1
|
Chen Y, Zhang L, Shi X, Han J, Chen J, Zhang X, Xie D, Li Z, Niu X, Chen L, Yang C, Sun X, Zhou T, Su P, Li N, Greenblatt MB, Ke R, Huang J, Chen Z, Xu R. Characterization of the Nucleus Pulposus Progenitor Cells via Spatial Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303752. [PMID: 38311573 PMCID: PMC11095158 DOI: 10.1002/advs.202303752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Loss of refreshment in nucleus pulposus (NP) cellularity leads to intervertebral disc (IVD) degeneration. Nevertheless, the cellular sequence of NP cell differentiation remains unclear, although an increasing body of literature has identified markers of NP progenitor cells (NPPCs). Notably, due to their fragility, the physical enrichment of NP-derived cells has limited conventional transcriptomic approaches in multiple studies. To overcome this limitation, a spatially resolved transcriptional atlas of the mouse IVD is generated via the 10x Genomics Visium platform dividing NP spots into two clusters. Based on this, most reported NPPC-markers, including Cathepsin K (Ctsk), are rare and predominantly located within the NP-outer subset. Cell lineage tracing further evidence that a small number of Ctsk-expressing cells generate the entire adult NP tissue. In contrast, Tie2, which has long suggested labeling NPPCs, is actually neither expressed in NP subsets nor labels NPPCs and their descendants in mouse models; consistent with this, an in situ sequencing (ISS) analysis validated the absence of Tie2 in NP tissue. Similarly, no Tie2-cre-mediated labeling of NPPCs is observed in an IVD degenerative mouse model. Altogether, in this study, the first spatial transcriptomic map of the IVD is established, thereby providing a public resource for bone biology.
Collapse
Affiliation(s)
- Yu Chen
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Long Zhang
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Xueqing Shi
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Jie Han
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Jingyu Chen
- Gene Denovo Biotechnology CoGuangzhou510006China
| | - Xinya Zhang
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
| | - Danlin Xie
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
- School of Life SciencesWestlake UniversityHangzhou310030China
| | - Zan Li
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Xing Niu
- China Medical UniversityShenyangLiaoning110122China
| | - Lijie Chen
- China Medical UniversityShenyangLiaoning110122China
| | - Chaoyong Yang
- Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiujie Sun
- Department of Obstetrics and GynecologySchool of MedicineXiang'an Hospital of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Taifeng Zhou
- Department of Spine SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Peiqiang Su
- Department of Spine SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Na Li
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNY10065USA
- Research DivisionHospital for Special SurgeryNew YorkNY10065USA
| | - Rongqin Ke
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
| | - Jianming Huang
- Department of OrthopedicsChengong Hospital (the 73th Group Military Hospital of People's Liberation Army) affiliated to Xiamen UniversityXiamen361000China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityNew YorkNY11439USA
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| |
Collapse
|
2
|
Xia Y, Wu Y, Gong Y, Yue C, Tao L, Xin T, Shen C, Zhu Y, Shen M, Shen J. Brachyury promotes extracellular matrix synthesis through transcriptional regulation of Smad3 in nucleus pulposus. Am J Physiol Cell Physiol 2024; 326:C1384-C1397. [PMID: 38690917 PMCID: PMC11371320 DOI: 10.1152/ajpcell.00475.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 05/03/2024]
Abstract
Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.
Collapse
Affiliation(s)
- Yanzhang Xia
- Department of Orthopedics Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Yinghui Wu
- Department of Orthopedics Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Yuhao Gong
- Department of Orthopedics Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Caichun Yue
- Department of Orthopedics Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Linfeng Tao
- Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Tianwen Xin
- Department of Orthopedics Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou University, Suzhou, People's Republic of China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Minghong Shen
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Jun Shen
- Department of Orthopedics Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Crump KB, Alminnawi A, Bermudez‐Lekerika P, Compte R, Gualdi F, McSweeney T, Muñoz‐Moya E, Nüesch A, Geris L, Dudli S, Karppinen J, Noailly J, Le Maitre C, Gantenbein B. Cartilaginous endplates: A comprehensive review on a neglected structure in intervertebral disc research. JOR Spine 2023; 6:e1294. [PMID: 38156054 PMCID: PMC10751983 DOI: 10.1002/jsp2.1294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 12/30/2023] Open
Abstract
The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.
Collapse
Affiliation(s)
- Katherine B. Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Ahmad Alminnawi
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Paola Bermudez‐Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Roger Compte
- Twin Research & Genetic EpidemiologySt. Thomas' Hospital, King's College LondonLondonUK
| | - Francesco Gualdi
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)BarcelonaSpain
| | - Terence McSweeney
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
| | - Estefano Muñoz‐Moya
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Andrea Nüesch
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Liesbet Geris
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Stefan Dudli
- Center of Experimental RheumatologyDepartment of Rheumatology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
| | - Jaro Karppinen
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
- Finnish Institute of Occupational HealthOuluFinland
- Rehabilitation Services of South Karelia Social and Health Care DistrictLappeenrantaFinland
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Christine Le Maitre
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
4
|
Molinos M, Fiordalisi MF, Caldeira J, Almeida CR, Barbosa MA, Gonçalves RM. Alterations of bovine nucleus pulposus cells with aging. Aging Cell 2023; 22:e13873. [PMID: 37254638 PMCID: PMC10410011 DOI: 10.1111/acel.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.
Collapse
Affiliation(s)
- Maria Molinos
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Morena F. Fiordalisi
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Joana Caldeira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
| | - Catarina R. Almeida
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- iBiMED – Institute of Biomedicine, Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Mário A. Barbosa
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Raquel M. Gonçalves
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
5
|
Hagizawa H, Koyamatsu S, Okada S, Kaito T, Tsumaki N. Chondrocyte-like cells in nucleus pulposus and articular chondrocytes have similar transcriptomic profiles and are paracrine-regulated by hedgehog from notochordal cells and subchondral bone. Front Cell Dev Biol 2023; 11:1151947. [PMID: 37255604 PMCID: PMC10225674 DOI: 10.3389/fcell.2023.1151947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Objective: The nucleus pulposus (NP) comprises notochordal NP cells (NCs) and chondrocyte-like NP cells (CLCs). Although morphological similarities between CLCs and chondrocytes have been reported, interactions between CLCs and NCs remain unclear. In this study, we aimed to clarify regulatory mechanisms of cells in the NP and chondrocytes. Design: We performed single-cell RNA sequencing (scRNA-seq) analysis of the articular cartilage (AC) and NP of three-year-old cynomolgus monkeys in which NCs were present. We then performed immunohistochemical analysis of NP and distal femur. We added sonic hedgehog (SHH) to primary chondrocyte culture. Results: The scRNA-seq analysis revealed that CLCs and some articular chondrocytes had similar gene expression profiles, particularly related to GLI1, the nuclear mediator of the hedgehog pathway. In the NP, cell-cell interaction analysis revealed SHH expression in NCs, resulting in hedgehog signaling to CLCs. In contrast, no hedgehog ligands were expressed by chondrocytes in AC samples. Immunohistochemical analysis of the distal end of femur indicated that SHH and Indian hedgehog (IHH) were expressed around the subchondral bone that was excluded from our scRNA-seq sample. scRNA-seq data analysis and treatment of primary chondrocytes with SHH revealed that hedgehog proteins mediated an increase in hypoxia-inducible factor 1-alpha (HIF-1α) levels. Conclusion: CLCs and some articular chondrocytes have similar transcriptional profiles, regulated by paracrine hedgehog proteins secreted from NCs in the NP and from the subchondral bone in the AC to promote the HIF-1α pathway.
Collapse
Affiliation(s)
- Hiroki Hagizawa
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Saeko Koyamatsu
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Clinical Application, Center for IPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Peng B, Du L, Zhang T, Chen J, Xu B. Research progress in decellularized extracellular matrix hydrogels for intervertebral disc degeneration. Biomater Sci 2023; 11:1981-1993. [PMID: 36734099 DOI: 10.1039/d2bm01862d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As one of the most common clinical disorders, low back pain (LBP) influences patient quality of life and causes substantial social and economic burdens. Many factors can result in LBP, the most common of which is intervertebral disc degeneration (IDD). The progression of IDD cannot be alleviated by conservative or surgical treatments, and gene therapy, growth factor therapy, and cell therapy have their own limitations. Recently, research on the use of hydrogel biomaterials for the treatment of IDD has garnered great interest, and satisfactory treatment results have been achieved. This article describes the classification of hydrogels, the methods of decellularized extracellular matrix (dECM) production and the various types of gel formation. The current research on dECM hydrogels for the treatment of IDD is described in detail in this article. First, an overview of the material sources, decellularization methods, and gel formation methods is given. The focus is on research performed over the last three years, which mainly consists of bovine and porcine NP tissues, while for decellularization methods, combinations of several approaches are primarily used. dECM hydrogels have significantly improved mechanical properties after the polymers are cross-linked. The main effects of these gels include induction of stem cell differentiation to intervertebral disc (IVD) cells, good mechanical properties to restore IVD height after polymer cross-linking, and slow release of exosomes. Finally, the challenges and problems still faced by dECM hydrogels for the treatment of IDD are summarised, and potential solutions are proposed. This paper is the first to summarise the research on dECM hydrogels for the treatment of IDD and aims to provide a theoretical reference for subsequent studies.
