1
|
Zhang M, Liu Y, Wang H, Shi Y, Zhang Y, Ma T, Chen J. Downregulation of HSP47 Triggers ER Stress-mediated Apoptosis of Hypertrophic Chondrocytes Contributing to T-2 toxin-induced Cartilage Damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125640. [PMID: 39756565 DOI: 10.1016/j.envpol.2025.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
T-2 toxin contamination in food and feed is a growing global concern, with its toxic effects on developing cartilage remaining poorly understood. In this study, we constructed an animal model using 4-week-old male Sprague-Dawley rats, which were administered T-2 toxin (200 ng/g body weight per day) by gavage for one month. Histological analysis showed a significant reduction in hypertrophic chondrocytes and increased caspase-3 expression and TUNEL staining in the deep cartilage zone of T-2 toxin-treated rats. T-2 toxin exposure significantly decreased the expression of heat shock protein 47 (HSP47) and elevated ER stress-mediated apoptosis markers (BiP, caspase-12, and CHOP) in the cartilage of T-2 toxin-treated rats. In an in vitro hypertrophic ATDC5 chondrocyte model, T-2 toxin exposure (10, 25, 50 ng/mL) reduced cell viability and HSP47 expression, while increasing the expression of BiP, caspase-12, and CHOP. Treatment with the ER stress inhibitor Salubrinal suppressed the upregulation of caspase-3 activity, BiP, caspase-12, and CHOP while partially restoring HSP47 expression in T-2 toxin-treated hypertrophic ATDC5 chondrocytes. Furthermore, Hsp47 knockdown in hypertrophic ATDC5 chondrocytes increased the apoptosis ratio, caspase-3 activity, and the expression of BiP, caspase-12, and CHOP. In children with Kashin-Beck disease, a human condition associated with T-2 toxin exposure, reduced HSP47 expression and increased BiP and CHOP expression were observed in the deep zone of articular cartilage. These findings demonstrated that T-2 toxin-induced cartilage damage primarily involves hypertrophic chondrocyte apoptosis in the deep zone. Downregulation of HSP47 leads to ER stress-mediated apoptosis in T-2 toxin-induced cartilage damage. Inhibition of ER stress offers a potential therapeutic approach for mitigating T-2 toxin-induced cartilage damage.
Collapse
Affiliation(s)
- Meng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Yinan Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Hui Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Yawen Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Ying Zhang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Tianyou Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Jinghong Chen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
2
|
Hao S, Yao C, Meng P, Jia Y, Liu L, Zhang C. Effects of T-2 and deoxynivalenol mycotoxins on mouse spinal bone growth and integrity. Toxicon 2024; 250:108079. [PMID: 39214350 DOI: 10.1016/j.toxicon.2024.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Kashin-Beck Disease (KBD), an osteoarticular disorder, is influenced by various factors, including exposure to Deoxynivalenol (DON) and T-2 mycotoxins. This study systematically explored the impact of these mycotoxins on the development and structural resilience of spinal structures in mice, examining both isolated and combined effects. The experiment involved 72 male mice divided into nine groups, each subjected to varying concentrations of T-2, DON, or their combinations over four weeks. Rigorous monitoring included body weight, key indicators of bone metabolism, and cellular activities essential to bone health. Comprehensive evaluations using biomechanical analysis, x-ray, and micro-computed tomography (micro-CT) were conducted to assess alterations in spinal structure. The findings revealed a pivotal aspect: mice exhibited a dose-dependent decline in body weight when exposed to individual mycotoxins, while simultaneous exposure produced an unanticipated antagonistic effect. Moreover, decreases were noted in levels of calcium, phosphorus, and vitamin D, coupled with changes in the activities of osteoblasts (increased) and osteoclasts (decreased), all intricately tied to the toxins' dosages and combinations. Notably, variations in the biomechanical properties corresponded with the mycotoxin dosage and blend, showing a decline in biomechanical strength. Micro-CT analyses further substantiated the profound toxic impact of the toxin dosage and mixtures on both the cortical and trabecular components of the spinal structures. In summary, this investigation unequivocally illuminates the dose- and ratio-dependent deleterious impacts of DON and T-2 mycotoxins on the growth and structural soundness of spinal structures in mice. These findings highlight the urgent need for a comprehensive understanding of the potential hazards these toxins pose to bone health, providing invaluable guidance for future toxicological research and public health strategies.
Collapse
Affiliation(s)
- Shuichu Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cong Yao
- Nursing Department, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Peilin Meng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, China
| | - Yumen Jia
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, China
| | - Chun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Hao S, Yao C, Meng P, Jia Y, Li L, Zhang C. The spinal consequences of HT-2 toxin and selenium deficiency during bone maturation in mice. Mycotoxin Res 2024:10.1007/s12550-024-00554-1. [PMID: 39414753 DOI: 10.1007/s12550-024-00554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024]
Abstract
In our investigation, we probed the ramifications of low selenium diets and HT-2 mycotoxin exposure on spinal development and structural fidelity in murine models. A cohort of 48 male mice was segregated into six groups: a control set, a singular low selenium diet group, two cohorts exposed to distinct concentrations of HT-2 toxin (1.6 and 3.2 mg/kg·bw·d), and two assemblies subjected to a confluence of low selenium intake and each designated HT-2 dosage. Across an 8-week investigative period, parameters such as body mass, markers of bone metabolism, and cellular vigor were assiduously monitored. Analytical techniques encompassed biomechanical assessments, X-ray scrutiny, and micro-computed tomography (micro-CT) evaluations. Our results unveiled a dose-dependent diminution in the body mass of mice exclusively exposed to HT-2 toxin, whereas concurrent exposure to both low selenium and HT-2 toxins elicited a synergistic effect. Pertinent shifts were observed in calcium, phosphorus, and vitamin D concentrations, as well as in the operational dynamics of osteoblasts and osteoclasts, aligning with toxin dosage and combined exposure. Variations in biomechanical attributes were also discerned, mirroring the levels of toxin exposure. Micro-CT and X-ray examinations further corroborated the extensive detrimental impact on the cortical and trabecular architecture of the mice's spinal columns. This inquiry elucidates the complex synergistic interactions between low selenium and HT-2 mycotoxin on murine spinal development and integrity under co-exposure conditions. These findings accentuate the exigency of comprehensively understanding the solitary and joint effects of these toxins on osseous health, providing pivotal insights for future toxicological research and public health strategies.
Collapse
Affiliation(s)
- Shuichu Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cong Yao
- Nursing Department, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Peilin Meng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yumen Jia
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Liu Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Zhang Q, Yang X, Deng X, Niu H, Zhao Y, Wen J, Wang S, Liu H, Guo X, Wu C. Transcriptome-wide RNA m6A methylation profiles in an endemic osteoarthropathy, Kashin-Beck disease. J Cell Mol Med 2024; 28:e70047. [PMID: 39428571 PMCID: PMC11491295 DOI: 10.1111/jcmm.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
Kashin-Beck disease (KBD) is a chronic degenerative, disabling disease of the bones and joints and its exact aetiology and pathogenesis remain uncertain. This study is to investigate the role of m6A modification in the pathogenesis of KBD. Combined analysis of m6A MeRIP-Seq and RNA-Seq were used to analyse human peripheral blood samples from three KBD patients and three normal controls (NC). Bioinformatic methods were used to analyse m6A-modified differential genes and RT-qPCR was performed to validate the mRNA expression of several KBD-related genes. The results indicated that the total of 16,811 genes were modified by m6A in KBD group, of which 4882 genes were differential genes. A large number of differential genes were associated with regulation of transcription, signal transduction and protein binding. KEGG analysis showed that m6A-enriched genes participated the pathways of Vitamin B6 metabolism, endocytosis and Rap 1 signalling pathway. There was a positive association between m6A abundance and levels of gene expression, that there were 6 hypermethylated and upregulated genes (hyper-up), 23 hypomethylated and downregulated genes (hypo-down) in KBD group compared with NC. In addition, the mRNA expression of levels of MMP8, IL32 and GPX1 were verified and the protein-protein interaction networks of these key factors were constructed. Our study showed that m6A modifications may play a vital role in modulating gene expression, which represents a new clue to reveal the pathogenesis of KBD.
Collapse
Affiliation(s)
- Qian Zhang
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xiaodong Yang
- Shaanxi Provincial Institute for Endemic Disease Prevention and ControlXi'anPeople's Republic of China
| | - Xingxing Deng
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Hui Niu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yijun Zhao
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Jinfeng Wen
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Sen Wang
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Huan Liu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xiong Guo
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Cuiyan Wu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
5
|
Lu C, Yang W, Chu F, Wang S, Ji Y, Liu Z, Yu H, Qin S, Sun D, Jiao Z, Sun H. Hesperetin Attenuates T-2 Toxin-Induced Chondrocyte Injury by Inhibiting the p38 MAPK Signaling Pathway. Nutrients 2024; 16:3107. [PMID: 39339707 PMCID: PMC11434908 DOI: 10.3390/nu16183107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Hesperetin, a flavonoid derived from citrus fruits, exhibits potent antioxidant and anti-inflammatory activities and has been implicated in cartilage protection. However, its effectiveness against T-2 toxin-induced knee cartilage damage remains unclear. METHODS In this study, high-throughput sequencing analysis was employed to identify the key signaling pathways involved in T-2 toxin-induced articular cartilage damage in rats. Animal models were divided into the following groups: control, low-dose T-2 toxin, high-dose T-2 toxin, T-2 toxin + hesperetin, hesperetin, and vehicle. Pathological staining and immunohistochemistry were used to assess pathological changes, as well as the expression levels of the cartilage matrix-related proteins MMP13 and collagen II, along with the activation of the p38 MAPK signaling pathway. Additionally, primary rat chondrocytes were cultured to establish an in vitro model for investigating the underlying mechanism. RESULTS High-throughput sequencing analysis revealed the involvement of the MAPK signaling pathway in T-2 toxin-induced articular cartilage damage in rats. Hesperetin intervention in T-2 toxin-exposed rats attenuated pathological cartilage damage. Immunohistochemistry results demonstrated a significant reduction in collagen II protein expression in the high-dose T-2 toxin group (p < 0.01), accompanied by a significant increase in MMP13 protein expression (p < 0.01). In both the articular cartilage and the epiphyseal plate, the T-2 toxin + hesperetin group exhibited significantly higher collagen II protein expression than the high-dose T-2 toxin group (p < 0.05), along with significantly lower MMP13 protein expression (p < 0.05). Hesperetin inhibited the over-activation of the p38/MEF2C signaling axis induced by T-2 toxin in primary rat chondrocytes. Compared to the T-2 toxin group, the T-2 toxin + hesperetin group showed significantly reduced phosphorylation levels of p38 and protein expression levels of MEF2C (p < 0.001 or p < 0.05). Moreover, the T-2 toxin + hesperetin group exhibited a significant decrease in MMP13 protein expression (p < 0.05) and a significant increase in collagen II protein expression (p < 0.01) compared to the T-2 toxin group. CONCLUSIONS T-2 toxin activates the p38 MAPK signaling pathway, causing knee cartilage damage in rats. Treatment with hesperetin inhibits the p38/MEF2C signaling axis, regulates collagen II and MMP13 protein expression, and reduces cartilage injury significantly.
