Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, United States of America
| | - Zhuoli Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xian, China
- Department of Radiology, Northwestern University. Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, United States of America
- * E-mail: (YH); (ZZ)
| |
Collapse
|
28
|
Wimpenny I, Markides H, El Haj AJ. Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Res Ther 2012; 3:13. [PMID: 22520594 PMCID: PMC3392773 DOI: 10.1186/scrt104] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cells have tremendous applications in the field of regenerative medicine and tissue engineering. These are pioneering fields that aim to create new treatments for disease that currently have limited therapies or cures. A particularly popular avenue of research has been the regeneration of bone and cartilage to combat various orthopaedic diseases. Magnetic nanoparticles (MNPs) have been applied to aid the development and translation of these therapies from research to the clinic. This review highlights contemporary research for the applications of iron-oxide-based MNPs for the therapeutic implementation of stem cells in orthopaedics. These MNPs comprise of an iron oxide core, coated with a choice of biological polymers that can facilitate the uptake of MNPs by cells through improving endocytic activity. The combined use of these oxides and the biological polymer coatings meet biological requirements, effectively encouraging the use of MNPs in regenerative medicine. The association of MNPs with stem cells can be achieved via the process of endocytosis resulting in the internalisation of these particles or the attachment to cell surface receptors. This allows for the investigation of migratory patterns through various tracking studies, the targeting of particle-labelled cells to desired locations via the application of an external magnetic field and, finally, for activation stem cells to initiate various cellular responses to induce the differentiation. Characterisation of cell localisation and associated tissue regeneration can therefore be enhanced, particularly for in vivo applications. MNPs have been shown to have the potential to stimulate differentiation of stem cells for orthopaedic applications, without limiting proliferation. However, careful consideration of the use of active agents associated with the MNP is suggested, for differentiation towards specific lineages. This review aims to broaden the knowledge of current applications, paving the way to translate the in vitro and in vivo work into further orthopaedic clinical studies.
Collapse
Affiliation(s)
- Ian Wimpenny
- Institute of Science and Technology in Medicine, Keele University, The Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | | | | |
Collapse
|
29
|
Wang X, Wei F, Liu A, Wang L, Wang JC, Ren L, Liu W, Tu Q, Li L, Wang J. Cancer stem cell labeling using poly(L-lysine)-modified iron oxide nanoparticles. Biomaterials 2012; 33:3719-32. [PMID: 22342710 DOI: 10.1016/j.biomaterials.2012.01.058] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/31/2012] [Indexed: 01/20/2023]
Abstract
Cell labeling using magnetic nanoparticles is an increasingly used approach in noninvasive behavior tracking, in vitro separation of cancer stem cells (CSCs), and CSC-based research in cancer therapy. However, the impact of magnetic labeling on the biological properties of targeted CSCs, such as self-renewal, proliferation, multi-differentiation, cell cycle, and apoptosis, remains elusive. The present study sought to explore the potential effects on biological behavior when CSCs are labeled with superparamagnetic iron oxide (SPIO) nanoparticles in vitro. The glioblastoma CSCs derived from U251 glioblastoma multiforme were labeled with poly(L-lysine) (PLL)-modified γ-Fe(2)O(3) nanoparticles. The iron uptake of glioblastoma CSCs was confirmed through prussian blue staining, and was further quantified using atomic absorption spectrometry. The cellular viability of the SPIO-labeled glioblastoma CSCs was assessed using a fluorescein diacetate and propidium iodide double-staining protocol. The expressed specific markers and multi-differentiation of SPIO-labeled glioblastoma CSCs were comparatively assessed by immunocytochemistry and semi-quantitative RT-PCR. The effects of magnetic labeling on cell cycle and apoptosis rate of glioblastoma CSCs and their differentiated progenies were assayed using a flow cytometer. The results demonstrated that the cell viability and proliferation capacity of glioblastoma CSCs and their differentiated progenies were not affected by SPIO labeling compared with their unlabeled counterparts. Moreover, the magnetically labeled CSCs displayed an intact multi-differentiation potential, and could be sub-cultured to form new tumor spheres, which indicates the CSCs capacity for self-renewal. In addition, cell cycle distribution, apoptosis rate of the magnetically labeled glioblastoma CSCs, and their differentiated progenies were not impaired. Therefore, the SPIO-labeled CSCs could be a feasible approach in conducting further functional analysis of targeted CSCs.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Recent progress in cartilage tissue engineering. Curr Opin Biotechnol 2011; 22:734-40. [DOI: 10.1016/j.copbio.2011.04.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/01/2011] [Indexed: 11/21/2022]
|
31
|
Cell tracking in cardiac repair: what to image and how to image. Eur Radiol 2011; 22:189-204. [PMID: 21735069 PMCID: PMC3229694 DOI: 10.1007/s00330-011-2190-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/21/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023]
Abstract
Stem cell therapies hold the great promise and interest for cardiac regeneration among scientists, clinicians and patients. However, advancement and distillation of a standard treatment regimen are not yet finalised. Into this breach step recent developments in the imaging biosciences. Thus far, these technical and protocol refinements have played a critical role not only in the evaluation of the recovery of cardiac function but also in providing important insights into the mechanism of action of stem cells. Molecular imaging, in its many forms, has rapidly become a necessary tool for the validation and optimisation of stem cell engrafting strategies in preclinical studies. These include a suite of radionuclide, magnetic resonance and optical imaging strategies to evaluate non-invasively the fate of transplanted cells. In this review, we highlight the state-of-the-art of the various imaging techniques for cardiac stem cell presenting the strengths and limitations of each approach, with a particular focus on clinical applicability.