Collapse
Affiliation(s)
- Bing Peng
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Lilong Du
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Tongxing Zhang
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Beizhengzhong Road, Hunan, 410399, China.
| | - Baoshan Xu
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| |
Collapse
|
7
|
Shi K, Liang C, Huang X, Wang S, Chen J, Cheng F, Wang C, Ying L, Pan Z, Zhang Y, Shu J, Yang B, Wang J, Xia K, Zhou X, Li H, Li F, Tao Y, Chen Q. Collagen Niches Affect Direct Transcriptional Conversion toward Human Nucleus Pulposus Cells via Actomyosin Contractility. Adv Healthc Mater 2023; 12:e2201824. [PMID: 36165230 DOI: 10.1002/adhm.202201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Indexed: 02/03/2023]
Abstract
Cellular niches play fundamental roles in regulating cellular behaviors. However, the effect of niches on direct converted cells remains unexplored. In the present study, the specific combination of transcription factors is first identified to directly acquire induced nucleus pulposus-like cells (iNPLCs). Next, tunable physical properties of collagen niches are fabricated based on various crosslinking degrees. Collagen niches significantly affect actomyosin cytoskeleton and then influence the maturation of iNPLCs. Using gain- and loss of function approaches, the appropriate physical states of collagen niches are found to significantly enhance the maturation of iNPLCs through actomyosin contractility. Moreover, in a rat model of degenerative disc diseases, iNPLCs with collagen niches are transplanted into the lesion to achieve significant improvements. As a result, overexpression of transcription factors in human dermal fibroblasts are efficiently converted into iNPLCs and the optimal collagen niches affect cellular cytoskeleton and then facilitate iNPLCs maturation toward human nucleus pulposus cells. These findings encourage more in-depth studies toward the interactions of niches and direct conversion, which would contribute to the development of direct conversion.
Collapse
Affiliation(s)
- Kesi Shi
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Shaoke Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Feng Cheng
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| | - Liwei Ying
- Department of Orthopedics Surgery, Taizhou Hospital Affiliated of Wenzhou Medical University, Linhai, Zhejiang Province, 317000, P. R. China
| | - Zhaoqi Pan
- The School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| | - Yuang Zhang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jiawei Shu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Biao Yang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Kaishun Xia
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Hao Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| |
Collapse
|
8
|
Sun H, Wang H, Zhang W, Mao H, Li B. Single-cell RNA sequencing reveals resident progenitor and vascularization-associated cell subpopulations in rat annulus fibrosus. J Orthop Translat 2022; 38:256-267. [PMID: 36568849 PMCID: PMC9758498 DOI: 10.1016/j.jot.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the main causes of low back pain is intervertebral disc degeneration (IDD). Annulus fibrosus (AF) is important for the integrity and functions of the intervertebral disc (IVD). However, the resident functional cell components such as progenitors and vascularization-associated cells in AF are yet to be fully identified. Purpose Identification of functional AF cell subpopulations including resident progenitors and vascularization-associated cells. Methods In this study, the single-cell RNA sequencing data of rat IVDs from a public database were analyzed using Seurat for cell clustering, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis, StemID for stem cell identification, Monocle and RNA velocity for pseudotime differentiation trajectory validation, single-cell regulatory network inference and clustering (SCENIC) for gene regulatory network (GRN) analysis, and CellChat for cell-cell interaction analysis. Immunostaining on normal and degenerated rat IVDs, as well as human AF, was used for validations. Results From the data analysis, seven AF cell clusters were identified, including two newly discovered functional clusters, the Grem1 + subpopulation and the Lum + subpopulation. The Grem1 + subpopulation had progenitor characteristics, while the Lum + subpopulation was associated with vascularization during IDD. The GRN analysis showed that Sox9 and Id1 were among the key regulators in the Grem1 + subpopulation, and Nr2f2 and Creb5 could be responsible for the vascularization function in the Lum + subpopulation. Cell-cell interaction analysis revealed highly regulated cellular communications between these cells, and multiple signaling networks including PDGF and MIF signaling pathways were involved in the interactions. Conclusions Our results revealed two new functional AF cell subpopulations, with stemness and vascularization induction potential, respectively. The Translational potential of this article These findings complement our knowledge about IVDs, especially the AF, and in return provide potential cell source and regulation targets for IDD treatment and tissue repair. The existence of the cell subpopulations was also validated in human AF, which strengthen the clinical relevance of the findings.
Collapse
Affiliation(s)
- Heng Sun
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China,Corresponding author.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China,Corresponding author. 178 Ganjiang Rd, Rm 201 Bldg 18, Soochow University (North Campus), Suzhou, Jiangsu, 215007, China.
| |
Collapse
|
9
|
Rohanifar M, Clayton SW, Easson GW, Patil DS, Lee F, Jing L, Barcellona MN, Speer JE, Stivers JJ, Tang SY, Setton LA. Single Cell RNA-Sequence Analyses Reveal Uniquely Expressed Genes and Heterogeneous Immune Cell Involvement in the Rat Model of Intervertebral Disc Degeneration. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:8244. [PMID: 36451894 PMCID: PMC9706593 DOI: 10.3390/app12168244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.
Collapse
Affiliation(s)
- Milad Rohanifar
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sade W. Clayton
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Garrett W.D. Easson
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepanjali S. Patil
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Frank Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Marcos N. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Julie E. Speer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jordan J. Stivers
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simon Y. Tang
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lori A. Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
11
|
Ma X, Zhang Z, Kang X, Deng C, Sun Y, Li Y, Huang D, Liu X. Defining matrix Gla protein expression in the Dunkin-Hartley guinea pig model of spontaneous osteoarthritis. BMC Musculoskelet Disord 2021; 22:870. [PMID: 34641845 PMCID: PMC8513366 DOI: 10.1186/s12891-021-04735-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Matrix Gla (γ-carboxyglutamate) protein (MGP) is considered a strong inhibitor of ectopic calcification, and it has been associated with OA severity, although not conclusively. We utilized male Dunkin-Hartley (DH) guinea pigs to investigate the expression of MGP throughout aging and disease pathogenesis in a spontaneous model. METHOD Twenty-five male DH guinea pigs were obtained and nurtured to several timepoints, and then randomly and equally divided by age into five subgroups (1-, 3-, 6-, 9-, and 12-months, with the 1-month group as the reference group). DH guinea pigs in each group were euthanized at the designated month-age and the left or right medial tibial plateaus cartilages were randomly excised. OA severity was described by modified Mankin Score (MMS) at microscopy (Safranin O/Fast Green stain). Proteomic evaluation using isobaric tags for relative and absolute quantification (iTRAQ) was performed to validate the age-related changes in the MGP profiles, and immunohistochemistry (IHC) methods were applied for semi-quantitative determination of MGP expression in articular cartilage. RESULTS The histopathologic findings validated the increasing severity of cartilage degeneration with age in the DH guinea pigs. The MMS showed significant, stepwise (every adjacent comparison P < 0.05) disease progression with month-age. The iTRAQ indicated that MGP levels increased significantly with advancing age (P < 0.05), as supported by the IHC result (P < 0.05). CONCLUSION Increased expression of MGP in male DH guinea pigs was present throughout aging and disease progression and may be link to increased OA severity. Further studies are needed to investigate and confirm the association between MGP levels and OA severity.
Collapse
Affiliation(s)
- Xun Ma
- Department of Rehabilitation, Shengjing Hospital of China Medical University, No.16, Puhe Street, Shenyang North New Area, Shenyang, 110134, Liaoning Province, China
| | - Zhan Zhang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinyuan Kang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunbo Deng
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Orthopedics, Central Hospital of Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Yingwei Sun
- Department of Radiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yanjun Li
- Department of Mathematics, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Desheng Huang
- Department of Mathematics, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, No.16, Puhe Street, Shenyang North New Area, Shenyang, 110134, Liaoning Province, China.