Collapse
Affiliation(s)
- Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Yi Ji
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
- Institute of Keshan Disease, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Zhipeng Liu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Hao Yu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Shaoxiao Qin
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Zhe Jiao
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
- Institute for Kashin Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
6
|
Deng X, Niu H, Zhang Q, Wen J, Zhao Y, Naren G, Liu H, Guo X, Zhang F, Wu C. Plasma metabolites and inflammatory proteins profiling predict outcome of Fufang Duzhong Jiangu granules treating Kashin-Beck disease. Biomed Chromatogr 2024; 38:e5945. [PMID: 38973475 DOI: 10.1002/bmc.5945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 07/09/2024]
Abstract
To investigate predictive biomarkers that could be used to identify patients' response to treatment, plasma metabolomics and proteomics analyses were performed in Kashin-Beck disease (KBD) patients treated with Fufang Duzhong Jiangu Granules (FDJG). Plasma was collected from 12 KBD patients before treatment and 1 month after FDJG treatment. LC-MS and olink proteomics were employed for obtaining plasma metabolomics profiling and inflammatory protein profiles. Patients were classified into responders and non-responders based on drug efficacy. Enrichment analyses of differential metabolites and proteins of the responders at baseline and after treatment were conducted to study the mechanism of drug action. Differential metabolites and proteins between the two groups were screened as biomarkers to predict the drug efficacy. The receiver operating characteristic curve was used to evaluate the prediction accuracy of biomarkers. The changes in metabolites and inflammatory proteins in responders after treatment reflected the mechanism of FDJG treatment for KBD, which may act on glycerophospholipid metabolism, d-glutamine and d-glutamate metabolism, nitrogen metabolism and NF-kappa B signaling pathway. Three metabolites were identified as potential predictors: N-undecanoylglycine, β-aminopropionitrile and PC [18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)]. For inflammatory protein, interleukin-8 was identified as a predictive biomarker to detect responders. Combined use of these four biomarkers had high predictive ability (area under the curve = 0.972).
Collapse
Affiliation(s)
- Xingxing Deng
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Niu
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qian Zhang
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinfeng Wen
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yijun Zhao
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gaowa Naren
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huan Liu
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiong Guo
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cuiyan Wu
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
7
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
8
|
Cao ZL, Wang CH, Ding XH, Wang ZD, Dong QY. Outcomes of ankle arthrodesis in adult patients with ankle osteoarthritis in Kashin-Beck disease. INTERNATIONAL ORTHOPAEDICS 2024; 48:2145-2151. [PMID: 38679689 DOI: 10.1007/s00264-024-06195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE We retrospectively evaluated the characteristics of these patients and the effectiveness of ankle arthrodesis in the treatment of ankle arthritis caused by Kashin-Beck disease (KBD). METHODS A retrospective study of KBD patients with ankle osteoarthritis who underwent ankle arthrodesis between December 2012 and January 2022 was performed. A total of 46 patients were included. The general characteristics, clinical manifestations and imaging features of the patients were recorded and summarized. measured using the VAS score, and ankle function was assessed by the AOFAS ankle-hindfoot score. RESULTS Multiple subchondral cystic changes were found in 42(91.3%) patients. The VAS scores for both resting and weight-bearing conditions were 6.28 ± 1.30 vs. 2.09 ± 1.12 (P < .001) and 6.87 ± 1.01 vs. 2.17 ± 0.98 (P < .001), respectively. The AOFAS scores were 59.17 ± 5.50 and 88.39 ± 1.42, respectively (P < .001). CONCLUSIONS The subchondral multiple cystic transformation of the ankle KBD has a certain suggestive role.Arthrodesis is an effective method to reduce ankle pain and improve ankle function in KBD patients with ankle osteoarthritis.
Collapse
Affiliation(s)
- Zhen Lu Cao
- Department of Hand, Foot and Microsurgery, the Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao City, 266000, Shandong Province, China
| | - Chen Han Wang
- Department of Hand, Foot and Microsurgery, the Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao City, 266000, Shandong Province, China
| | - Xiao Heng Ding
- Department of Hand, Foot and Microsurgery, the Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao City, 266000, Shandong Province, China
| | - Zheng Dan Wang
- Department of Hand, Foot and Microsurgery, the Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao City, 266000, Shandong Province, China
| | - Quan Yu Dong
- Department of Hand, Foot and Microsurgery, the Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao City, 266000, Shandong Province, China.
| |
Collapse
|
9
|
Chang H, Liu L, Zhang Q, Xu G, Wang J, Chen P, Li C, Guo X, Yang Z, Zhang F. A comparative metabolomic analysis reveals the metabolic variations among cartilage of Kashin-Beck disease and osteoarthritis. Bone Joint Res 2024; 13:362-371. [PMID: 39013544 PMCID: PMC11251783 DOI: 10.1302/2046-3758.137.bjr-2023-0403.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Aims The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After annotation, LC-MS identified significant expressions of ten upregulated and eight downregulated second-level metabolites, and 183 upregulated and 162 downregulated first-level metabolites between KBD and OA. We identified differentially expressed second-level metabolites that are highly associated with cartilage damage, including dimethyl sulfoxide, uric acid, and betaine. These metabolites exist in sulphur metabolism, purine metabolism, and glycine, serine, and threonine metabolism. Conclusion This comprehensive comparative analysis of metabolism in OA and KBD cartilage provides new evidence of differences in the pathogenetic mechanisms underlying cartilage damage in these two conditions.
Collapse
Affiliation(s)
- Hong Chang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingping Zhang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Gangyao Xu
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Jianpeng Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ping Chen
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Cheng Li
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Xianni Guo
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Zhengjun Yang
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Deng H, Lin X, Xiang R, Bao M, Qiao L, Liu H, He H, Wen X, Han J. Low selenium and T-2 toxin may be involved in the pathogenesis of Kashin-Beck disease by affecting AMPK/mTOR/ULK1 pathway mediated autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116503. [PMID: 38810288 DOI: 10.1016/j.ecoenv.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.
Collapse
Affiliation(s)
- Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huifang He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
11
|
Wang X, Zhang Y, Wu Y, Wang C, Li S, Yuan Y, Lv X, Liu Y, Chen F, Chen S, Zhang F, Guo X, Ning Y, Zhao H. Integration of miRNA in exosomes and single-cell RNA-seq profiles in endemic osteoarthritis, Kashin-Beck disease. Biofactors 2024; 50:725-737. [PMID: 38156801 DOI: 10.1002/biof.2033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Kashin-Beck disease (KBD) is an endemic, chronic degenerative joint disease in China. Exosomes miRNAs, as signaling molecules in intercellular communication, can transfer specific biological martials into target cell to regulate their function and might participate in the pathogenesis of KBD. We isolated serum and chondrocytes-derived exosomes, miRNA sequencing revealed exosomes miRNA profiles and differentially expressed miRNAs (DE-miRNAs) were identified. The target genes were predicted of known and novel DE-miRNAs with TargetScan 5.0 and miRanda 3.3a database. Single-cell RNA sequencing (scRNA-seq) was performed to identify chondrocyte clusters and their gene signatures in KBD. And we performed comparative analysis between the serum and chondrocytes-derived exosomes DE-miRNA target genes and differentially expressed genes of each cell clusters. A total of 20 DE-miRNAs were identified in serum-derived exosomes. In the miRNA expression of chondrocytes-derived exosomes, 53 DE-miRNAs were identified. 16,063 predicted targets were identified as the target genes in the serum-derived exosomes, 57,316 predicted targets were identified as the target genes in the chondrocytes-derived exosomes. Seven clusters were labeled by cell type according to the expression of previously described markers. Three hundred fifteen common genes were found among serum/chondrocytes-derived exosomes DE-miRNA target genes and DEGs identified by scRNA-seq analysis. We firstly integratly analyzed the serum and chondrocytes exosomes miRNA with single-cell RNA sequencing (scRNA-seq) data of KBD chondrocyte, the results showed that DE-miRNAs in exosomes might play a potential role in regulating genes expression in different KBD chondrocytes clusters by exosomes mediating cell-cell communications functions, which could improve the new diagnosis and treatment methods for KBD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yuequan Yuan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Xi Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
12
|
Hao S, Yao C, Meng P, Jia Y, Li L, Zhang C, Guo X. HT-2 mycotoxin and selenium deficiency: Effects on Femur development and integrity in Young mice. Toxicon 2024; 245:107767. [PMID: 38768830 DOI: 10.1016/j.toxicon.2024.107767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Kashin-Beck Disease (KBD), an osteoarticular disorder, is potentially influenced by several factors, among which selenium deficiency and HT-2 mycotoxin exposure are considered significant. However, the combined effect of these factors on femoral development remains unclear, Conducted over eight weeks on forty-eight male mice categorized into control, selenium-deficient, and HT-2 toxin-exposed groups, including dual-exposure sets, this study comprehensively monitored body weight, bone metabolism markers, and cellular health. Employing biomechanical analysis, micro-computed tomography (micro-CT), and transmission electron microscopy (TEM), we unearthed a reduction in body weight due to HT-2 toxin alone, with selenium deficiency exacerbating these effects synergistically. Our results unveil that both factors independently affect bone metabolism, yet their confluence leads to a pronounced degradation of bone health parameters, including alterations in calcium, phosphorus, and vitamin D levels, alongside marked changes in osteoblast and osteoclast activity and bone cell structures. The notable damage to femoral cortical and trabecular architectures underscores the perilous interplay between dietary selenium absence and HT-2 toxin presence, necessitating a deeper understanding of their separate and joint effects on bone integrity. These discoveries underscore the imperative for a nuanced approach to toxicology research and public health policy, highlighting the pivotal influence of environmental and nutritional factors on skeletal well-being.
Collapse
Affiliation(s)
- Shuichu Hao
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cong Yao
- Nursing Department, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Peilin Meng
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yumen Jia
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liu Li
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chun Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
13
|
Meng P, Liu H, Liu L, Wen Y, Zhang F, Zhang Y, Jia Y, Zhang Y, Zhang F, Guo X. Activation of Notch Signaling Pathway is involved in Extracellular Matrix Degradation in human induced pluripotent stem cells chondrocytes induced by HT-2 toxin. Food Chem Toxicol 2024; 189:114724. [PMID: 38734200 DOI: 10.1016/j.fct.2024.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Notch signaling regulates cartilage formation and homeostasis. Kashin-Beck Disease (KBD), an endemic osteochondropathy, is characterized by severe cartilage degradation. The etiology of KBD is related to the exposure of HT-2 toxin, a mycotoxin and primary metabolite of T-2 toxin. This study aims to explore the role of HT-2 toxin in the Notch signaling regulation and extracellular matrix (ECM) metabolism of hiPSCs-Chondrocytes. Immunohistochemistry and qRT-PCR were employed to investigate the expression of Notch pathway molecules in KBD articular cartilage and primary chondrocytes. hiPSCs-Chondrocytes, derived from hiPSCs, were treated with 100 ng/mL HT-2 toxin and the γ-secretase inhibitor (DAPT) for 48h, respectively. The markers related to the Notch signaling pathway and ECM were assessed using qRT-PCR and Western blot. Notch pathway dysregulation was prominent in KBD cartilage. HT-2 toxin exposure caused cytotoxicity in hiPSCs-Chondrocytes, and activated Notch signaling by increasing the mRNA and protein levels of NOTCH1 and HES1. HT-2 toxin also upregulated ECM catabolic enzymes and downregulated ECM components (COL2A1 and ACAN), indicating ECM degradation. DAPT-mediated Notch signaling inhibition suppressed the mRNA and protein level of ADAMTS5 expression while enhancing ECM component expression in hiPSCs-Chondrocytes. This study suggests that HT-2 toxin may induce ECM degradation in hiPSCs-Chondrocytes through activating Notch signaling.