Collapse
|
32
|
Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci 2011; 2:118-40. [PMID: 22778862 PMCID: PMC3369738 DOI: 10.1021/cn100100e] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/08/2010] [Indexed: 12/15/2022] Open
Abstract
Smart superparamagnetic iron oxide nanoparticles (SPIONs) are the most promising candidate for theragnosis (i.e., diagnosis and treatment) of multiple sclerosis. A deep understanding of the dynamics of the in vivo neuropathology of multiple sclerosis can be achieved by improving the efficiency of various medical techniques (e.g., positron emission tomography and magnetic resonance imaging) using multimodal SPIONs. In this Review, recent advances and challenges in the development of smart SPIONs for theragnostic applications are comprehensively described. In addition, critical outlines of emerging developments are provided from the points of view of both clinicians and nanotechnologists.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- National Cell Bank, Pasteur Institute of Iran, Tehran, 11365-8639, Iran.
| | | | | | | |
Collapse
|
33
|
Liu G, Xia C, Wang Z, Lv F, Gao F, Gong Q, Song B, Ai H, Gu Z. Magnetic resonance imaging probes for labeling of chondrocyte cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:601-6. [PMID: 21279674 DOI: 10.1007/s10856-010-4227-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 12/23/2010] [Indexed: 02/08/2023]
Abstract
Recent progress in cell therapy research has raised the need for non-invasive monitoring of transplanted cells. Magnetic resonance imaging (MRI) of superparamagnetic iron oxide (SPIO) labeled cells have been widely used for high resolution monitoring of the biodistribution of cells after transplantation. Here we report that self-assembly of amphiphilic polyethylenimine (PEI)/SPIO nanocomposites can lead to the formation of ultrasensitive MRI probes, which can be used to label chondrocyte cells with good biocompatibility. The labeled cells display strong signal contrast compared to unlabeled ones in a clinical MRI scanner. This probe may be useful for noninvasive MR tracking of implanted cells for tissue regeneration.
Collapse
Affiliation(s)
- Gang Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chondrocyte gene expression is affected by very small iron oxide particles-labeling in long-term in vitro MRI tracking. J Magn Reson Imaging 2011; 33:724-30. [DOI: 10.1002/jmri.22470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
35
|
van Buul GM, Kotek G, Wielopolski PA, Farrell E, Bos PK, Weinans H, Grohnert AU, Jahr H, Verhaar JAN, Krestin GP, van Osch GJVM, Bernsen MR. Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides. PLoS One 2011; 6:e17001. [PMID: 21373640 PMCID: PMC3044153 DOI: 10.1371/journal.pone.0017001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/18/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO labeled cells. METHODOLOGY/PRINICIPAL FINDINGS Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled cells seeded in cartilage defects using MR-based relaxometry. CONCLUSIONS SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.