| |
Collapse
|
12
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China ,grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Liu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
13
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z+10.1038/s41413-021-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2024] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
14
|
Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
|
15
|
The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021. [DOI: 10.3390/ijms22094917
expr 996488947 + 961598850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
|
16
|
Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021; 22:ijms22094917. [PMID: 34066404 PMCID: PMC8124861 DOI: 10.3390/ijms22094917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
Affiliation(s)
- Martina Calió
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Lucy Poveda
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland;
| | - Fabian Ille
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
- Correspondence: ; Tel.: +41-41-349-36-15
| |
Collapse
|
17
|
Peng Y, Qing X, Lin H, Huang D, Li J, Tian S, Liu S, Lv X, Ma K, Li R, Rao Z, Bai Y, Chen S, Lei M, Quan D, Shao Z. Decellularized Disc Hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioact Mater 2021; 6:3541-3556. [PMID: 33842740 PMCID: PMC8022111 DOI: 10.1016/j.bioactmat.2021.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue specificity, a key factor in the decellularized tissue matrix (DTM), has shown bioactive functionalities in tuning cell fate-e.g., the differentiation of mesenchymal stem cells. Notably, cell fate is also determined by the living microenvironment, including material composition and spatial characteristics. Herein, two neighboring tissues within intervertebral discs, the nucleus pulposus (NP) and annulus fibrosus (AF), were carefully processed into DTM hydrogels (abbreviated DNP-G and DAF-G, respectively) to determine the tissue-specific effects on stem cell fate, such as specific components and different culturing methods, as well as in vivo regeneration. Distinct differences in their protein compositions were identified by proteomic analysis. Interestingly, the fate of human bone marrow mesenchymal stem cells (hBMSCs) also responds to both culturing methods and composition. Generally, hBMSCs cultured with DNP-G (3D) differentiated into NP-like cells, while hBMSCs cultured with DAF-G (2D) underwent AF-like differentiation, indicating a close correlation with the native microenvironments of NP and AF cells, respectively. Furthermore, we found that the integrin-mediated RhoA/LATS/YAP1 signaling pathway was activated in DAF-G (2D)-induced AF-specific differentiation. Additionally, the activation of YAP1 determined the tendency of NP- or AF-specific differentiation and played opposite regulatory effects. Finally, DNP-G and DAF-G specifically promoted tissue regeneration in NP degeneration and AF defect rat models, respectively. In conclusion, DNP-G and DAF-G can specifically determine the fate of stem cells through the integrin-mediated RhoA/LATS/YAP1 signaling pathway, and this tissue specificity is both compositional and spatial, supporting the utilization of tissue-specific DTM in advanced treatments of intervertebral disc degeneration.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- AF, annulus fibrosus
- Col I–S, collagen type I solution
- DAF, decellularized annulus fibrosus
- DAF-G, decellularized annulus fibrosus hydrogel
- DAF-S, decellularized annulus fibrosus solution
- DNP, decellularized nucleus pulposus
- DNP-G, decellularized nucleus pulposus hydrogel
- DNP-S, decellularized nucleus pulposus solution
- DTM, decellularized tissue matrix
- Decellularized tissue matrix
- Differentiation
- ECM, extracellular matrix
- FAF, fresh annulus fibrosus
- FNP, fresh nucleus pulposus
- IDD, intervertebral disc degeneration
- Intervertebral disc
- MSC, mesenchymal stem cell
- NP, nucleus pulposus
- Tissue specificity
- YAP1
- YAP1, yes-associated protein 1
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Zilong Rao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Ming Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| | - Daping Quan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China,School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China,Corresponding author. School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| |
Collapse
|
18
|
Peredo AP, Gullbrand SE, Mauck RL, Smith HE. A challenging playing field: Identifying the endogenous impediments to annulus fibrosus repair. JOR Spine 2021; 4:e1133. [PMID: 33778407 PMCID: PMC7984000 DOI: 10.1002/jsp2.1133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) herniations, caused by annulus fibrosus (AF) tears that enable disc tissue extrusion beyond the disc space, are very prevalent, especially among adults in the third to fifth decade of life. Symptomatic herniations, in which the extruded tissue compresses surrounding nerves, are characterized by back pain, numbness, and tingling and can cause extreme physical disability. Patients whose symptoms persist after nonoperative intervention may undergo surgical removal of the herniated tissue via microdiscectomy surgery. The AF, however, which has a poor endogenous healing ability, is left unrepaired increasing the risk for re-herniation and pre-disposing the IVD to degenerative disc disease. The lack of understanding of the mechanisms involved in native AF repair limits the design of repair systems that overcome the impediments to successful AF restoration. Moreover, the complexity of the AF structure and the challenging anatomy of the repair environment represents a significant challenge for the design of new repair devices. While progress has been made towards the development of an effective AF repair technique, these methods have yet to demonstrate long-term repair and recovery of IVD biomechanics. In this review, the limitations of endogenous AF healing are discussed and key cellular events and factors involved are highlighted to identify potential therapeutic targets that can be integrated into AF repair methods. Clinical repair strategies and their limitations are described to further guide the design of repair approaches that effectively restore native tissue structure and function.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
19
|
van den Akker GGH, Cremers A, Surtel DAM, Voncken W, Welting TJM. Isolation of Nucleus Pulposus and Annulus Fibrosus Cells from the Intervertebral Disc. Methods Mol Biol 2021; 2221:41-52. [PMID: 32979197 DOI: 10.1007/978-1-0716-0989-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells isolated from the intervertebral disc are often used for in vitro experimentation. Correctly separating the intervertebral disc tissue in annulus fibrosus and nucleus pulposus is particularly challenging when working with surplus material from surgery or specimens from donors with an advanced age. Moreover, lineage controls are only sparsely reported to verify tissue of origin. Here we describe an approach to intervertebral disc cell isolation from human and bovine origin.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Donatus A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Willem Voncken
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Xu H, Sun M, Wang C, Xia K, Xiao S, Wang Y, Ying L, Yu C, Yang Q, He Y, Liu A, Chen L. Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication 2020; 13:015010. [PMID: 33361566 DOI: 10.1088/1758-5090/abc4d3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleus pulposus (NP) degeneration is the major cause of degenerative disc disease (DDD). This condition cannot be treated or attenuated by traditional open or minimally invasive surgical options. However, a combination of stem cells, growth factors (GFs) and biomaterials present a viable option for regeneration. Injectable biomaterials act as carriers for controlled release of GFs and deliver stem cells to target tissues through a minimally invasive approach. In this study, injectable gelatin methacryloyl microspheres (GMs) with controllable, uniform particle sizes were rapidly biosynthesized through a low-cost electrospraying method. The GMs were used as delivery vehicles for cells and GFs, and they exhibited good mechanical properties and biocompatibility and enhanced the in vitro differentiation of laden cells into NP-like phenotypes. Furthermore, this integrated system attenuated the in vivo degeneration of rat intervertebral discs, maintained NP tissue integrity and accelerated the synthesis of extracellular matrix. Therefore, this novel therapeutic system is a promising option for the treatment of DDD.
Collapse
Affiliation(s)
- Haibin Xu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China. Department of Orthopedic Research, Institute of Zhejiang University, Hangzhou 310009, Zhejiang, People's Republic of China. These two authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nucleus Pulposus Cell Conditioned Medium Promotes Mesenchymal Stem Cell Differentiation into Nucleus Pulposus-Like Cells under Hypoxic Conditions. Stem Cells Int 2020; 2020:8882549. [PMID: 33424982 PMCID: PMC7773475 DOI: 10.1155/2020/8882549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Low back pain (LBP) is a major physical and socioeconomic challenge worldwide. Nucleus pulposus (NP) is directly associated with LBP due to intervertebral disc (IVD) degeneration. IVD degeneration is mainly caused by structural and matrix-related changes within the IVD occurring during aging and degeneration. Mesenchymal stem cells (MSCs) can differentiate into multiple mesenchymal lineages under specific stimulatory conditions. This study is aimed at evaluating the effectiveness of the nucleus pulposus cell (NPC) conditioned medium for promoting the expression of MSCs and at confirming the expression of healthy NP phenotypic markers recently recommended by the Spine Research Interest Group. Expression was investigated using quantitative polymerase chain reaction (qPCR) and western blotting under normoxic and hypoxic conditions. qPCR and western blotting demonstrated significant upregulation of NP marker expression in MSCs cultured under hypoxic conditions and treated with the 50% or 100% NPC conditioned medium, compared with those cultured under normoxic conditions. Upregulation was highest in the presence of the 100% NPC conditioned medium compared with the control group (aggrecan, p < 0.01; brachyury, p < 0.05; collagen II, p < 0.001; KRT8, p < 0.01; KRT19, p < 0.001; and Shh, p < 0.01). The expression levels of genes in MSCs treated with the 50% NPC conditioned medium also showed upregulation compared with the control group (collagen II, p < 0.05; KRT8, p < 0.05; and KRT19, p < 0.01). These findings suggested that the NPC conditioned medium stimulated MSC differentiation into an NP-like phenotype with distinct characteristics. The results could inform strategies for IVD regeneration.
Collapse
|
22
|
Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig 2020; 24:4237-4260. [PMID: 33111157 PMCID: PMC7666681 DOI: 10.1007/s00784-020-03646-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND All soft and solid surface structures in the oral cavity are covered by the acquired pellicle followed by bacterial colonization. This applies for natural structures as well as for restorative or prosthetic materials; the adherent bacterial biofilm is associated among others with the development of caries, periodontal diseases, peri-implantitis, or denture-associated stomatitis. Accordingly, there is a considerable demand for novel materials and coatings that limit and modulate bacterial attachment and/or propagation of microorganisms. OBJECTIVES AND FINDINGS The present paper depicts the current knowledge on the impact of different physicochemical surface characteristics on bioadsorption in the oral cavity. Furthermore, it was carved out which strategies were developed in dental research and general surface science to inhibit bacterial colonization and to delay biofilm formation by low-fouling or "easy-to-clean" surfaces. These include the modulation of physicochemical properties such as periodic topographies, roughness, surface free energy, or hardness. In recent years, a large emphasis was laid on micro- and nanostructured surfaces and on liquid repellent superhydrophic as well as superhydrophilic interfaces. Materials incorporating mobile or bound nanoparticles promoting bacteriostatic or bacteriotoxic properties were also used. Recently, chemically textured interfaces gained increasing interest and could represent promising solutions for innovative antibioadhesion interfaces. Due to the unique conditions in the oral cavity, mainly in vivo or in situ studies were considered in the review. CONCLUSION Despite many promising approaches for modulation of biofilm formation in the oral cavity, the ubiquitous phenomenon of bioadsorption and adhesion pellicle formation in the challenging oral milieu masks surface properties and therewith hampers low-fouling strategies. CLINICAL RELEVANCE Improved dental materials and surface coatings with easy-to-clean properties have the potential to improve oral health, but extensive and systematic research is required in this field to develop biocompatible and effective substances.