Collapse
Affiliation(s)
- Peilin Meng
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China
| | - Huan Liu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China
| | - Li Liu
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China
| | - Yan Wen
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China
| | - Feng'e Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China
| | - Yanan Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China; School of Nursing, Lanzhou University, Lanzhou, 730000, PR China
| | - Yumeng Jia
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Feng Zhang
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China.
| | - Xiong Guo
- School of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, 710061, PR China; Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China.
| |
Collapse
|
14
|
Yao C, Hao S, Zhang C, Liu L, Jia Y, Meng P, Wu C, Guo X. Modulatory interactions of T-2 and deoxynivalenol mycotoxins on murine femoral development and osteological integrity. Food Chem Toxicol 2024; 188:114630. [PMID: 38604577 DOI: 10.1016/j.fct.2024.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
In this study, we conducted a systematic assessment of the effectsof deoxynivalenol (DON) and T-2 mycotoxins (T-2) on the developmental processes and structural integrity of murine femurs, considering both the isolated and synergistic effects of these toxins. To this end, we divided 72 male mice into nine groups, each subjected to varying dosages of T-2, DON, or their combinations. Over a four-week experimental period, meticulous monitoring was undertaken regarding the mice's body weight, biochemical markers of bone formation and resorption, and the activity of relevant cells. To comprehensively evaluate alterations in bone structure, we employed biomechanical analysis, micro-computed tomography (micro-CT), and transmission electron microscopy.Our findings unveiled a significant revelation: the mice exhibited a dose-dependent decrease in body weight upon exposure to individual mycotoxins, while the combined use of these toxins manifested an atypical antagonistic effect. Furthermore, we observed variations in the levels of calcium, phosphorus, and vitamin D, as well as adjustments in the activities of osteoblasts and osteoclasts, all intricately linked to the dosage and ratio of the toxins. Alterations in biomechanical properties were also noted to correlate with the dosage and combination of toxins. Analyses via micro-CT and transmission electron microscopy further corroborated the substantial impact of toxin dosage and combinations on both cortical and trabecular bone structures.In summation, our research unequivocally demonstrates the dose- and ratio-dependent detrimental effects of DON and T-2 mycotoxins on the growth and structural integrity of murine femurs. These insights accentuate the importance of a profound understanding of the potential risks these toxins pose to bone health, offering pivotal guidance for future toxicological research and public health preventative strategies.
Collapse
Affiliation(s)
- Cong Yao
- School of Public Health, Health Science Center, Xi'an Jiaotong University; NHC Key Laboratory of Environment and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an 710061, Shaanxi, PR China; Nursing Department, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuichu Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University; NHC Key Laboratory of Environment and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an 710061, Shaanxi, PR China
| | - Yumeng Jia
- School of Public Health, Health Science Center, Xi'an Jiaotong University; NHC Key Laboratory of Environment and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an 710061, Shaanxi, PR China
| | - Peilin Meng
- School of Public Health, Health Science Center, Xi'an Jiaotong University; NHC Key Laboratory of Environment and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an 710061, Shaanxi, PR China
| | - Cuiyan Wu
- School of Public Health, Health Science Center, Xi'an Jiaotong University; NHC Key Laboratory of Environment and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an 710061, Shaanxi, PR China.
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University; NHC Key Laboratory of Environment and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
15
|
Sun H, Lai Y, Ding Z, Cai Y, Luo Z, Zhou Z. The Long-term Efficacy of Total Knee Arthroplasty on End-stage Kashin-Beck Disease of the Knee in Highland Tibetan Areas Patients: A Retrospective Study with 10-Year Follow-up. Orthop Surg 2024; 16:1300-1307. [PMID: 38644516 PMCID: PMC11144507 DOI: 10.1111/os.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVE Despite the established success of total knee arthroplasty (TKA) with end-stage osteoarthritis, there is a notable scarcity of research on its long-term outcomes in individuals suffering from end-stage Kashin-Beck disease (KBD). This retrospective study aimed to assess the long-term outcomes and effectiveness of clinical function, quality of life, and complications of TKA and end-stage KBD patients in Tibetan highland areas. METHODS The retrospective cohort included 43 KBD patients, comprising a total of 59 knees, who had undergone TKA at West China Hospital, Sichuan University between 2008 and 2021. Patients were subsequently followed up for a minimum of 3 years, and received rigorous radiological and clinical assessments at 3, 6, and 12 months post surgery, followed by annual examinations thereafter. The evaluation included various efficacy indices, including visual analogue scale (VAS) scores, hospital for special surgery (HSS) scores, functional score for adult Tibetans with Kashin-Beck disease (FSAT-KBD), and radiographic findings. Comparison of indicators within the same group was conducted using one-way repeated-measures analysis of variance or paired sample t-tests, whereas between-group differences were compared using an independent t-test. RESULTS Throughout the average follow-up duration of 10.8 years, patients experienced a substantial reduction in knee pain and noteworthy functional improvement. The VAS scores decreased significantly from 77.47 ± 4.12 mm before surgery to 10.91 ± 1.97 mm after surgery, indicating considerable alleviation of knee pain. The HSS scores improved markedly, increasing from 44.26 ± 4.95 preoperatively to 91.26 ± 4.37, indicating enhanced joint function. Similarly, the FSAT-KBD exhibited positive progression, increasing from 25.90 ± 3.12 to 36.95 ± 3.54. Importantly, at the last follow-up, none of the patients presented with periprosthetic infection, prosthesis loosening, or periprosthetic fracture. CONCLUSION At long-term follow-up, compared with patients in the preoperative period, patients in Tibetan highland areas with KBD of the knee who underwent TKA benefited from a significant reduction in pain, improvement in joint function, and satisfactory improvement in quality of life.
Collapse
Affiliation(s)
- Haocheng Sun
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Yahao Lai
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Zichuan Ding
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Yongrui Cai
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Zeyu Luo
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Zongke Zhou
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Liu L, Luo P, Wen P, Xu P. Effects of selenium and iodine on Kashin-Beck disease: an updated review. Front Nutr 2024; 11:1402559. [PMID: 38757132 PMCID: PMC11096467 DOI: 10.3389/fnut.2024.1402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Kashin-Beck disease (KBD) is an endochondral osteogenesis disorder characterised by epiphysis damage and secondary deformable arthropathy induced by multiple external factors, among which selenium (Se) and iodine deficiency are important influencing factors. Iodine deficiency is usually accompanied by a low Se content in the soil in the KBD areas of China. Se can reverse oxidative damage to chondrocytes. In addition, Se is related to the bone conversion rate and bone mineral density. Low Se will hinder growth and change bone metabolism, resulting in a decrease in the bone conversion rate and bone mineral density. Thyroid hormone imbalance caused by thyroid dysfunction caused by iodine deficiency can damage bone homeostasis. Compared with Se deficiency alone, Se combined with iodine deficiency can reduce the activity of glutathione peroxidase more effectively, which increases the vulnerability of chondrocytes and other target cells to oxidative stress, resulting in chondrocyte death. Clinical studies have shown that supplementation with Se and iodine is helpful for the prevention and treatment of KBD.
Collapse
Affiliation(s)
| | | | | | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
17
|
Wu Y, Gong Y, Liu Y, Chen F, Chen S, Zhang F, Wang C, Li S, Hu M, Huang R, Guo X, Wang X, Ning Y, Yang L. Comparative Analysis of Differentially Expressed Genes in Chondrocytes from Rats Exposed to Low Selenium and T-2 Toxin. Biol Trace Elem Res 2024; 202:1020-1030. [PMID: 37326932 DOI: 10.1007/s12011-023-03725-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin-eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Sijie Chen
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chaowei Wang
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shujin Li
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China.
| | - Yujie Ning
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Lei Yang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
18
|
Cui S, Que W, Jiao Z, Deng Q, Zhang X, Cao Y, Liu N, Li A, Sowanou A, Li Z, Wang T, Li Y, Yu J, Pei J. Disease and Economic Burden of Kashin-Beck Disease - China, 2021. China CDC Wkly 2024; 6:40-44. [PMID: 38250701 PMCID: PMC10797301 DOI: 10.46234/ccdcw2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024] Open
Abstract
What is already known about this topic? Kashin-Beck disease (KBD) is a chronic and degenerative osteoarthropathy characterized by cartilage degeneration. It is an endemic disease that is highly prevalent among the Chinese population and poses a significant health risk. What is added by this report? This is the first national report on the economic burden of KBD in China. According to the data from 2021, KBD has caused significant disease and economic burdens. The most substantial reduction in healthy life expectancy was observed among patients with degree II severity and those aged 60 years and older, resulting in a total indirect economic burden of 112.74 million Chinese Yuan (CNY). What are the implications for public health practice? The results of this study will contribute to informing the development of tailored prevention and control strategies by the government. These strategies will include targeted policies and recommendations for appropriate healthcare and financial subsidies, which will be based on the demographic characteristics of the endemic areas.
Collapse
Affiliation(s)
- Silu Cui
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Kashin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Wenjun Que
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Zhe Jiao
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Kashin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Qing Deng
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Kashin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Xufeng Zhang
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Kashin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Yanhong Cao
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Kashin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Ning Liu
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Kashin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Ailin Li
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Alphonse Sowanou
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Zhe Li
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Tuo Wang
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Yang Li
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Jun Yu
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Kashin-Beck Disease Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Junrui Pei
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University); Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province; Institute of Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention; Harbin Medical University, Harbin City, Heilongjiang Province, China
| |
Collapse
|
19
|
Liu L, Liu H, Meng P, Zhang Y, Zhang F, Jia Y, Cheng B, Lammi MJ, Zhang F, Guo X. Involvement of Yes-Associated Protein 1 Activation in the Matrix Degradation of Human-Induced-Pluripotent-Stem-Cell-Derived Chondrocytes Induced by T-2 Toxin and Deoxynivalenol Alone and in Combination. Int J Mol Sci 2024; 25:878. [PMID: 38255951 PMCID: PMC10815455 DOI: 10.3390/ijms25020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.
Collapse
Affiliation(s)
- Li Liu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Huan Liu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Peilin Meng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Yanan Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
- School of Nursing, Lanzhou University, Lanzhou 730000, China
| | - Feng’e Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Yumeng Jia
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Bolun Cheng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Mikko J. Lammi
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden
| | - Feng Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Xiong Guo
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| |
Collapse
|
20
|
Liu H, Lin X, Chilufya MM, Qiao L, Bao M, Wen X, Xiang R, He H, Li M, Han J. Synergistic effects of T-2 toxin and selenium deficiency exacerbate renal fibrosis through modulation of the ERα/PI3K/Akt signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115748. [PMID: 38029582 DOI: 10.1016/j.ecoenv.2023.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.