Collapse
Affiliation(s)
- Gerben M. van Buul
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Orthopaedics, Erasmus MC, Rotterdam, The Netherlands
| | - Gyula Kotek
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Eric Farrell
- Department of Orthopaedics, Erasmus MC, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, Rotterdam, The Netherlands
| | - P. Koen Bos
- Department of Orthopaedics, Erasmus MC, Rotterdam, The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics, Erasmus MC, Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Anja U. Grohnert
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Holger Jahr
- Department of Orthopaedics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Gerjo J. V. M. van Osch
- Department of Orthopaedics, Erasmus MC, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, Rotterdam, The Netherlands
| | - Monique R. Bernsen
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Lin WY, Lin FH, Sadhasivam S, Savitha S. Antioxidant effects of betulin on porcine chondrocyte behavior in gelatin/C6S/C4S/HA modified tricopolymer scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
van Buul GM, Farrell E, Kops N, van Tiel ST, Bos PK, Weinans H, Krestin GP, van Osch GJVM, Bernsen MR. Ferumoxides-protamine sulfate is more effective than ferucarbotran for cell labeling: implications for clinically applicable cell tracking using MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 4:230-6. [PMID: 19839030 DOI: 10.1002/cmmi.289] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of superparamagnetic iron oxide (SPIO) for labeling cells holds great promise for clinically applicable cell tracking using magnetic resonance imaging. For clinical application, an effectively and specifically labeled cell preparation is highly desired (i.e. a large amount of intracellular iron and a negligible amount of extracellular iron). In this study we performed a direct comparison of two SPIO labeling strategies that have both been reported as efficient and clinically translatable approaches. These approaches are cell labeling using ferumoxides-protamine complexes or ferucarabotran particles. Cell labeling was performed on primary human bone marrow stromal cells (hBMSCs) and chondrocytes. For both cell types ferumoxides-protamine resulted in a higher percentage of labeled cells, a higher total iron load, a larger amount of intracellular iron and a lower amount of extracellular iron aggregates, compared with ferucarbotran. Consequently, hBMSC and chondrocyte labeling with ferumoxides-protamine is more effective and results in more specific cell labeling than ferucarbotran.
Collapse
Affiliation(s)
- G M van Buul
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ramaswamy S, Greco JB, Uluer MC, Zhang Z, Zhang Z, Fishbein KW, Spencer RG. Magnetic resonance imaging of chondrocytes labeled with superparamagnetic iron oxide nanoparticles in tissue-engineered cartilage. Tissue Eng Part A 2010; 15:3899-910. [PMID: 19788362 DOI: 10.1089/ten.tea.2008.0677] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The distribution of cells within tissue-engineered constructs is difficult to study through nondestructive means, such as would be required after implantation. However, cell labeling with iron-containing particles may prove to be a useful approach to this problem, because regions containing such labeled cells have been shown to be readily detectable using magnetic resonance imaging (MRI). In this study, we used the Food and Drug Administration-approved superparamagnetic iron oxide (SPIO) contrast agent Feridex in combination with transfection agents to label chondrocytes and visualize them with MRI in two different tissue-engineered cartilage constructs. Correspondence between labeled cell spatial location as determined using MRI and histology was established. The SPIO-labeling process was found not to affect the phenotype or viability of the chondrocytes or the production of major cartilage matrix constituents. We believe that this method of visualizing and tracking chondrocytes may be useful in the further development of tissue engineered cartilage therapeutics.
Collapse
Affiliation(s)
- Sharan Ramaswamy
- Magnetic Resonance Imaging and Spectroscopy Section, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
van Osch GJVM, Brittberg M, Dennis JE, Bastiaansen-Jenniskens YM, Erben RG, Konttinen YT, Luyten FP. Cartilage repair: past and future--lessons for regenerative medicine. J Cell Mol Med 2009; 13:792-810. [PMID: 19453519 PMCID: PMC3823400 DOI: 10.1111/j.1582-4934.2009.00789.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since the first cell therapeutic study to repair articular cartilage defects in the knee in 1994, several clinical studies have been reported. An overview of the results of clinical studies did not conclusively show improvement over conventional methods, mainly because few studies reach level I of evidence for effects on middle or long term. However, these explorative trials have provided valuable information about study design, mechanisms of repair and clinical outcome and have revealed that much is still unknown and further improvements are required. Furthermore, cellular and molecular studies using new technologies such as cell tracking, gene arrays and proteomics have provided more insight in the cell biology and mechanisms of joint surface regeneration. Besides articular cartilage, cartilage of other anatomical locations as well as progenitor cells are now considered as alternative cell sources. Growth Factor research has revealed some information on optimal conditions to support cartilage repair. Thus, there is hope for improvement. In order to obtain more robust and reproducible results, more detailed information is needed on many aspects including the fate of the cells, choice of cell type and culture parameters. As for the clinical aspects, it becomes clear that careful selection of patient groups is an important input parameter that should be optimized for each application. In addition, the study outcome parameters should be improved. Although reduced pain and improved function are, from the patient's perspective, the most important outcomes, there is a need for more structure/tissue-related outcome measures. Ideally, criteria and/or markers to identify patients at risk and responders to treatment are the ultimate goal for these more sophisticated regenerative approaches in joint surface repair in particular, and regenerative medicine in general.
Collapse
Affiliation(s)
- Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|