Collapse
Affiliation(s)
- Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Ralf Helbig
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| |
Collapse
|
23
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
24
|
Zhang Y, Wang Y, Zhou X, Wang J, Shi M, Wang J, Li F, Chen Q. Osmolarity controls the differentiation of adipose-derived stem cells into nucleus pulposus cells via histone demethylase KDM4B. Mol Cell Biochem 2020; 472:157-171. [PMID: 32594337 DOI: 10.1007/s11010-020-03794-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/13/2020] [Indexed: 12/25/2022]
Abstract
Adipose-derived stem cells (ADSCs) are an ideal source of cells for intervertebral disc (IVD) regeneration, but the effect of an increased osmotic microenvironment on ADSC differentiation remains unclear. Here, we aimed to elucidate whether hyperosmolarity facilitates ADSC nucleus pulposus (NP)-like differentiation and whether histone demethylase KDM4B is involved in this process. ADSCs were cultured under standard and increased osmolarity conditions for 1-3 weeks, followed by analysis for proliferation and viability. Differentiation was then quantified by gene and protein analysis. Finally, KDM4B knockdown ADSCs were generated using lentiviral vectors. The results showed that increasing the osmolarity of the differentiation medium to 400 mOsm significantly increased NP-like gene expression and the synthesis of extracellular matrix (ECM) components during ADSC differentiation; however, further increasing the osmolarity to 500 mOsm suppressed the NP-like differentiation of ADSCs. KDM4B, as well as the IVD formation regulators forkhead box (Fox)a1/2 and sonic hedgehog (Shh), were found to be significantly upregulated at 400 mOsm. KDM4B knockdown reduced Foxa1/2, Shh, and NP-associated markers' expression, as well as the synthesis of ECM components. The reduction in NP-like differentiation caused by KDM4B knockdown was partially rescued by Purmorphamine, a specific agonist of Shh. Moreover, we found that KDM4B can directly bind to the promoter region of Foxa1/2 and decrease the content of H3K9me3/2. In conclusion, our results indicate that a potential optimal osmolarity window might exist for successful ADSC differentiation. KDM4B plays an essential role in regulating the osmolarity-induced NP-like differentiation of ADSCs by interacting with Foxa1/2-Shh signaling.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yanyan Wang
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xiaopeng Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jingkai Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Fangcai Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| | - Qixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
25
|
Firner S, Zaucke F, Heilig J, de Marées M, Willwacher S, Brüggemann GP, Niehoff A. Impact of knee joint loading on fragmentation of serum cartilage oligomeric matrix protein. J Orthop Res 2020; 38:1710-1718. [PMID: 31944379 DOI: 10.1002/jor.24586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/31/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
The aim of the study was to examine the effect of mechanical knee joint loading on the fragmentation pattern of serum cartilage oligomeric matrix protein (COMP). Ten healthy men ran with knee orthoses that were passive or active (+30.9 N·m external flexion moments) on a treadmill (30 minute; v = 2.2 m/s). Lower-limb mechanics, serum COMP levels, and fragmentation patterns (baseline; 0, 0.5, 1, 2 hours postrunning) were analyzed. Running with active orthoses enhanced knee flexion moments, ankle dorsiflexion, and knee flexion angles (P < .05). There was an increase in serum COMP (+25%; pre: 8.9 ± 2.4 U/l; post: 10.7 ± 1.9 U/l, P = .001), COMP pentamer/tetramer (+88%; 1.88 ± 0.81, P = .007), trimer (+209%; 3.09 ± 2.65, P = .005), and monomer (+78%; 1.78 ± 0.85, P = .007) after running with passive orthoses and in serum COMP (+41%; pre: 8.5 ± 2.7 U/l; post: 11.3 ± 2.1 U/l, P < .001), COMP pentamer/tetramer (+57%; 1.57 ± 0.39, P = .007), trimer (+86%; 1.86 ± 0.47, P = .005), and monomer (+19%; 1.19 ± 0.34, P = .114) after running with active orthoses. Increased fragmentation might indicate COMP release from cartilage while running. Interestingly, 0.5 h up to 2 hours after running with passive orthoses, trimer (0.5 hour: 2.73 ± 3.40, P = .029; 2 hours: 2.33 ± 2.88, P = .037), and monomer (0.5 hour: 2.23 ± 2.33, P = .007; 1 hour: 2.55 ± 1.96, P = .012; 2 hours: 2.65 ± 2.50, P = .009) increased while after running with active orthoses, pentamer/tetramer (1 hour: 0.79 ± 0.28, P = .029), and trimer (1 hour: 0.63 ± 0.14, P = .005; 2 hours: 0.68 ± 0.34, P = .047) decreased. It seems that COMP degradation and clearance vary depending on joint loading characteristics.
Collapse
Affiliation(s)
- Sara Firner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt, Germany
| | - Juliane Heilig
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Markus de Marées
- Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany
| | - Steffen Willwacher
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Hu S, Shao Z, Zhang C, Chen L, Mamun AA, Zhao N, Cai J, Lou Z, Wang X, Chen J. Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. Aging (Albany NY) 2020; 12:11732-11753. [PMID: 32526705 PMCID: PMC7343479 DOI: 10.18632/aging.103339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Now days, obesity is a major risk factor for intervertebral disc degeneration (IDD). However, adipokine, such as chemerin is a novel cytokine, which is secreted by adipose tissue, and are thought to be played major roles in various degenerative diseases. Obese individuals are known to have high concentration of serum chemerin. Our purpose was to study whether chemerin acts as a biochemical relationship between obesity, and IDD. In this study, we found that the expression level of chemerin was significantly increased in the human degenerated nucleus pulposus (NP) tissues, and had higher level in the obese people than the normal people. Chemerin significantly increased the inflammatory mediator level, contributing to ECM degradation in nucleus pulposus cells (NPCs). Furthermore, chemerin overexpression aggravates the puncture-induced IVDD progression in rats, while knockdown CMKLR1 reverses IVDD progression. Chemerin activates the NF-kB signaling pathway via its receptors CMKLR1, and TLR4 to release inflammatory mediators, which cause matrix degradation, and cell aging. These findings generally provide novel evidence supporting the causative role of obesity in IDD, which is essentially important to literally develop novel preventative or generally therapeutic treatment in the disc degenerative disorders.
Collapse
Affiliation(s)
- Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenxi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ning Zhao
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinfeng Cai
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhiling Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
27
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
28
|
Degeneration of Lumbar Intervertebral Discs: Characterization of Anulus Fibrosus Tissue and Cells of Different Degeneration Grades. Int J Mol Sci 2020; 21:ijms21062165. [PMID: 32245213 PMCID: PMC7139657 DOI: 10.3390/ijms21062165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc (IVD) herniation and degeneration is a major source of back pain. In order to regenerate a herniated and degenerated disc, closure of the anulus fibrosus (AF) is of crucial importance. For molecular characterization of AF, genome-wide Affymetrix HG-U133plus2.0 microarrays of native AF and cultured cells were investigated. To evaluate if cells derived from degenerated AF are able to initiate gene expression of a regenerative pattern of extracellular matrix (ECM) molecules, cultivated cells were stimulated with bone morphogenetic protein 2 (BMP2), transforming growth factor β1 (TGFβ1) or tumor necrosis factor-α (TNFα) for 24 h. Comparative microarray analysis of native AF tissues showed 788 genes with a significantly different gene expression with 213 genes more highly expressed in mild and 575 genes in severe degenerated AF tissue. Mild degenerated native AF tissues showed a higher gene expression of common cartilage ECM genes, whereas severe degenerated AF tissues expressed genes known from degenerative processes, including matrix metalloproteinases (MMP) and bone associated genes. During monolayer cultivation, only 164 differentially expressed genes were found. The cells dedifferentiated and altered their gene expression profile. RTD-PCR analyses of BMP2- and TGFβ1-stimulated cells from mild and severe degenerated AF tissue after 24 h showed an increased expression of cartilage associated genes. TNFα stimulation increased MMP1, 3, and 13 expression. Cells derived from mild and severe degenerated tissues could be stimulated to a comparable extent. These results give hope that regeneration of mildly but also strongly degenerated disc tissue is possible.
Collapse
|
29
|
Hingert D, Nawilaijaroen P, Aldridge J, Baranto A, Brisby H. Investigation of the Effect of Secreted Factors from Mesenchymal Stem Cells on Disc Cells from Degenerated Discs. Cells Tissues Organs 2020; 208:76-88. [PMID: 32092752 DOI: 10.1159/000506350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/02/2020] [Indexed: 11/19/2022] Open
Abstract
Low back pain is experienced by a large number of people in western countries and may be caused and influenced by many different pathologies and psychosocial factors including disc degeneration. Disc degeneration involves the increased expression of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the disc environment, which leads to the loss of extracellular matrix (ECM) and the viability of the native disc cells (DCs). Treatment approaches using growth factors and cell therapy have been proposed due to the compelling results that growth factors and mesenchymal stem cells (MSCs) can influence the degenerated discs. The aim of this study was to investigate the effects of conditioned media (CM) from human MSCs (hMSCs) and connective tissue growth factor (CTGF) and TGF-β on disc cells, and hMSCs isolated from patients with degenerative discs and severe low back pain. The aim was also to examine the constituents of CM in order to study the peptides that could bring about intervertebral disc (IVD) regeneration. DCs and hMSC pellets (approx.. 200,000 cells) were cultured and stimulated with hMSC-derived CM or CTGF and TGF-β over 28 days. The effects of CM and CTGF on DCs and hMSCs were assessed via cell viability, proteoglycan production, the expression of ECM proteins, and chondrogenesis in 3D pellet culture. To identify the constituents of CM, CM was analyzed with tandem mass spectrometry. The findings indicate that CM enhanced the cellular viability and ECM production of DCs while CTGF and the control exhibited nonsignificant differences. The same was observed in the hMSC group. Mass spectrometry analysis of CM identified >700 peptides, 129 of which showed a relative abundance of ≥2 (CTGF among them). The results suggest that CM holds potential to counter the progression of disc degeneration, likely resulting from the combination of all the substances released by the hMSCs. The soluble factors released belong to different peptide families. The precise mechanism underlying the regenerative effect needs to be investigated further, prior to incorporating peptides in the development of new treatment strategies for low back pain that is potentially caused by IVD degeneration.