Collapse
Affiliation(s)
- Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mumba Mulutula Chilufya
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huifang He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Miaoqian Li
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
21
|
Yang Q, Li C, Hu J, Hou X. Ultrasensitive determination of selenium in water and food samples by ICP-MS: UiO-66-NH 2 for preconcentration and direct slurry hydride generation. Anal Chim Acta 2023; 1283:341901. [PMID: 37977772 DOI: 10.1016/j.aca.2023.341901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Selenium is an indispensable microelement for humans and food is the main source of selenium intake. As one of the best techniques for the determination of selenium, inductive coupling plasma-mass spectrometry (ICP-MS) features some unique advantages, such as wide linear range and high sensitivity. Nevertheless, it still remains a challenge to achieve the accurate and high sensitivity determination of ultra-trace selenium in food samples by ICP-MS owning to the high first ionization energy of selenium and interferences from sample matrices as well as isobaric interferences. RESULTS In this work, UiO-66-NH2 (metal organic framework, MOF) was fast synthesized by microwave method and employed for the preconcentration of ultra-trace selenium with an adsorption efficiency of nearly 100%. The selenium-adsorbed MOF was collected by filtration, and then simply converted to slurry for in situ hydride generation (HG) for sensitive detection of selenium by ICP-MS. Various factors affecting the adsorption of selenium by the MOF (including pH, adsorption time, and amount of MOF) together with main parameters of hydride generation (including concentrations of HCl and NaBH4) were carefully evaluated. Experimental results show that effective matrix separation can greatly reduce interference, with an excellent detection limit of 1 ng/L. The practicability and accuracy of this method were successfully confirmed by the determination of trace selenium in several food samples. SIGNIFICANCE UiO-66-NH2 (MOF) was used as an effective adsorbent for the preconcentration of selenium prior to direct slurry sampling HG-ICP-MS determination. Direct slurry sampling avoided additional elution procedures and was conducive to eliminating matrix and isobaric interferences. High sensitivity and anti-interference determination were achieved for determination of ultra-trace Se in complex food samples.
Collapse
Affiliation(s)
- Qing Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China; College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jing Hu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
22
|
Li P, Cheng B, Yao Y, Yu W, Liu L, Cheng S, Zhang L, Ma M, Qi X, Liang C, Chu X, Ye J, Sun S, Jia Y, Guo X, Wen Y, Zhang F. WISP1 Is Involved in the Pathogenesis of Kashin-Beck Disease via the Autophagy Pathway. Int J Mol Sci 2023; 24:16037. [PMID: 38003226 PMCID: PMC10671535 DOI: 10.3390/ijms242216037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Kashin-Beck disease (KBD) is a kind of endemic and chronic osteochondropathy in China. This study aims to explore the functional relevance and potential mechanism of Wnt-inducible signaling pathway protein 1 (WISP1) in the pathogenesis of KBD. DESIGN KBD and control cartilage specimens were collected for tissue section observation and primary chondrocyte culture. Firstly, the morphological and histopathological observations were made under a light and electron microscope. Then, the expression levels of WISP1 as well as molecular markers related to the autophagy pathway and extracellular matrix (ECM) synthesis were detected in KBD and control chondrocytes by qRT-PCR, Western blot, and immunohistochemistry. Furthermore, the lentiviral transfection technique was applied to make a WISP1 knockdown cell model based on KBD chondrocytes. In vitro intervention experiments were conducted on the C28/I2 human chondrocyte cell line using human recombinant WISP1 (rWISP1). RESULTS The results showed that the autolysosome appeared in the KBD chondrocytes. The expression of WISP1 was significantly higher in KBD chondrocytes. Additionally, T-2 toxin, a risk factor for KBD onset, could up-regulate the expression of WISP1 in C28/I2. The autophagy markers ATG4C and LC3II were upregulated after the low-concentration treatment of T-2 toxin and downregulated after the high-concentration treatment. After knocking down WISP1 expression in KBD chondrocytes, MAP1LC3B decreased while ATG4C and COL2A1 increased. Moreover, the rWISP1 protein treatment in C28/I2 chondrocytes could upregulate the expression of ATG4C and LC3II at the beginning and downregulate them then. CONCLUSIONS Our study suggested that WISP1 might play a role in the pathogenesis of KBD through autophagy.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Wenxing Yu
- Department of Joint Surgery, Xi’an Honghui Hospital, Health Science Center, Xi’an Jiaotong University, Xi’an 710054, China;
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Shiquan Sun
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| |
Collapse
|
23
|
Wen Y, Wang B, Shi P, Chu X, Shi S, Yao Y, Zhang L, Zhang F. A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin-Beck Disease, an Osteoarthropathy Endemic to China. Nutrients 2023; 15:4651. [PMID: 37960304 PMCID: PMC10650499 DOI: 10.3390/nu15214651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Background: Kashin-Beck disease (KBD) is a distinct osteoarthropathy in China with an unclear pathogenesis. This study aims to explore whether perturbations in the intestine metabolome could be linked to KBD individuals. Methods: An investigation was conducted in KBD endemic villages and fecal samples were collected. After applying inclusion and exclusion criteria, a total of 75 subjects were enrolled for this study, including 46 KBD (including 19 Grade I KBD and 27 Grade II KBD) and 29 controls. Untargeted metabolomics analysis was performed on the platform of UHPLC-MS. PLS-DA and OPLS-DA were conducted to compare the groups and identify the differential metabolites (DMs). Pathway analysis was conducted on MPaLA platform to explore the functional implication of the DMs. Results: Metabolomics analysis showed that compared with the control group, KBD individuals have a total of 584 differential metabolites with dysregulated levels such as adrenic acid (log2FC = -1.87, VIP = 4.84, p = 7.63 × 10-7), hydrogen phosphate (log2FC = -2.57, VIP = 1.27, p = 1.02 × 10-3), taurochenodeoxycholic acid (VIP = 1.16, log2FC = -3.24, p = 0.03), prostaglandin E3 (VIP = 1.17, log2FC = 2.67, p = 5.61 × 10-4), etc. Pathway analysis revealed several significantly perturbed pathways associated with KBD such as selenium micronutrient network (Q value = 3.11 × 10-3, Wikipathways), metabolism of lipids (Q value = 8.43 × 10-4, Reactome), free fatty acid receptors (Q value = 3.99 × 10-3, Reactome), and recycling of bile acids and salts (Q value = 2.98 × 10-3, Reactome). Subgroup comparisons found a total of 267 differential metabolites were shared by KBD vs. control, KBD II vs. control, and KBD I vs. control, while little difference was found between KBD II and KBD I (only one differential metabolite detected). Conclusions: KBD individuals showed distinct metabolic features characterized by perturbations in lipid metabolism and selenium-related bioprocesses. Our findings suggest that the loss of nutrients metabolism balance in intestine was involved in KBD pathogenesis. Linking the nutrients metabolism (especially selenium and lipid) to KBD cartilage damage should be a future direction of KBD study.
Collapse
Affiliation(s)
- Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
- Medical Department, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| |
Collapse
|
24
|
Yu F, Wang M, Luo K, Sun L, Yu S, Zuo J, Wang Y. Expression Profiles of Long Non-Coding RNAs in the Articular Cartilage of Rats Exposed to T-2 Toxin. Int J Mol Sci 2023; 24:13703. [PMID: 37762015 PMCID: PMC10530968 DOI: 10.3390/ijms241813703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
T-2 toxin could induce bone damage. But there is no specific mechanism about the long non-coding RNAs (lncRNAs) involved in T-2 toxin-induced articular cartilage injury. In this study, 24 SD rats were randomly divided into a control group and a T-2 group, which were administered 4% absolute ethanol and 100 ng/g · bw/day of T-2 toxin, respectively. After treatment for 4 weeks, safranin O/fast green staining identified the pathological changes in the articular cartilage of rats, and immunofluorescence verified the autophagy level increase in the T-2 group. Total RNA was isolated, and high-throughput sequencing was performed. A total of 620 differentially expressed lncRNAs (DE-lncRNAs) were identified, and 326 target genes were predicted. Enrichment analyses showed that the target genes of DE-lncRNAs were enriched in the autophagy-related biological processes and pathways. According to the autophagy database, a total of 23 autophagy-related genes were identified, and five hub genes (Foxo3, Foxo1, Stk11, Hdac4, and Rela) were screened using the Maximal Clique Centrality algorithm. The Human Protein Atlas database indicated that Rela and Hdac4 proteins were highly expressed in the bone marrow tissue, while Foxo3, Foxo1, and Stk11 proteins were reduced. According to Enrichr, etoposide and diatrizoic acid were identified as the key drugs. The real-time quantitative PCR results were consistent with the RNA sequencing (RNA-Seq) results. These results suggested that autophagy was involved in the rat articular cartilage lesions induced by T-2 toxin. The lncRNAs of NONRATG014223.2, NONRATG012484.2, NONRATG021591.2, NONRATG024691.2, and NONRATG002808.2, and their target genes of Foxo3, Foxo1, Stk11, Hdac4, and Rela, respectively, were the key regulator factors of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (M.W.); (K.L.); (L.S.); (S.Y.); (J.Z.)
| |
Collapse
|
25
|
Yu F, Luo K, Wang M, Luo J, Sun L, Yu S, Zuo J, Wang Y. Selenomethionine Antagonized microRNAs Involved in Apoptosis of Rat Articular Cartilage Induced by T-2 Toxin. Toxins (Basel) 2023; 15:496. [PMID: 37624253 PMCID: PMC10467099 DOI: 10.3390/toxins15080496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
T-2 toxin and selenium deficiency are considered important etiologies of Kashin-Beck disease (KBD), although the exact mechanism is still unclear. To identify differentially expressed microRNAs (DE-miRNAs) in the articular cartilage of rats exposed to T-2 toxin and selenomethionine (SeMet) supplementation, thirty-six 4-week-old Sprague Dawley rats were divided into a control group (gavaged with 4% anhydrous ethanol), a T-2 group (gavaged with 100 ng/g·bw/day T-2 toxin), and a T-2 + SeMet group (gavaged with 100 ng/g·bw/day T-2 toxin and 0.5 mg/kg·bw/day SeMet), respectively. Toluidine blue staining was performed to detect the pathological changes of articular cartilage. Three rats per group were randomly selected for high-throughput sequencing of articular cartilage. Target genes of DE-miRNAs were predicted using miRanda and RNAhybrid databases, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were enriched. The network map of miRNA-target genes was constructed using Cytoscape software. The expression profiles of miRNAs associated with KBD were obtained from the Gene Expression Omnibus database. Additionally, the DE-miRNAs were selected for real-time quantitative PCR (RT-qPCR) verification. Toluidine blue staining demonstrated that T-2 toxin damaged articular cartilage and SeMet effectively alleviated articular cartilage lesions. A total of 50 DE-miRNAs (28 upregulated and 22 downregulated) in the T-2 group vs. the control group, 18 DE-miRNAs (6 upregulated and 12 downregulated) in the T-2 + SeMet group vs. the control group, and 25 DE-miRNAs (5 upregulated and 20 downregulated) in the T-2 + SeMet group vs. the T-2 group were identified. Enrichment analysis showed the target genes of DE-miRNAs were associated with apoptosis, and in the MAPK and TGF-β signaling pathways in the T-2 group vs. the control group. However, the pathway of apoptosis was not significant in the T-2 + SeMet group vs. the control group. These results indicated that T-2 toxin induced apoptosis, whereas SeMet supplementation antagonized apoptosis. Apoptosis and autophagy occurred simultaneously in the T-2 + SeMet group vs. T-2 group, and autophagy may inhibit apoptosis to protect cartilage. Compared with the GSE186593 dataset, the evidence of miR-133a-3p involved in apoptosis was more abundant. The results of RT-qPCR validation were consistent with RNA sequencing results. Our findings suggested that apoptosis was involved in articular cartilage lesions induced by T-2 toxin, whereas SeMet supplementation antagonized apoptosis, and that miR-133a-3p most probably played a central role in the apoptosis process.
Collapse
Affiliation(s)
- Fangfang Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Kangting Luo
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Miao Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Jincai Luo
- Sanmenxia Center for Disease Control and Prevention, Sanmenxia 472000, China;
| | - Lei Sun
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Shuiyuan Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Juan Zuo
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| |
Collapse
|
26
|
He Y, Shi Y, Zhang Y, Zhang R, Cao L, Liu Y, Ma T, Chen J. T-2 toxin-induced chondrocyte apoptosis contributes to growth plate damage through Smad2 and Smad3 signaling. Toxicon 2023:107193. [PMID: 37423522 DOI: 10.1016/j.toxicon.2023.107193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
The growth plate cartilage is one of the most common areas that Kashin-Beck Disease attacks. However, the exact mechanism of growth plate damage remains unclear. Here, we demonstrated that Smad2 and Smad3 were closely associated with the differentiation of chondrocytes. Reduction of Smad2 and Smad3 were found both in T-2 toxin-induced human chondrocytes in vitro and in T-2 toxin-induced rat growth plate in vivo. Blunting Smad2 or Smad3 both strikingly induced human chondrocytes apoptosis, implying a plausible signaling pathway to clarify the mechanism of T-2 toxin-induced oxidative damage. Furthermore, decreased Smad2 and Smad3 were also observed in the growth plates of KBD children. Collectively, our findings clearly illustrated that T-2 toxin-induced chondrocyte apoptosis contributes to growth plate damage through Smad2 and Smad3 signaling, which refines the pathogenesis of endemic osteoarthritis and provides two potential targets for the prevention and repairment of endemic osteoarthritis.
Collapse
Affiliation(s)
- Ying He
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Shaanxi, China; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Yawen Shi
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Shaanxi, China
| | - Ying Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Shaanxi, China
| | - Ruotong Zhang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Yinan Liu
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Shaanxi, China
| | - Tianyou Ma
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Shaanxi, China.
| | - Jinghong Chen
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Shaanxi, China.
| |
Collapse
|
27
|
Zhang D, Zhang D, Yang X, Li Q, Zhang R, Xiong Y. The Role of Selenium-Mediated Notch/Hes1 Signaling Pathway in Kashin-Beck Disease Patients and Cartilage Injury Models. Biol Trace Elem Res 2023; 201:2765-2774. [PMID: 36083571 DOI: 10.1007/s12011-022-03387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022]
Abstract
Kashin-Beck disease (KBD) is a nutrition-related osteoarthropathy, and selenium (Se) deficiency is an environmental risk factor for KBD. Notch/Hes1 signaling pathway plays a vital role in regulating cartilage, but its exact mechanisms in KBD remain unknown. The Se contents were determined using the hydride atomic fluorescence spectrometry assay technique, and the mRNA levels were detected via quantitative real-time PCR. The chondrocyte injury models were established by Se deficiency and tert-butyl hydroperoxide (tBHP), respectively; apoptosis and necrosis rates were detected using Hoechst 33,342/PI and Annexin V-FITC/PI. The results showed that the Se levels in the flour of KBD areas were lower than that of the non-KBD areas, and the Se levels in the plasma of KBD patients were lower than that of the controls. The expressions of Notch1, Jagged1, and Hes1 were higher in the whole blood of KBD patients than those of the controls, and Notch1 was negatively correlated with the expression of BCL2, while was positively correlated with BAX. In injury, chondrocytes induced by low Se and tBHP, the expression of Notch1, Jagged1, and Hes1 increased, apoptosis and necrosis rates increased in Se deficiency and tBHP groups, while Se supplementation reversed it. Decreased plasma Se in KBD patients may be related to low dietary Se. Se deficiency might be involved in the pathological process of KBD by activating the Notch/Hes1 signaling pathway to induce excessive apoptosis of chondrocytes, the activation of Notch/Hes1 promotes oxidative injury, and Se supplementation could reverse it. The importance of Notch/Hes1 signaling pathway in KBD development will provide a new potential target for KBD.
Collapse
Affiliation(s)
- Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaoli Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rongqiang Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - YongMin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
28
|
Wang S, Wang Y, Li X, Yuan L, Guo X, Lammi MJ. ATAC-seq reveals the roles of chromatin accessibility in the chondrocytes of Kashin-Beck disease compared with primary osteoarthritis. Front Genet 2023; 14:1169417. [PMID: 37287534 PMCID: PMC10241996 DOI: 10.3389/fgene.2023.1169417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023] Open
Abstract
Objective: This study aimed to investigate the roles of accessible chromatin in understanding the different pathogeneses between Kashin-Beck disease (KBD) and primary osteoarthritis (OA). Methods: Articular cartilages of KBD and OA patients were collected, and after tissue digestion, primary chondrocytes were cultured in vitro. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) was performed to compare the accessible chromatin differences of chondrocytes between KBD and OA groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were executed for the promoter genes. Then, the IntAct online database was used to generate networks of significant genes. Finally, we overlapped the analysis of differentially accessible region (DAR)-associated genes and differentially expressed genes (DEGs) obtained from whole-genomic microarray. Results: We obtained 2,751 total DARs, which contained 1,985 loss and 856 gain DARs and belonged to 11 location distributions. We obtained 218 motifs associated with loss DARs, 71 motifs associated with gain DARs, 30 motif enrichments of loss DARs, and 30 motif enrichments of gain DARs. In total, 1,749 genes are associated with loss DARs, and 826 genes are associated with gain DARs. Among them, 210 promoter genes are associated with loss DARs, and 112 promoter genes are associated with gain DARs. We obtained 15 terms of GO enrichment and 5 terms of KEGG pathway enrichment from loss DAR promoter genes, and 15 terms of GO enrichment and 3 terms of KEGG pathway enrichment from gain DAR promoter genes. We obtained CAPN6 and other 2 overlap genes from loss DARs-vs-down DEGs, AMOTL1 from gain DARs-vs-down DEGs, EBF3 and other 12 overlap genes from loss DARs-vs-up DEGs, and ADARB1 and other 10 overlap genes from 101 gain DARs-vs-up DEGs. These overlap genes were built into 4 gene interaction networks. Conclusion: FGF7, GPD1L, NFIB, RUNX2, and VCAM1 were the overlapped genes from the DAR-associated genes and DEGs. These genes were associated with the abnormal chondrocyte function, which may play crucial roles in different processes between KBD and OA in the way of accessible chromatin.
Collapse
Affiliation(s)
- Sen Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuanji Wang
- Department of Pharmacy, The First Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Xingyu Li
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Linlin Yuan
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mikko J. Lammi
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| |
Collapse
|
29
|
Wang H, Li Z, Liu Y, Zhang M, Shi Y, Zhang Y, Mi G, Wang M, He Y, Chen Y, Chen C, Chen J. Effects of Selenoprotein S Knockdown on Endoplasmic Reticulum Stress in ATDC5 Cells and Gene Expression Profiles in Hypertrophic Chondrocytes. Biol Trace Elem Res 2023; 201:1965-1976. [PMID: 35725994 DOI: 10.1007/s12011-022-03313-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022]
Abstract
Selenoprotein S (SelS), a member of the selenoprotein family, is mainly located on the endoplasmic reticulum (ER) membrane. SelS is involved in a variety of biological processes, including oxidative stress, inflammation, glucose metabolism regulation, and ER-associated protein degradation (ERAD). This study was designed to explore the role of SelS in chondrocytes. It was confirmed that SelS is a Se-sensitive selenoprotein in low-selenium rat and cell models. ER stress was not induced in SelS knockdown ATDC5 cells. However, treatment of ATDC5 cells with tunicamycin (Tm), an ER stress inducer, increased the expression of SelS, and knockdown of SelS aggravated ER stress induced by Tm, suggesting that SelS is a regulatory molecule involved in ER stress in chondrocytes. Both osteoarthritis and Kashin-Beck disease are osteochondral diseases associated with hypertrophic chondrocyte abnormalities. Therefore, ATDC5 cells were induced to hypertrophic chondrocytes. SelS was knocked down and RNA sequencing was performed. Bioinformatics analysis of the differentially expressed genes (DEGs) revealed that SelS knockdown affected a variety of biological processes, including cell adhesion, osteoclast differentiation, and extracellular matrix homeostasis. Collectively, this study verified that SelS is sensitive to selenium levels and is an ER stress-responsive molecule. Knocking down SelS can cause abnormal expression of adhesion molecules and matrix homeostasis disorder in hypertrophic chondrocytes.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhengzheng Li
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinan Liu
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Zhang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yawen Shi
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Zhang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ge Mi
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengying Wang
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying He
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghui Chen
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jinghong Chen
- Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
30
|
Wu X, Hao C, Ling M, Jin Z, Sun Z, Chang Y, Liu S, Yi Z, Zhu Z. Prevalence and radiographic features of atlantoaxial dislocation in adult patients with Kashin-Beck disease. INTERNATIONAL ORTHOPAEDICS 2023; 47:781-791. [PMID: 36348088 DOI: 10.1007/s00264-022-05616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Kashin-Beck disease (KBD) is an endemic osteoarthropathy affecting the epiphyseal growth plate of multiple joints in young and adolescent patients. Previous studies have focused on the visible deformed extremities instead of the spinal radiological features, especially the atlantoaxial joint. The aim of this study was to determine the prevalence and radiographic features of atlantoaxial dislocation (AAD) in adult patients with KBD. METHODS This study was conducted on KBD patients in three typical endemic counties between October 2017 and November 2019. The patients were evaluated by collecting basic information, clinical signs and symptoms. They underwent dynamic cervical radiography, by which AAD was diagnosed. For those patients with confirmed or suspected AAD, computed tomography (CT) imaging was performed to observe the odontoid morphology and degenerative changes in the lateral atlantoaxial joints. Radiographic evaluations were reviewed to determine the prevalence and features of AAD. RESULTS A total of 39 (14.6%) of 267 KBD patients were diagnosed with AAD. Compared with the non-AAD patients, the detection rate of AAD was associated with a longer disease duration and stage and was not associated with age, sex or BMI. Thirty-two patients had symptoms at the neck or neurological manifestations, while seven had no symptoms. There were three types of morphologies of the odontoid process in AAD patients: separating in 19 cases, hypoplastic in 15 cases and intact in five cases. Anterior dislocation was noted in 29 cases, and posterior dislocation was noted in ten cases. Thirty-four cases were reducible, and five were irreducible. The lateral atlantoaxial joints had different severities of degenerative changes in 17 cases. CONCLUSIONS This study revealed that the prevalence of AAD was 14.6% in adult KBD patients. The radiographic features of AAD include manifestations of odontoid dysplasia and chronic degenerative changes in atlantoaxial joints. KBD patients with severe stages and longer disease duration were more vulnerable to the occurrence of AAD. We postulate that this atlantoaxial anomaly might originate from chondronecrosis of the epiphyseal growth plate of the odontoid process in young and adolescent individuals. This study may provide a clinical reference to help clinicians screen, prevent and treat AAD in adult patients with KBD.