Collapse
Affiliation(s)
- Daphne Hingert
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,
| | | | - Jonathan Aldridge
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Adad Baranto
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Brisby
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
30
|
Takeuchi S, Hirasaki E, Kumakura H. Muscle Spindle Density of Lateral Rotators of the Thigh in Japanese Macaques and a Gibbon. Cells Tissues Organs 2020; 208:1-12. [PMID: 31927538 PMCID: PMC7212700 DOI: 10.1159/000504958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 02/02/2020] [Accepted: 11/24/2019] [Indexed: 01/07/2023] Open
Abstract
We examined the six small lateral rotators of the hip joint, which is one of the most flexible joints and allows kinematically complex motions of the hindlimb, to elucidate the functional differentiation among these muscles and to test the hypothesis that species-specific characteristics in hindlimb use during locomotion are reflected in the muscle spindle density and in other parameters of the deep small hip joint rotators. For these purposes, we estimated the number of muscle spindles of the superior gemellus muscle (SG), inferior gemellus muscle, quadratus femoris muscle, obturator internus muscle (OI), obturator externus muscle, and piriformis muscle in three Japanese macaques and a gibbon, using 30-µm-thick serial sections throughout each muscle length after azan staining. The numbers of muscle spindles per 10,000 muscle fibers were determined to compare inter-muscle variation. The spindle density was highest in the SG and lowest in the OI in the Japanese macaques, suggesting that the SG, which is attached to the tendon of the OI, functions as a kinesiological monitor of the OI. On the other hand, SG the was missing in the gibbon, and the OI in the gibbon contained more spindles than that in the Japanese macaques. This suggests that the SG and the OI fused into one muscle in the gibbon. We postulate that the relative importance of the deep small hip rotator muscles differs between the Japanese macaques and gibbon and that the gibbon's muscles are less differentiated in terms of the spindle density, probably because this brachiating species uses its hindlimbs less frequently.
Collapse
Affiliation(s)
- Sawa Takeuchi
- Department of Biological Anthropology, Graduate School of Human Sciences, Osaka University, Suita, Japan
| | - Eishi Hirasaki
- Section of Evolutionary Morphology, Primate Research Institute, Kyoto University, Inuyama, Japan,
| | - Hiroo Kumakura
- Department of Biological Anthropology, Graduate School of Human Sciences, Osaka University, Suita, Japan
| |
Collapse
|
31
|
Perez-Cruet M, Beeravolu N, McKee C, Brougham J, Khan I, Bakshi S, Chaudhry GR. Potential of Human Nucleus Pulposus-Like Cells Derived From Umbilical Cord to Treat Degenerative Disc Disease. Neurosurgery 2020; 84:272-283. [PMID: 29490072 PMCID: PMC6292795 DOI: 10.1093/neuros/nyy012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Degenerative disc disease (DDD) is a common spinal disorder that manifests with neck and lower back pain caused by the degeneration of intervertebral discs (IVDs). Currently, there is no treatment to cure this debilitating ailment. OBJECTIVE To investigate the potential of nucleus pulposus (NP)-like cells (NPCs) derived from human umbilical cord mesenchymal stem cells (MSCs) to restore degenerated IVDs using a rabbit DDD model. METHODS NPCs differentiated from MSCs were characterized using quantitative real-time reverse transcription polymerase chain reaction and immunocytochemical analysis. MSCs and NPCs were labeled with fluorescent dye, PKH26, and transplanted into degenerated IVDs of a rabbit model of DDD (n = 9 each). Magnetic resonance imaging of the IVDs was performed before and after IVD degeneration, and following cell transplantation. IVDs were extracted 8 wk post-transplantation and analyzed by various biochemical, immunohistological, and molecular techniques. RESULTS NPC derivatives of MSCs expressed known NP-specific genes, SOX9, ACAN, COL2, FOXF1, and KRT19. Transplanted cells survived, dispersed, and integrated into the degenerated IVDs. IVDs augmented with NPCs showed significant improvement in the histology, cellularity, sulfated glycosaminoglycan and water contents of the NP. In addition, expression of human genes, SOX9, ACAN, COL2, FOXF1, KRT19, PAX6, CA12, and COMP, as well as proteins, SOX9, ACAN, COL2, and FOXF1, suggest NP biosynthesis due to transplantation of NPCs. Based on these results, a molecular mechanism for NP regeneration was proposed. CONCLUSION The findings of this study demonstrating feasibility and efficacy of NPCs to regenerate NP should spur interest for clinical studies to treat DDD using cell therapy.
Collapse
Affiliation(s)
- Mick Perez-Cruet
- Department of Neurosurgery, Beaumont Health System, Royal Oak, Michigan.,OUWB School of Medicine, Oakland University, Rochester, Michigan.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan.,Michigan Head and Spine Institute, Southfield, Michigan
| | - Naimisha Beeravolu
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan.,Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Christina McKee
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan.,Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Jared Brougham
- OUWB School of Medicine, Oakland University, Rochester, Michigan
| | - Irfan Khan
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan.,Department of Biological Sciences, Oakland University, Rochester, Michigan.,Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shreeya Bakshi
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan.,Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, Michigan.,Department of Biological Sciences, Oakland University, Rochester, Michigan
| |
Collapse
|
32
|
Veras MA, McCann MR, Tenn NA, Séguin CA. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 2020; 61:63-81. [PMID: 31597481 DOI: 10.1080/03008207.2019.1665034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The intervertebral disc (IVD) is composed of cell types whose subtle phenotypic differences allow for the formation of distinct tissues. The role of the nucleus pulposus (NP) in the initiation and progression of IVD degeneration is well established; however, the genes and pathways associated with NP degeneration are poorly characterized.Materials and Methods: Using a genetic strategy for IVD lineage-specific fluorescent reporter expression to isolate cells, gene expression and bioinformatic analysis was conducted on the murine NP at 2.5, 6, and 21 months-of-age and the annulus fibrosus (AF) at 2.5 and 6 months-of-age. A subset of differentially regulated genes was validated by qRT-PCR.Results: Transcriptome analysis identified distinct profiles of NP and AF gene expression that were remarkably consistent at 2.5 and 6 months-of-age. Prg4, Cilp, Ibsp and Comp were increased >50-fold in the AF relative to NP. The most highly enriched NP genes included Dsc3 and Cdh6, members of the cadherin superfamily, and microRNAs mir218-1 and mir490. Changes in the NP between 2.5 and 6 months-of-age were associated with up-regulation of molecular functions linked to laminin and Bmp receptor binding (including up-regulation of Bmp5 & 7), with the most up-regulated genes being Mir703, Shh, and Sfrp5. NP degeneration was associated with molecular functions linked to alpha-actinin binding (including up-regulation of Ttn & Myot) and cytoskeletal protein binding, with the overall most up-regulated genes being Rnu3a, Snora2b and Mir669h.Conclusions: This study provided insight into the phenotypes of NP and AF cells, and identified candidate pathways that may regulate degeneration.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| |
Collapse
|
33
|
Eğri Ö, Ökten ME, Deveci H. Lomber disk herniasyonlu hastalarda, transkutanöz elektriksel sinir stimülasyonu (TENS) ve ultrason uygulamalarının, serum oksidatif stres parametreleri ve idrar kollajen yıkım ürünleri üzerine etkilerinin değerlendirilmesi. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.664930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Liu C, Yang M, Liu L, Zhang Y, Zhu Q, Huang C, Wang H, Zhang Y, Li H, Li C, Huang B, Feng C, Zhou Y. Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Mol Med Rep 2019; 21:9-19. [PMID: 31746390 PMCID: PMC6896343 DOI: 10.3892/mmr.2019.10812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and ligamentum flavum hypertrophy (LFH) are major causes of degenerative spinal disorders. Comparative and proteomic analysis was used to identify differentially expressed proteins (DEPs) in IDD and LFH discs compared with normal discs. Subsequent gene ontology term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEPs in human IDD discs or LFH samples were performed to identify the biological processes and signaling pathways involved in IDD and LFH. The PI3K-AKT signaling pathway, advanced glycation endproducts-receptor for advanced glycation endproducts signaling pathway, p53 signaling pathway, and transforming growth factor-b signaling pathway were activated in disc degeneration. This review summarizes the recently identified DEPs, including prolargin, fibronectin 1, cartilage intermediate layer protein, cartilage oligomeric matrix protein, and collagen types I, II and IV, and their pathophysiological roles in degenerative spinal disorders, and may provide a deeper understanding of the pathological processes of human generative spinal disorders. The present review aimed to summarize significantly changed proteins in degenerative spinal disorders and provide a deeper understanding to prevent these diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Minghui Yang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qi Zhu
- Medical Research Center, Southwestern Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Cong Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Hongwei Wang
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| | - Yaqing Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
35
|
Hua J, Shen N, Wang J, Tao Y, Li F, Chen Q, Zhou X. Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells. Mol Cells 2019; 42:661-671. [PMID: 31564076 PMCID: PMC6776160 DOI: 10.14348/molcells.2019.0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are promising for regenerating degenerated intervertebral discs (IVDs), but the low efficiency of nucleus pulposus (NP)-specific differentiation limits their clinical applications. The Sonic hedgehog (Shh) signaling pathway is important in NP-specific differentiation of ADSCs, and Smoothened Agonist (SAG) is a highly specific and effective agonist of Shh signaling. In this study, we proposed a new differentiation strategy with the use of the small molecule SAG. The NP-specific differentiation and extracellular matrix (ECM) synthesis of ADSCs were measured in vitro , and the regenerative effects of SAG pretreated ADSCs in degenerated IVDs were verified in vivo . The results showed that the combination of SAG and transforming growth factor-β3 (TGF-β3) is able to increase the ECM synthesis of ADSCs. In addition, the gene and protein expression levels of NP-specific markers were increased by treatment with SAG and TGF-β3. Furthermore, SAG pretreated ADSCs can also improve the disc height, water content, ECM content, and structure of degenerated IVDs in vivo . Our new differentiation scheme has high efficiency in inducing NP-specific differentiation of ADSCs and is promising for stem cell-based treatment of degenerated IVDs.
Collapse
Affiliation(s)
- Jianming Hua
- Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009,
China
| | - Ning Shen
- Department of Rheumatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016,
China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009,
China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009,
China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009,
China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009,
China
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009,
China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009,
China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009,
China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009,
China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009,
China
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009,
China
| |
Collapse
|
36
|
Christiani TR, Baroncini E, Stanzione J, Vernengo AJ. In vitro evaluation of 3D printed polycaprolactone scaffolds with angle-ply architecture for annulus fibrosus tissue engineering. Regen Biomater 2019; 6:175-184. [PMID: 31198585 PMCID: PMC6547313 DOI: 10.1093/rb/rbz011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering of the annulus fibrosus (AF) is currently being investigated as a treatment for intervertebral disc degeneration, a condition frequently associated with low back pain. The objective of this work was to use 3D printing to generate a novel scaffold for AF repair that mimics the structural and biomechanical properties of the native tissue. Multi-layer scaffolds were fabricated by depositing polycaprolactone struts in opposing angular orientations, replicating the angle-ply arrangement of the native AF tissue. Scaffolds were printed with varied strut diameter and spacing. The constructs were characterized morphologically and by static and dynamic mechanical analyses. Scaffold surfaces were etched with unidirectional grooves and the influence on bovine AF cell metabolic activity, alignment, morphology and protein expression was studied in vitro. Overall, the axial compressive and circumferential tensile properties of the scaffolds were found to be in a similar range to the native AF tissue. Confocal microscopy images indicated that cells were able to attach and spread on the smooth polycaprolactone scaffolds, but the surface texture induced cellular alignment and proliferation. Furthermore, immunofluorescence analysis demonstrated the aligned deposition of collagen type I, aggrecan and the AF-specific protein marker tenomodulin on the etched scaffolds. Overall, results demonstrated the potential for using the scaffolds as a template for AF regeneration.
Collapse
Affiliation(s)
- T R Christiani
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
| | - E Baroncini
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
| | - J Stanzione
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
| | - A J Vernengo
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, USA
| |
Collapse
|
37
|
Zhu J, Sun K, Xu X, Sun J, Kong Q, Wang S, Shi J. A Preliminary Attempt of Nonintervention in the Treatment of Patients with Intervertebral Disc Calcification Combined with Ossification of the Posterior Longitudinal Ligament. World Neurosurg 2019; 129:181-185. [PMID: 31146042 DOI: 10.1016/j.wneu.2019.05.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Calcification of intervertebral disc is a common impairment, which has been considered as the degenerative condition of the spine. In clinical practice, we note that the onset of intervertebral disc calcification (IDC) and ossification of the posterior longitudinal ligament (OPLL) can exist simultaneously in some cases, especially in younger children. However, only 8 cases have been reported in detail previously. In addition, controversy remains in terms of the best way to treat this condition. CASE DESCRIPTION An 8-year-old female child was referred to our department in March 2018 complaining of severe back pain and neck pain with a sign of neurologic dysfunction. Computed tomography and magnetic resonance imaging revealed the calcified intervertebral disc and OPLL at the C5-C6 level and spinal cord compression. We performed a noninterventional strategy for the patient. The patient's symptom recovered significantly in approximately 1 month. At 6 months of follow-up, the patient felt no discomfort, and computed tomography revealed the complete resorption of ossified lesion. Magnetic resonance imaging also showed no sign of compression on the spinal cord and nerve root at the involved segment. CONCLUSIONS Pediatric IDC accompanied with OPLL is much less frequent, but we must be aware of this disease. Since the distribution of this disease is age-specific and sex-specific, further research is necessary. Treatment for IDC combined with OPLL needs to follow the treatment principles as described in the text.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Ximing Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Qingjie Kong
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shunmin Wang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
38
|
Yang SH, Yang KC, Chen CW, Huang TC, Sun YH, Hu MH. Comparison of Transforming Growth Factor-Beta1 and Lovastatin on Differentiating Mesenchymal Stem Cells toward Nucleus Pulposus-like Phenotype: An In Vitro Cell Culture Study. Asian Spine J 2019; 13:705-712. [PMID: 31079432 PMCID: PMC6773984 DOI: 10.31616/asj.2018.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/30/2018] [Indexed: 01/08/2023] Open
Abstract
Study Design In Vitro cell culture study. Purpose This study aims to investigate the impact of transforming growth factor-beta1 (TGF-β1) and lovastatin on differentiating human mesenchymal stem cells (MSCs) toward nucleus pulposus (NP)-like phenotype. Overview of Literature MSCs offer a cell source to the cell-based therapy for intervertebral disc degeneration. TGF-β1 is used to induce MSCs to differentiate into NP-like cells; however, an undesired expression of collagen type I has been reported. Statins reportedly stimulate expression of bone morphogenetic protein-2 (BMP-2) and promote the chondrogenic phenotype to NP cells. However, the effects of statins with or without TGF-β1 on the differentiation of MSCs into NP-like cells remain unclear. Methods Human MSCs were treated with TGF-β1 alone, lovastatin alone, and simultaneous or sequential treatment with TGF-β1 and lovastatin. After the proposed stimulation, the total RNA was extracted to assess the expression profile of NP cells-specific genes. Hematoxylin–eosin staining was used for examining the microscopic morphology. Furthermore, we detected the syntheses of S-100 protein, aggrecan, and collagen type II in the extracellular matrix using immunohistochemical staining. Results Simultaneous or sequential treatment of TGF-β1 and lovastatin could further augment the BMP-2 overexpression compared with lovastatin-alone treatment. However, the mRNA expression of aggrecan and collagen type II was not compatible with the expression level of BMP-2. Immunohistochemical studies revealed compatible production of aggrecan, collagen type II, and S-100 protein in all three groups treated with lovastatin. Cells in groups treated with lovastatin were less populated than that in the group treated with TGF-β1 alone. Conclusions This study demonstrates a promising role of lovastatin in inducing human MSCs into NP-like cells. However, further optimization of cell density before lovastatin treatment, treatment duration, and combination with TGF-β1 are warranted to attain better stimulatory effects.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kai-Chiang Yang
- Department of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Chen
- Department of Orthopedics, National Taiwan University Hospital Hsin Chu Branch, Hsin Chu, Taiwan
| | - Ting-Chun Huang
- Department of Orthopedics, National Taiwan University Hospital Chu Tung Branch, Hsin Chu, Taiwan
| | - Yuan-Hui Sun
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsiao Hu
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
39
|
Akgun FS, Sirin DY, Yilmaz I, Karaarslan N, Ozbek H, Simsek AT, Kaya YE, Kaplan N, Akyuva Y, Caliskan T, Ates O. Investigation of the effect of dipyrone on cells isolated from intervertebral disc tissue. Exp Ther Med 2019; 18:216-224. [PMID: 31258656 PMCID: PMC6566084 DOI: 10.3892/etm.2019.7576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to evaluate the effects of dipyrone, an indispensable analgesic, anti-pyretic and anti-spasmodic used in emergency departments, on nucleus pulposus and annulus fibrosus cells in vitro. After surgical biopsy, primary cell cultures were prepared from intact intervertebral disc tissues. Dipyrone was administered to the cultures in the experimental groups except for the control group. The data obtained were statistically evaluated. The proliferation was identified to be suppressed via MTT analysis. The gene expression profile of the intervertebral disc cells in the dipyrone-treated groups was significantly changed. The expression of chondroadherin, cartilage oligo matrix protein, interleukin-1β and metalloproteinase (MMP)-19 genes were decreased, but MMP-13 and MMP-7 genes expressions were increased, as determined via reverse transcription-quantitative PCR. AO/PI staining revealed that no apoptotic or other type of cell death was detectable after administration of dipyrone does not mean that the drug is innocuous. The occurrence of cellular senescence and/or the halt of cell proliferation may also be important mechanisms underlying the adverse inhibitory effects of dipyrone. Therefore, prior to administering dipyrone in clinical practice, all possible adverse effects of this drug should be considered.