Collapse
Affiliation(s)
- Xueyuan Wu
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China
| | - Cuipei Hao
- Department of Gynaecology Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China
| | - Ming Ling
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China.
| | - Zhankui Jin
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China
| | - Zhengming Sun
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China
| | - Yanhai Chang
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China
| | - Shizhang Liu
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China
| | - Zhi Yi
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China
| | - Zhehui Zhu
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, No. 256 You Yi Western Road, Xi'an, 710068, Shaanxi Province, China
| |
Collapse
|
31
|
Wang Y, Song C, Ji Y, Xia J, Chen C, Haque M, Zhuang J, Zhou C, Zu J, Li X, Yan J. Clinical and Radiographic Features of the Atlantoaxial Dislocation Associated With Kashin-Beck Disease. World Neurosurg 2023; 171:e1-e7. [PMID: 36049725 DOI: 10.1016/j.wneu.2022.08.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Keshin-Beck disease (KBD) is a particular type of osteoarthritis that affects many joints. However, the deformity of atlantoaxial joint has been rarely reported in KBD, and therefore its clinical and radiograph features have not been identified. METHODS We reviewed data in 14 patients who were diagnosed with atlantoaxial dislocation (AAD) in KBD at our institution. The demographic data, clinical history, imaging data, operative data, and Japanese Orthopaedic Association score were collected for evaluation. RESULTS The mean age at presentation was 50 ± 1.7 years old. The most common features of AAD in KBD were the osteoarthritis, characterized by hypertrophic dens and anterior arch of the atlas. The average inner anteroposterior diameter (IAPD) of C1 was 28 ± 3.5 mm and the average spinal canal diameter was 14 ± 3.3 mm, which were respectively lower than the control level. Five patients had severe C1 stenosis (IAPD < 26mm). Separated odontoid process, like os odontoideum, was seen 9 patients. The tip of dens fused to C1 was observed in 4 patients; 12 patients had high-riding vertebral artery; and 5 patients had severe C1 stenosis, and they underwent C1 laminectomy with C1-C2 interarticular fusion or occipital-cervical fusion. All the patients displayed neurologic improvement after surgery. CONCLUSIONS The atlantoaxial level could be affected by KBD, which may lead to typical abnormalities and cause AAD. A C1 laminectomy with an C1-C2 interarticular fusion or occipital-cervical fusion is recommended for the patient with severe stenosis.
Collapse
Affiliation(s)
- Yufu Wang
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China
| | - Chengchao Song
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China
| | - Ye Ji
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China
| | - Jingjun Xia
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China
| | - Chao Chen
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Moinul Haque
- College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jinpeng Zhuang
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China
| | - Changlong Zhou
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China
| | - Jianing Zu
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China
| | - Xuefeng Li
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China
| | - Jinglong Yan
- Department of Orthopedic Surgery, Harbin Medical University-the Second Affiliated Hospital, Harbin, China.
| |
Collapse
|
32
|
Ning Y, Chen S, Zhang F, Liu Y, Chen F, Li S, Wang C, Wu Y, Gong Y, Hu M, Huang R, Guo X, Yang L, Wang X. The alteration of urinary metabolomics profiles in Kashin-Beck disease in a three consecutive year study. Mol Omics 2023; 19:137-149. [PMID: 36508252 DOI: 10.1039/d2mo00297c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kashin-Beck disease (KBD) is a serious, endemic chronic osteochondral disease characterized by symmetrical enlargement of the phalanges, brachydactyly, joint deformity, and even dwarfism. To investigate the urinary metabolomic profiles of KBD patients, we performed an untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS). Adult urinary specimens were collected from 39 patients with KBD and 19 healthy subjects; the children's urinary specimens were collected from 5 patients with KBD, 25 suspected KBD cases and 123 healthy subjects in the KBD endemic area during a three consecutive year study. We identified 10 upregulated and 28 downregulated secondary level metabolites highly associated with aetiology and pathogenesis of KBD between adult KBD and adult controls. A total of 163, 967 and 795 metabolites were significantly different in the urine among children with KBD, suspected children with KBD cases and healthy child controls, respectively, for each year in three consecutive years. HT-2 toxin, Se-adenosylselenomethionine (AdoSeMet), the toxin T2 tetrol, and many kinds of amino acids were identified as differential metabolites in this study. Amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, arachidonic acid metabolism, D-glutamine and D-glutamate metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and D-glutamine and D-glutamate metabolism were perturbed pathways in adult and child KBD patients. Our study provides new insight into the underlying mechanisms of KBD, and suggests that we should pay more attention to these differences in small-molecule metabolites and metabolic pathways in the environmental aetiology and pathogenesis of KBD.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Shujin Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Chaowei Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China.
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China. .,Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, Shaanxi Province, 710004, People's Republic of China
| | - Lei Yang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, P. R. China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| |
Collapse
|
33
|
Shi Y, Shao X, Sun M, Ma J, Li B, Zou N, Li F. MiR-140 is involved in T-2 toxin-induced matrix degradation of articular cartilage. Toxicon 2023; 222:106987. [PMID: 36462649 DOI: 10.1016/j.toxicon.2022.106987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
T-2 toxin is one of the most toxic mycotoxins contaminating various grains. It is considered an environmental risk factor for Kashin-Beck disease (KBD), an endemic degenerative osteochondrosis. Currently, the underlying molecular mechanisms of articular cartilage damage caused by T-2 toxin have not been elucidated. Studies have shown that miR-140 is essential for cartilage formation, and extracellular matrix (EMC) synthesis and degradation. The objective of this study was to investigate the mechanism of miR-140 involvement in T-2 toxin-induced articular cartilage damage. Two treatment groups, each containing wild-type mice and miR-140 knockout mice were administered with T-2 toxin (200 ng/g BW/day) or a normal diet for 1 month, 3 months, and 6 months. Results showed that T-2 toxin caused articular cartilage and growth plate damage in mice. The expression of miR-140 decreased in articular cartilage of wild-type mice treated with T-2 toxin, and miR-140 deficiency aggravated T-2 toxin-induced knee cartilage damage. T-2 toxin-caused the reduction of miR-140 expression was consistent with collagen type II (COL2A1), aggrecan (ACAN), and SRY-box containing gene 9 (SOX9) and opposite to matrix metalloproteinase 13 (MMP13), a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5), and v-ral simian leukemia viral oncogene homolog A (RALA). In addition, we collected finger joints cartilage and knee joints cartilage from KBD patients and controls for paraffin embedding and sectioning. Results found that the expression of miR-140 in the articular cartilage of the KBD group was lower than that of the control group. The expression of COL2A1, ACAN, and SOX9 decreased, whereas ADAMTS-5, MMP13, and RALA increased in the articular cartilage of the KBD group. These results revealed that miR-140 might be involved in T-2 toxin-induced degradation of the ECM of articular cartilage. Moreover, the occurrence of KBD might be related to the decreased expression of miR-140 in articular cartilage.
Collapse
Affiliation(s)
- Yaning Shi
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Xinhua Shao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Mengyi Sun
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jing Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Bingsu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Ning Zou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China.
| | - Fuyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
34
|
Lammi MJ, Wang X, Ning Y. Editorial: Genetic and environmental roles in bone and joint diseases. Front Genet 2023; 14:1177191. [PMID: 37152981 PMCID: PMC10160647 DOI: 10.3389/fgene.2023.1177191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Mikko J. Lammi
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- *Correspondence: Mikko J. Lammi,
| | - Xi Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi’an, China
| | - Yujie Ning
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi’an, China
| |
Collapse
|
35
|
Gong Y, Wu Y, Liu Y, Chen S, Zhang F, Chen F, Wang C, Li S, Hu M, Huang R, Xu K, Wang X, Yang L, Ning Y, Li C, Zhou R, Guo X. Detection of selenoprotein transcriptome in chondrocytes of patients with Kashin-Beck disease. Front Cell Dev Biol 2023; 11:1083904. [PMID: 36875769 PMCID: PMC9981956 DOI: 10.3389/fcell.2023.1083904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Background: Kashin-Beck disease (KBD) is a deformed osteochondral disease with a chronic progression that is restrictively distributed in eastern Siberia, North Korea, and some areas of China, and selenium deficiency has been identified as an important factor in the pathogenesis of this disease in recent years. Objective: The aim of this study is to investigate the selenoprotein transcriptome in chondrocytes and define the contribution of selenoprotein to KBD pathogenesis. Methods: Three cartilage samples were collected from the lateral tibial plateau of adult KBD patients and normal controls paired by age and sex for real-time quantitative polymerase chain reaction (RT-qPCR) to detect the mRNA expression of 25 selenoprotein genes in chondrocytes. Six other samples were collected from adult KBD patients and normal controls. In addition, immunohistochemistry was used on four adolescent KBD samples and seven normal controls (IHC) to determine the expression of proteins screened by RT-qPCR results that had different gene levels. Results: Increased mRNA expression of GPX1 and GPX3 was observed in chondrocytes, and stronger positive staining was displayed in the cartilage from both adult and adolescent patients. The mRNA levels of DIO1, DIO2, and DIO3 were increased in KBD chondrocytes; however, the percentage of positive staining decreased in the KBD cartilage of adults. Conclusion: The selenoprotein transcriptome, mainly the glutathione peroxidase (GPX) and deiodinase (DIO) families were altered in KBD and might play a vital role in the pathogenesis of KBD.
Collapse
Affiliation(s)
- Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Sijie Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Feiyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Chaowei Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Shujin Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Minhan Hu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Lei Yang
- Department of Nursing, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujie Ning
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Cheng Li
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, Shaanxi, China
| | - Rong Zhou
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, Shaanxi, China
| | - Xiong Guo
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China.,Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
36
|
Zhang Y, Fang Q, Liu Y, Zhang D, He Y, Liu F, Sun K, Chen J. Increased FGFR3 is involved in T-2 toxin-induced lesions of hypertrophic cartilage associated with endemic osteoarthritis. Hum Exp Toxicol 2023; 42:9603271231219480. [PMID: 38059300 DOI: 10.1177/09603271231219480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This study evaluated the effect of fibroblast growth factor receptor 3 (FGFR3) on damaged hypertrophic chondrocytes of Kashin-Beck disease (KBD). Immunohistochemical staining was used to evaluate FGFR3 expression in growth plates from KBD rat models and engineered cartilage. In vitro study, hypertrophic chondrocytes were pretreated by FGFR3 binding inhibitor (BGJ398) for 24 h before incubation at different T-2 toxin concentrations. Differentiation -related genes (Runx2, Sox9, and Col Ⅹ) and ECM degradation -related genes (MMP-13, Col Ⅱ) in the hypertrophic chondrocytes were analyzed using RT-PCR, and the corresponding proteins were analyzed using western blotting. Hypertrophic chondrocytes death was detected by the Annexin V/PI double staining assay. The integrated optical density of FGFR3 staining was increased in knee cartilage of rats and engineered cartilage treated with T-2 toxin. Both protein and mRNA levels of Runx2, Sox9, Col Ⅱ, and Col Ⅹ were decreased in a dose-dependent manner when exposed to the T-2 toxin and significantly upregulated by 1 μM BGJ398. The expression of MMP-1, MMP-9, and MMP-13 increased in a dose-dependent manner when exposed to T-2 toxin and significantly reduced by 1 μM BGJ398. 1 μM BGJ398 could prevent early apoptosis and necrosis induced by the T-2 toxin. Inhibiting the FGFR3 signal could alleviate extracellular matrix degradation, abnormal chondrocytes differentiation, and excessive cell death in T-2 toxin-induced hypertrophic chondrocytes.