Collapse
Affiliation(s)
- Feride Sinem Akgun
- Department of Emergency Medicine, School of Medicine, Istanbul Maltepe University, Istanbul 34843, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Namik Kemal University, Tekirdag 59100, Turkey
| | - Ibrahim Yilmaz
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Numan Karaarslan
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Abdullah Talha Simsek
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Yasin Emre Kaya
- Department of Orthopedics and Traumatology, School of Medicine, Abant Izzet Baysal University, Bolu 14000, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Corlu Reyap Hospital, Istanbul Rumeli University, Tekirdag 59680, Turkey
| | - Yener Akyuva
- Department of Neurosurgery, Gaziosmanpasa Taksim Training and Research Hospital, Istanbul 34433, Turkey
| | - Tezcan Caliskan
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Istanbul Koc University Hospital, Istanbul Koc University, Istanbul 34010, Turkey
| |
Collapse
|
40
|
Quantitative Single-Cell Transcript Assessment of Biomarkers Supports Cellular Heterogeneity in the Bovine IVD. Vet Sci 2019; 6:vetsci6020042. [PMID: 31083612 PMCID: PMC6631975 DOI: 10.3390/vetsci6020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Severe and chronic low back pain is often associated with intervertebral disc (IVD) degeneration. While imposing a considerable socio-economic burden worldwide, IVD degeneration is also severely impacting on the quality of life of affected individuals. Cell-based regenerative medicine approaches have moved into clinical trials, yet IVD cell identities in the mature disc remain to be fully elucidated and tissue heterogeneity exists, requiring a better characterization of IVD cells. The bovine coccygeal IVD is an accepted research model to study IVD mechano-biology and disc homeostasis. Recently, we identified novel IVD biomarkers in the outer annulus fibrosus (AF) and nucleus pulposus (NP) of the mature bovine coccygeal IVD through RNA in situ hybridization (AP-RISH) and z-proportion test. Here we follow up on Lam1, Thy1, Gli1, Gli3, Noto, Ptprc, Scx, Sox2 and Zscan10 with fluorescent RNA in situ hybridization (FL-RISH) and confocal microscopy. This permits sub-cellular transcript localization and the addition of quantitative single-cell derived values of mRNA expression levels to our previous analysis. Lastly, we used a Gaussian mixture modeling approach for the exploratory analysis of IVD cells. This work complements our earlier cell population proportion-based study, confirms the previously proposed biomarkers and indicates even further heterogeneity of cells in the outer AF and NP of a mature IVD.
Collapse
|
41
|
Alpha 2-Macroglobulin as Dual Regulator for Both Anabolism and Catabolism in the Cartilaginous Endplate of Intervertebral Disc. Spine (Phila Pa 1976) 2019; 44:E338-E347. [PMID: 30138255 DOI: 10.1097/brs.0000000000002852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Basic science study. OBJECTIVE To illustrate supplemental alpha-2 macroglobulin (α2 M) has beneficial effects on cartilaginous endplates (CEPs) that may slow the progression of intervertebral disc (IVD) degeneration. SUMMARY OF BACKGROUND DATA CEPs play a vital role in progression of intervertebral disc degenerative diseases. However, the ideal and economic therapies for CEPs degeneration are still urgently required. METHODS Firstly, we confirmed degenerative CEP characters by H&E and Safranin O fast green staining and detected increasing level of α2 M and matrix metalloproteinase 13(MMP-13) in degenerative CEP by immunohistochemistry. Then, effects of exogenous α2 M on tumor necrosis factor alpha (TNF-α)-induced CEP catabolic enzyme and anabolic molecules were evaluated by qRT-PCR, Western blotting and ELISA in cultured CEP cells obtained from rats. Furthermore, suppression of α2 M on TNF-α-induced activation of NF-кB signaling pathway was measured by Western blotting and immunofluorescence. In addition, function of α2 M on TNF-α-treated ex vivo IVDs from rats lumbar IVDs was estimated by measuring the expression of MMP-13, Sox9, aggrecan, and type II collagen in CEP area. RESULTS Compared with normal CEP, level of α2 M was slightly increased in CEP from degenerative patients, whereas MMP-13 was sharply elevated. In vitro, α2 M inhibited expression and activity of MMP-3 or MMP-13 in a dose-dependent manner in rat CEP cells stimulated by TNF-α. The α2 M refrained phosphorylation of IκBα and inhibited nuclear translocation of p65. Finally, supplemental α2 M reduced expression of MMP-13, and promoted expression of Sox9, aggrecan, and type II collagen in CEP area of ex vivo IVDs cultured with TNF-α. CONCLUSION α2 M is not sufficiently produced to inactivate higher concentrations of catabolic factor MMP-13 found in the degenerated CEP. Supplemental α2 M protects against the progression of IVD degeneration by inhibiting effects of proinflammatory cytokines. LEVEL OF EVIDENCE N/A.
Collapse
|
42
|
Effects of NaCl and pH on the functional properties of edible crickets (Acheta domesticus) protein concentrate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00097-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Hodgkinson T, Shen B, Diwan A, Hoyland JA, Richardson SM. Therapeutic potential of growth differentiation factors in the treatment of degenerative disc diseases. JOR Spine 2019; 2:e1045. [PMID: 31463459 PMCID: PMC6686806 DOI: 10.1002/jsp2.1045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a major contributing factor to chronic low back pain and disability, leading to imbalance between anabolic and catabolic processes, altered extracellular matrix composition, loss of tissue hydration, inflammation, and impaired mechanical functionality. Current treatments aim to manage symptoms rather than treat underlying pathology. Therefore, IVD degeneration is a target for regenerative medicine strategies. Research has focused on understanding the molecular process of degeneration and the identification of various factors that may have the ability to halt and even reverse the degenerative process. One such family of growth factors, the growth differentiation factor (GDF) family, have shown particular promise for disc regeneration in in vitro and in vivo models of IVD degeneration. This review outlines our current understanding of IVD degeneration, and in this context, aims to discuss recent advancements in the use of GDF family members as anabolic factors for disc regeneration. An increasing body of evidence indicates that GDF family members are central to IVD homeostatic processes and are able to upregulate healthy nucleus pulposus cell marker genes in degenerative cells, induce mesenchymal stem cells to differentiate into nucleus pulposus cells and even act as chemotactic signals mobilizing resident cell populations during disc injury repair. The understanding of GDF signaling and its interplay with inflammatory and catabolic processes may be critical for the future development of effective IVD regeneration therapies.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Bojiang Shen
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ashish Diwan
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation TrustManchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
44
|
Kraus P, Sivakamasundari V, Olsen V, Villeneuve V, Hinds A, Lufkin T. Klhl14 Antisense RNA is a Target of Key Skeletogenic Transcription Factors in the Developing Intervertebral Disc. Spine (Phila Pa 1976) 2019; 44:E260-E268. [PMID: 30086079 PMCID: PMC10426336 DOI: 10.1097/brs.0000000000002827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN RNA in situ hybridization (RISH) allows for validation and characterization of the long noncoding (lnc) natural antisense RNA (NAT) Klhl14as in the embryonic murine intervertebral disc (IVD) in the context of loss-of-function mutants for key transcription factors (TFs) in axial skeleton development. OBJECTIVE Validation of Klhl14as in the developing murine IVD. SUMMARY OF BACKGROUND DATA The IVD is a focus of regenerative medicine; however, processes and signaling cascades resulting in the different cell types in a mature IVD still require clarification in most animals including humans. Technological advances increasingly point to implications of lnc NATs in transcription/translation regulation. Transcriptome data generation and analysis identified a protein encoding transcript and related noncoding antisense transcript as downregulated in embryos devoid of key TFs during axial skeleton development. Here, primarily, the antisense transcript is analyzed in this loss-of-function context. METHODS 4930426D05Rik and 6330403N15Rik were identified as Klhl14as and sense, respectively, two transcripts downregulated in the vertebral column of midgestation Pax1 and Pax9 mutant mouse embryos. RISH on wildtype and mutant embryos for the TF encoding genes Pax1/Pax9, Sox5/Sox6/Sox9, and Bapx1 was used to further analyze Klhl14as in the developing IVD. RESULTS Klhl14as and Klhl14 were the top downregulated transcripts in Pax1; Pax9 E12.5 embryos. Our data demonstrate expression of Klhl14as and sense transcripts in the annulus fibrosus (AF) and notochord of the developing IVD. Klhl14as expression in the inner annulus fibrosus (iAF) seems dependent on the TFs Pax1/Pax9, Sox6, Sox9, and Bapx1. CONCLUSION We are the first to suggest a role for the lncRNA Klhl14as in the developing IVD. Our data link Klhl14as to a previously established gene regulatory network during axial skeleton development and contribute further evidence that lnc NATs are involved in crucial gene regulatory networks in eukaryotic cells. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY
| | - V. Sivakamasundari
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | | | - Abbey Hinds
- Department of Biology, Clarkson University, Potsdam, NY
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY
| |
Collapse
|
45
|
Zhu J, Xia K, Yu W, Wang Y, Hua J, Liu B, Gong Z, Wang J, Xu A, You Z, Chen Q, Li F, Tao H, Liang C. Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomater 2019; 86:300-311. [PMID: 30660009 DOI: 10.1016/j.actbio.2019.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factors is regarded as a promising treatment, the efficacy of this approach in attenuating the disc degeneration process is limited by the short lifespan of growth factors. In our study, a unique growth factor delivery vehicle composed of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain GDF5 release. The results showed that sustained release of GDF5 by the PEAD:heparin delivery system promoted hADSC differentiation to an NP-like phenotype in vitro. After injection of the PEAD:heparin:GDF5 delivery platform and hADSCs into intervertebral spaces of coccygeal (Co) vertebrae Co7/Co8 and Co8/Co9 of the rat, the disc height, water content, and structure of the NPs decreased more slowly than other treatment groups. This new strategy may be used as an alternative treatment for attenuating intervertebral disc degeneration with hADSCs without the need for gene therapy. STATEMENT OF SIGNIFICANCE: Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF-5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factor is regarded as a promising treatment, the efficacy of this approach in the disc regeneration process is limited by the short life of growth factors. In our study, a unique growth factor delivery vehicle comprised of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain the release of GDF-5. Numerous groups have explored IDD regeneration methods in vitro and in vivo. Our study differs in that GDF5 was incorporated into a vehicle through charge attraction and exhibited a sustained release profile. Moreover, GDF-5 seeded coacervate combined with hADSC injection could be a minimally invasive approach for tissue engineering that is suitable for clinical application. We investigated the stimulatory effects of our GDF-5 seeded coacervate on the differentiation of ADSCs in vitro and the reparative effect of the delivery system on degenerated NP in vivo.