Collapse
Affiliation(s)
- Ying Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qian Fang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
- Lanzhou Center for Disease Control and Prevention, Lanzhou, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Dan Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medical Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Kun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, China
| |
Collapse
|
37
|
Shi L, Liu Q, Yang H, Wang Q, Wang J, Fan Y. Inflammation-related pathways involved in damaged articular cartilage of rats exposed to T-2 toxin based on RNA-sequencing analysis. Front Genet 2022; 13:1079739. [PMID: 36544491 PMCID: PMC9760703 DOI: 10.3389/fgene.2022.1079739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Many studies have shown that ingestion of the T-2 toxin is harmful to articular cartilage. However, the mechanisms underlying damaged articular cartilage induced by T-2 toxin have not been elucidated. Twenty-four SD rats were randomly divided into T-2 toxin and control groups. In the control group, the 12 rats were administered 4% absolute ethanol by gavage, and in the T-2 toxin group, the 12 rats were administered T-2 toxin (100 ng/g, BW/day) by gavage. After the rats were sacrificed, the knee joints were collected, and RNA was extracted using TRIzol reagent for RNA sequencing (RNA-seq). Differentially expressed mRNA was identified based on p < 0.05 and | log2 (fold change) | > 1. The T-2 toxin-related genes were obtained from the GeneCards database. An online tool (https://www.bioinformatics.com.cn) was used for enrichment analysis. Hematoxylin and eosin (H&E) staining was used to observe damaged articular cartilage, and immunohistochemical (IHC) staining was used to validate differentially expressed proteins. The H&E staining shows the number of cells decreased significantly, and the arrangement of chondrocytes became disordered in the T-2 toxin group. RNA-seq analysis identified 195 upregulated and 89 downregulated mRNAs in the T-2 toxin group. The top immune-related biological processes (Gene Ontology) were regulation of hormone secretion, regulation of peptide hormone secretion, and regulation of transcription involved in cell fate commitment. KEGG pathway enrichment analysis revealed that the IL-17 and tumor necrosis factor signaling pathways were significantly expressed, and the IL-17 signaling pathway was also identified in the enrichment analysis of T-2 toxin-related genes. Also, Mmp3, Tnf, Mapk10, Ccl11, Creb5, Cxcl2, and Cebpb were significantly enriched in the two pathways. The immunohistochemical staining showed that the levels of Mmp3 and Tnf proteins were significantly increased in the T-2 toxin group, which was consistent with the RNA-seq results. This study revealed the critical roles of IL-17 and TNF signaling pathways in damaged cartilage induced by T-2 toxin.
Collapse
|
38
|
Ba Y, Sun L, Zuo J, Yu SY, Yang S, Ding LM, Feng ZC, Li ZY, Zhou GY, Yu FF. Association of oxidative stress and Kashin-Beck disease integrated Meta and Bioinformatics analysis. Osteoarthritis Cartilage 2022; 30:1606-1615. [PMID: 36096467 DOI: 10.1016/j.joca.2022.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the association between oxidative stress (OS) and Kashin-Beck disease (KBD). METHODS Terms associated with "KBD" and "OS" were searched in the six different databases up to October 2021. Stata 14.0 was used to pool the means and standard deviations using random-effect or fixed-effect model. The differentially expressed genes in the articular chondrocytes of KBD were identified, the OS related genes were identified by blasting with the GeneCards. The KEGG pathway and gene ontology enrichment analysis was conducted using STRING. RESULTS The pooled SMD and 95% CI showed hair selenium (-4.59; -6.99, -2.19), blood selenium (-1.65; -2.86, -0.44) and glutathione peroxidases (-4.15; -6.97, -1.33) levels were decreased in KBD, whereas the malondialdehyde (1.12; 0.60, 1.64), nitric oxide (2.29; 1.31, 3.27), nitric oxide synthase (1.07; 0.81, 1.33) and inducible nitric oxide synthase (1.69; 0.62, 2.77) were increased compared with external controls. Meanwhile, hair selenium (-2.71; -5.32, -0.10) and glutathione peroxidases (-1.00; -1.78, -0.22) in KBD were decreased, whereas the malondialdehyde (1.42; 1.04, 1.80), nitric oxide (3.08; 1.93, 4.22) and inducible nitric oxide synthase (0.81; 0.00, 1.61) were elevated compared with internal controls. Enrichment analysis revealed apoptosis was significantly correlated with KBD. The significant biological processes revealed OS induced the release of cytochrome c from mitochondria. The cellular component of OS located in the mitochondrial outer membrane. CONCLUSIONS The OS levels in KBD were significantly increased because of selenium deficiency, OS mainly occurred in mitochondrial outer membrane, released of cytochrome c from mitochondria, and induced apoptotic signaling pathway.
Collapse
Affiliation(s)
- Y Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - L Sun
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - J Zuo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - S-Y Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - S Yang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - L-M Ding
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - Z-C Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - Z-Y Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - G-Y Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - F-F Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
39
|
Liu Y, Li R, Zhan Y, Xie X, Luo C. Combined Proximal Tibial Osteotomy for Adult Kashin-Beck Disease with Severe Varus Knee Osteoarthritis: Case Report and Literature Review. Orthop Surg 2022; 14:3441-3447. [PMID: 36220786 PMCID: PMC9732621 DOI: 10.1111/os.13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kashin-Beck disease (KBD) is an endemic, chronic osteoarthropathy that seriously affects joint function and can lead to severe knee deformity. Osteotomy is considered to be one of the effective methods for the treatment of this disease. Therefore, we designed a novel type of osteotomy named combined proximal tibial osteotomy (CPTO), which combines the characteristics of opening-wedge high tibial osteotomy and tibial condylar valgus osteotomy. CASE PRESENTATION We report the case of a 48-year-old male with knee pain and varus deformity who was diagnosed with KBD and varus knee osteoarthritis (Kellgren-Lawrence stage IV). Considering the patient's relatively young age, a varus deformity of the right knee of 16.79°, and an intra-articular instability, we performed a CPTO treatment. In this procedure, we performed an L-shaped osteotomy from the medial edge of the proximal tibia to the intercondylar eminence and an osteotomy from the medial side of the proximal tibia to the lateral side through the same incision, to adjust the leg alignment and the congruity of the joint by valgus correction. At 29 months follow-up, this patient achieved satisfactory results, with a varus right knee of 2.87°. There was significant improvement in his right knee function, pain, and joint stability. CONCLUSIONS CPTO may be an acceptable treatment for KBD patients with severe knee varus deformity and intra-articular instability. It can be considered as an alternative treatment, especially for patients with advanced osteoarthritis needing knee preservation.
Collapse
Affiliation(s)
- Yunfei Liu
- Department of OrthopaedicsThe Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical UniversitySuzhouChina
| | - Ruiyang Li
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yu Zhan
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xuetao Xie
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Congfeng Luo
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
40
|
Deng H, Liu H, Yang Z, Bao M, Lin X, Han J, Qu C. Progress of Selenium Deficiency in the Pathogenesis of Arthropathies and Selenium Supplement for Their Treatment. Biol Trace Elem Res 2022; 200:4238-4249. [PMID: 34779998 DOI: 10.1007/s12011-021-03022-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Selenium, an essential trace element for human health, exerts an indispensable effect in maintaining physiological homeostasis and functions in the body. Selenium deficiency is associated with arthropathies, such as Kashin-Beck disease, rheumatoid arthritis, osteoarthritis, and osteoporosis. Selenium deficiency mainly affects the normal physiological state of bone and cartilage through oxidative stress reaction and immune reaction. This review aims to explore the role of selenium deficiency and its mechanisms existed in the pathogenesis of arthropathies. Meanwhile, this review also summarized various experiments to highlight the crucial functions of selenium in maintaining the homeostasis of bone and cartilage.
Collapse
Affiliation(s)
- Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Haobiao Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhihao Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Miaoye Bao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
41
|
Zhang F, Wu C, Zhang P, Wang X, Meng P, Tan S, Yuan L, Guo X. Abnormal Level of Manganese, Iron, Iodine, and Selenium in the Hair of Children Living in Kashin-Beck Disease Endemic Areas. Biol Trace Elem Res 2022; 200:4278-4288. [PMID: 34993910 DOI: 10.1007/s12011-021-03031-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Biological geochemistry is a main suggested cause of Kashin-Beck disease (KBD), due to the absence or excess of elements in the environment. Initially, Se deficiency is regarded as the most key role in the etiology of KBD, and selenium supplementation effectively helps to prevent and control KBD. However, several elements are reported to be relevant to KBD or selenium in succession, which indicated selenium deficiency is not the original etiology of KBD. The study comprehensively analyzed the characteristics of the bio-element profile of KBD and further re-examined the unique role of selenium in etiology. The study measured 14 elements, including sodium, potassium, calcium, phosphorus, magnesium, copper, iron, zinc, selenium, iodine, manganese, lead, arsenic, and mercury, which were detected from hair samples collected from 150 boys. Research participants were separated based on whether they had received any preventative treatment (with and without selenium supplementation). From endemic areas, 30 KBD and 30 healthy children without any preventative treatment were selected alongside 30 KBD and 30 healthy children with selenium supplementation. The participants from endemic areas were then compared to 30 healthy children living in non-endemic areas. Compared to the non-endemic group, the levels of iron and manganese were all significantly higher in the endemic groups and were further elevated in KBD participants (p < 0.05). In contrast, selenium and iodine levels in endemic areas were much lower than those of the control group (p < 0.05). The proportions of selenium excess (p < 0.05) and iodine deficiency (p < 0.05) in endemic groups were significantly lower than participants from non-endemic areas. Meanwhile, excess levels of iron (p < 0.05) and manganese (p < 0.05) were higher in the endemic groups. Moreover, the proportions of Zn/Fe and Se/Mn were found to be significantly lower in endemic area participants than those in the control group (p < 0.05). Three pairs of elements had a correlation coefficient value of more than 0.6: 0.7423 for manganese and calcium, 0.6446 for potassium and sodium, and 0.6272 for manganese and iron. The ratios of Se/Mn and Zn/Fe were associated with a correlation coefficient value of 0.8055. Magnesium, sodium, copper, and iodine levels were meticulously examined using binary regression analysis. This was also used to determine the ratios of Ca/Mg, Ca/P, Zn/Fe, Se/Mn, and Se/I. Thus, the study largely revealed the vital role of manganese, iron, and iodine (in conjunction with selenium) in KBD etiology and pathogenesis. High manganese and iron levels with low selenium and iodine levels were identified as characteristic features of the bio-element profile of KBD. The different element ratios reflect the interaction between several elements. The most significant of these were the proportions of Se/Mn and Zn/Fe, which may be significant in the occurrence and development of KBD.