Collapse
|
46
|
Extracellular Matrix and Adhesion Molecule Gene Expression in the Normal and Injured Murine Intervertebral Disc. Am J Phys Med Rehabil 2019; 98:35-42. [DOI: 10.1097/phm.0000000000001012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Zhou X, Wang J, Huang X, Fang W, Tao Y, Zhao T, Liang C, Hua J, Chen Q, Li F. Injectable decellularized nucleus pulposus-based cell delivery system for differentiation of adipose-derived stem cells and nucleus pulposus regeneration. Acta Biomater 2018; 81:115-128. [PMID: 30267879 DOI: 10.1016/j.actbio.2018.09.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Stem cell-based tissue engineering is a promising treatment for intervertebral disc (IVD) degeneration. A bio-scaffold that can maintain the function of transplanted cells and possesses favorable mechanical properties is needed in tissue engineering. Decellularized nucleus pulposus (dNP) has the potential to be a suitable bio-scaffold because it mimics the native nucleus pulposus (NP) composition. However, matrix loss during decellularization and difficulty in transplantation limit the clinical application of dNP scaffolds. In this study, we fabricated an injectable dNP-based cell delivery system (NPCS) and evaluated its properties by assessing the microstructure, biochemical composition, water content, biosafety, biostability, and mechanical properties. We also investigated the stimulatory effects of the bio-scaffold on the NP-like differentiation of adipose-derived stem cells (ADSCs) in vitro and the regenerative effects of the NPCS on degenerated NP in an in vivo animal model. The results showed that approximately 68% and 43% of the collagen and sGAG, respectively, remained in the NPCS after 30 days. The NPCS also showed mechanical properties similar to those of fresh NP. In addition, the NPCS was biocompatible and able to induce NP-like differentiation and extracellular matrix (ECM) synthesis in ADSCs. The disc height index (almost 81%) and the MRI index (349.05 ± 38.48) of the NPCS-treated NP were significantly higher than those of the degenerated NP after 16 weeks. The NPCS also partly restored the ECM content and the structure of degenerated NP in vivo. Our NPCS has good biological and mechanical properties and has the ability to promote the regeneration of degenerated NP. STATEMENT OF SIGNIFICANCE: Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration. Stem cell-based tissue engineering is a promising treatment for NP regeneration. Bio-scaffolds which have favorable biological and mechanical properties are needed in tissue engineering. Decellularized NP (dNP) scaffold is a potential choice for tissue engineering, but the difficulty in balancing complete decellularization and retaining ECM limits its usage. Instead of choosing different decellularization protocols, we complementing the sGAG lost during decellularization by cross-linking via genipin and fabricating an injectable dNP-based cell delivery system (NPCS) which has similar components as the native NP. We also investigated the biological and mechanical properties of the NPCS in vitro and verified its regenerative effects on degenerated IVDs in an animal model.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Weijing Fang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tengfei Zhao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
48
|
Du JJ, Chen YF, Peng Y, Li XJ, Ma W. Calcification of the intervertebral disc and ossification of posterior longitudinal ligament in children. BMC Musculoskelet Disord 2018; 19:316. [PMID: 30185184 PMCID: PMC6124007 DOI: 10.1186/s12891-018-2227-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND IDC in children, first reported by Baron in 1924, is very rare. OPLL of the cervical spine mainly affect people ages 50-70 years. The coexistence of IDC and OPLL in children is very rare, only six cases with 3 to 24 months' follow-up were reported to date. CASE PRESENTATION A 6-year-old boy presented with complains of neck pain at July 2007. The boy was treated by conservative treatment and observed up for 9 years. Neck pain greatly improved after a one-month conservative treatment and never recur. Laboratory tests revealed elevated ESR and CRP at admission and found nothing abnormal at 19-month and 9-year follow-up. Computed tomography and magnetic resonance imaging revealed IDC at C2/3, C3/4 and OPLL at C3/4 at admission and found minor calcification at C2/3 remained but calcification at C3/4 and OPLL at C3/4 completely disappeared at 19-month and 9-year follow-up. Nineteen months after initial diagnosis, restoration of T2-weighted signal intensity of C2/3 and C3/4 discs was observed through MRI. Loss of T2-weighted signal intensity of C2/3 disc and decrease of T2-weighted signal intensity of C3/4 disc was observed at 9-year follow-up. CONCLUSIONS IDC with OPLL in children is very rare. Conservative treatments are recommended with affirmative short-term and long-term clinical effects. More intensive observation with long-term follow-ups may be needed to warrant the clinical effects.
Collapse
Affiliation(s)
- Jun-Jie Du
- Department of Orthopaedics, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, People's Republic of China.
| | - Yu-Fei Chen
- Department of Orthopaedics, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, People's Republic of China.
| | - Ye Peng
- Department of Orthopaedics, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, People's Republic of China
| | - Xiao-Jie Li
- Department of Orthopaedics, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, People's Republic of China
| | - Wei Ma
- Department of Orthopaedics, Air Force General Hospital of PLA, 30 Fucheng Road, Beijing, 100142, People's Republic of China
| |
Collapse
|
49
|
Human notochordal cell transcriptome unveils potential regulators of cell function in the developing intervertebral disc. Sci Rep 2018; 8:12866. [PMID: 30150762 PMCID: PMC6110784 DOI: 10.1038/s41598-018-31172-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/01/2018] [Indexed: 11/08/2022] Open
Abstract
The adult nucleus pulposus originates from the embryonic notochord, but loss of notochordal cells with skeletal maturity in humans is thought to contribute to the onset of intervertebral disc degeneration. Thus, defining the phenotype of human embryonic/fetal notochordal cells is essential for understanding their roles and for development of novel therapies. However, a detailed transcriptomic profiling of human notochordal cells has never been achieved. In this study, the notochord-specific marker CD24 was used to specifically label and isolate (using FACS) notochordal cells from human embryonic and fetal spines (7.5–14 weeks post-conception). Microarray analysis and qPCR validation identified CD24, STMN2, RTN1, PRPH, CXCL12, IGF1, MAP1B, ISL1, CLDN1 and THBS2 as notochord-specific markers. Expression of these markers was confirmed in nucleus pulposus cells from aged and degenerate discs. Ingenuity pathway analysis revealed molecules involved in inhibition of vascularisation (WISP2, Noggin and EDN2) and inflammation (IL1-RN) to be master regulators of notochordal genes. Importantly, this study has, for the first time, defined the human notochordal cell transcriptome and suggests inhibition of inflammation and vascularisation may be key roles for notochordal cells during intervertebral disc development. The molecules and pathways identified in this study have potential for use in developing strategies to retard/prevent disc degeneration, or regenerate tissue.
Collapse
|
50
|
Schubert AK, Smink JJ, Pumberger M, Putzier M, Sittinger M, Ringe J. Standardisation of basal medium for reproducible culture of human annulus fibrosus and nucleus pulposus cells. J Orthop Surg Res 2018; 13:209. [PMID: 30134986 PMCID: PMC6106880 DOI: 10.1186/s13018-018-0914-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022] Open
Abstract
Background The lifetime prevalence of degenerative disc disease is dramatically high. Numerous investigations on disc degeneration have been performed on cells from annulus fibrosus (AF) and nucleus pulposus (NP) of the intervertebral disc (IVD) in cell culture experiments utilising a broad variety of basal culture media. Although the basal media differ in nutrient formulation, it is not known whether the choice of the basal media itself has an impact on the cell’s behaviour in vitro. In this study, we evaluated the most common media used for monolayer expansion of AF and NP cells to set standards for disc cell culture. Methods Human AF and NP cells were isolated from cervical discs. Cells were expanded in monolayer until passage P2 using six different common culture media containing alpha-Minimal Essential Medium (alpha-MEM), Dulbecco’s Modified Eagle’s Medium (DMEM) or Ham’s F-12 medium (Ham’s F-12) as single medium or in a mixture of two media (alpha/F-12, DMEM/alpha, DMEM/F-12). Cell morphology, cell growth, glycosaminoglycan production and quantitative gene expression of cartilage- and IVD-related markers aggrecan, collagen type II, forkhead box F1 and keratin 18 were analysed. Statistical analysis was performed with two-way ANOVA testing and Bonferroni compensation. Results AF and NP cells were expandable in all tested media. Both cell types showed similar cell morphology and characteristics of dedifferentiation known for cultured disc cells independently from the media. However, proceeding culture in Ham’s F-12 impeded cell growth of both AF and NP cells. Furthermore, the keratin 18 gene expression profile of NP cells was changed in alpha-MEM and Ham’s F-12. Conclusion The impact of the different media itself on disc cell’s behaviour in vitro was low. However, AF and NP cells were only robust, when DMEM was used as single medium or in a mixture (DMEM/alpha, DMEM/F-12). Therefore, we recommend using these media as standard medium for disc cell culture. Our findings are valuable for the harmonisation of preclinical study results and thereby push the development of cell therapies for clinical treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany. .,CO.DON AG, Teltow, Germany.
| | | | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Putzier
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| |
Collapse
|