Collapse
Affiliation(s)
- Feng'e Zhang
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Diseases and Health Promotion for Silk Road Region of Shaanxi Province, National Health Commission of the People's Republic of China, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Cuiyan Wu
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Diseases and Health Promotion for Silk Road Region of Shaanxi Province, National Health Commission of the People's Republic of China, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Pan Zhang
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, People's Republic of China
| | - Xi Wang
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Diseases and Health Promotion for Silk Road Region of Shaanxi Province, National Health Commission of the People's Republic of China, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Peilin Meng
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Diseases and Health Promotion for Silk Road Region of Shaanxi Province, National Health Commission of the People's Republic of China, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Sijia Tan
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Diseases and Health Promotion for Silk Road Region of Shaanxi Province, National Health Commission of the People's Republic of China, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Linlin Yuan
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Diseases and Health Promotion for Silk Road Region of Shaanxi Province, National Health Commission of the People's Republic of China, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiong Guo
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Diseases and Health Promotion for Silk Road Region of Shaanxi Province, National Health Commission of the People's Republic of China, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
42
|
Xu J, Wang J, Zhao H. The Prevalence of Kashin-Beck Disease in China: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2022; 201:3175-3184. [PMID: 36104539 DOI: 10.1007/s12011-022-03417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Kashin-Beck disease (KBD) is a serious degenerative chronic joint disease. However, there are few quantitative syntheses of KBD prevalence studies. In this study, an initial systematic review and meta-analysis were performed to study the prevalence of KBD in China. Five databases (PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI), WanFang Data, and the China Science-Technology Journal Database (VIP)) were searched by performing an overall search method to identify studies of KBD prevalence in China that were published from the inception of the database to May 30, 2022. The risk of bias was assessed with the standardized risk of bias tool. Heterogeneity was assessed with the I2 statistic. A random-effect meta-analysis was performed to study the prevalence of KBD through an analysis of published studies. A total of 34 studies involving 24,820 patients with KBD were included in this meta-analysis. These studies were geographically divided into 3 endemic areas. The pooled overall prevalence rate for KBD was 0.06% (95% CI, 0.04-0.08%). The pooled prevalence estimates were 0.05% (95% CI, 0.01-0.12%) for northeast endemic areas, 0.06% (95% CI, 0.03-0.09%) for northwest endemic areas, and 0.04% (95% CI, 0-0.14%) for southwest endemic areas. There was a negative correlation between KBD prevalence and the publication year. No potential risk of publication bias was found by Begg's test and Egger's test. The publication year and quality score were significantly associated with the detected heterogeneity. Our study indicates that the occurrence and development of KBD have been effectively controlled in recent decades. More effective strategies are needed to prevent and treat KBD.
Collapse
Affiliation(s)
- Junkui Xu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, 710054, China
| | - Junhu Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
43
|
Han J, Deng H, Lyu Y, Xiao X, Zhao Y, Liu J, Guo Z, Liu X, Qiao L, Gao H, Lammi MJ. Identification of N-Glycoproteins of Knee Cartilage from Adult Osteoarthritis and Kashin-Beck Disease Based on Quantitative Glycoproteomics, Compared with Normal Control Cartilage. Cells 2022; 11:cells11162513. [PMID: 36010590 PMCID: PMC9406367 DOI: 10.3390/cells11162513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Glycoproteins are involved in the development of many diseases, while the type and content of N-glycoproteins in the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) are still unclear. This research aims to identify N-glycoproteins in knee cartilage patients with OA and KBD compared with normal control (N) adults. The cartilage samples were collected from gender- and age-matched OA (n = 9), KBD (n = 9) patients, and N (n = 9) adults. Glycoproteomics and label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) obtained N-glycoproteins of KBD and OA. A total of 594 N-glycoproteins and 1146 N-glycosylation peptides were identified. The identified data were further compared and analyzed with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interactions (PPI). Pairwise comparison of the glycoproteins detected in the three groups showed that integrin beta-1 (ITGB1), collagen alpha-1 (II) chain (COL2A1), collagen alpha-1 (VII) chain (COL7A1), carbohydrate sulfotransferase 3 (CHST-3), carbohydrate sulfotransferase 4 (CHST-4), thrombospondin 2 (THBS2), bone morphogenetic protein 8A (BMP8A), tenascin-C (TNC), lysosome-associated membrane protein (LAMP2), and beta-glucuronidase (GUSB) were significantly differentially expressed. GO results suggested N-glycoproteins mainly belonged to protein metabolic process, single-multicellular and multicellular organism process, cell adhesion, biological adhesion, and multicellular organism development. KEGG and PPI results revealed that key N-glycoproteins were closely related to pathways for OA and KBD, such as phagosome, ECM-receptor interaction, lysosome, focal adhesion, protein digestion, and absorption. These results reflected glycoprotein expression for OA and KBD in the process of ECM degradation, material transport, cell-cell or cell-ECM interaction, and information transduction. These key significantly differentially expressed N-glycoproteins and pathways lead to the degeneration and degradation of the cartilage of OA and KBD mainly by disrupting the synthesis and catabolism of basic components of ECM and chondrocytes and interfering with the transfer of material or information. The key N-glycoproteins or pathways in this research are potential targets for pathological mechanisms and therapies of OA and KBD.
Collapse
Affiliation(s)
- Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (J.H.); (M.J.L.)
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yizhen Lyu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiang Xiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yan Zhao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiaxin Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ziwei Guo
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xuan Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hang Gao
- Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Mikko Juhani Lammi
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
- Correspondence: (J.H.); (M.J.L.)
| |
Collapse
|
44
|
Chen X, Liu H, Wang H, Zheng L, Li J, Yan L. Case report: A 3-year follow-up study of simultaneous bilateral total hip arthroplasty for Femoral head necrosis in a patient with Kashin-Beck Disease. Front Surg 2022; 9:978697. [PMID: 36003279 PMCID: PMC9393417 DOI: 10.3389/fsurg.2022.978697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Kashin-Beck Disease (KBD) is an endemic disease predominantly affecting joint and skeletal muscle, predisposing the articular cartilage to degeneration and necrosis. Currently,staged total hip arthroplasty is a common surgical method for advanced femoral head necrosis from KBD, but there are no reports in the literature on simultaneous bilateral total hip arthroplasty (SB-THA) for patients with KBD. Case presentation A 42-year-old male from Shaanxi Province, an endemic area, had bilateral hip pain for 4 years, with hips inversion and a crossed gait. After preoperative preparation, a SB-THA was performed by a posterolateral approach. Postoperative medication and functional exercises were administered and the patient was followed up for at least 3 years after discharge. The patient's hip mobility, hip scores and quality of life scores were recorded in detail during the follow-up. Result The patient stopped antibiotic treatment on the postoperative day-2, and all inflammatory indicators showed normal and started appropriate exercise, and the pain score decreased significantly. On the postoperative day-7, the patient had gradually adapted to various forms of rehabilitation exercises. He was discharged from the hospital on the postoperative day-10 and continued to be followed up. From the preoperative period to the last follow-up, the patient's bilateral hip mobility and functional scores improved significantly, and no adverse events such as hip pain, prosthesis loosening or dislocation were found at the last follow-up. Conclusion The patient's performance was satisfactory both intraoperatively and in the early postoperative period, but the hip scores and quality of life scores began to plateau or even decline from the third year after surgery to the last follow-up, probably due to the influence of further damage to articular cartilage in other parts of the body.
Collapse
Affiliation(s)
- Xiangyu Chen
- Medical College, Yangzhou University, Yangzhou, China
| | - Haibin Liu
- Fu County People’s Hospital, Yan'an, China
| | - Houqing Wang
- Medical College, Yangzhou University, Yangzhou, China
| | | | - Jiayu Li
- Dalian Medical University, Dalian, China
| | - Lianqi Yan
- Joint Department, Northern Jiangsu People’s Hospital (NJPH), Yangzhou, China
- Correspondence: Lianqi Yan
| |
Collapse
|
45
|
Yang L, Sun J, Zhang Y, Guo X, Zhao G. Comprehensive comparative analysis of histopathology and gene expression in subchondral bone between kashin-beck disease and primary osteoarthritis. Front Genet 2022; 13:942326. [PMID: 35923709 PMCID: PMC9339956 DOI: 10.3389/fgene.2022.942326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Kashin-Beck disease (KBD) is an endemic, degenerative osteoarthropathy that exhibits some similar characteristics to osteoarthritis (OA) but with different etiologies and pathogeneses. In addition to cartilage damage, microstructural changes of bone were observed in KBD. This study aimed to comparatively demonstrate the general histopathological changes, transcriptomics, and differentially expressed miRNAs of subchondral bone between KBD and OA. Tibial plateau subchondral bone samples were collected from eighteen patients with KBD and eighteen patients with OA. Histopathological changes were examined by hematoxylin-eosin (HE) staining, safranin O-fast green staining, and picrosirius red staining. RNA sequencing and miRNA array analysis were performed to screen the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), respectively. The subchondral bone samples of the tibial plateau of KBD and OA both showed increased thickness and sclerosis. A total of 179 DEGs and 124 DEMs were identified in subchondral bone between KBD and OA, which were involved in several vital GO terms and KEGG signaling pathways. Our results suggest that the pathological mechanisms of subchondral bone are different between KBD and OA, although they exhibit similar histopathological features. Integrated analysis revealed several genes such as ADAMTS14, SLC13A5, and CEACAM1, that may be crucial DEGs in subchondral bone between KBD and OA, suggesting that these genes could serve as potential differential diagnostic biomarkers for subchondral bone lesions in KBD and OA. These findings provide valuable information for further clarifying pathological changes in subchondral bone in KBD and OA.
Collapse
Affiliation(s)
- Lei Yang
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Jingwen Sun
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhang
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Guanghui Zhao,
| |
Collapse
|
46
|
Zhang D, Deng X, Liu Y, Zhang Y, Wang H, Zhang M, Fang Q, Yi C, Zhao X, Ma T, Wu C, Chen J. MMP-10 Deficiency Effects Differentiation and Death of Chondrocytes Associated with Endochondral Osteogenesis in an Endemic Osteoarthritis. Cartilage 2022; 13:19476035221109226. [PMID: 35818290 PMCID: PMC9280830 DOI: 10.1177/19476035221109226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine the matrix metalloproteinase-10 (MMP-10) expression pattern and to assess how it contributes to endochondral osteogenesis in Kashin-Beck disease (KBD). DESIGN The cartilages of KBD patients, Sprague-Dawley rats fed with selenium (Se)-deficient diet and/or T-2 toxin, and ATDC5 cells were used in this study. ATDC5 cells were induced into hypertrophic chondrocytes using a 1% insulin-transferrin-selenium (ITS) culture medium for 21 days. The expressions of MMP-10 in the cartilages were visualized by immunohistochemistry. The messenger RNA (mRNA) and protein expression levels were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting. MMP-10 short hairpin RNA (shRNA) was transfected into hypertrophic chondrocytes to knock down the gene expression of MMP-10. Meanwhile, the cell death of MMP-10-knockdown chondrocyte was detected using flow cytometry. RESULTS The expression of MMP-10 was decreased in the growth plates of children with KBD. A decreased expression of MMP-10 also was observed in the growth plates of rats fed with an Se-deficient diet and/or T-2 toxin exposure. The mRNA and protein expression levels of MMP-10 increased during the chondrogenic differentiation of ATDC5 cells. MMP-10 knockdown in hypertrophic chondrocytes significantly decreased the gene and protein expression of collagen type II (Col II), Col X, Runx2, and MMP-13. Besides, the percentage of cell apoptosis was significantly increased after MMP-10 knockdown in hypertrophic chondrocytes. CONCLUSION MMP-10 deficiency disrupts chondrocyte terminal differentiation and induces the chondrocyte's death, which impairs endochondral osteogenesis in the pathogenesis of KBD.
Collapse
Affiliation(s)
- Dan Zhang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Xingxing Deng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Yinan Liu
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Ying Zhang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Hui Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Meng Zhang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Qian Fang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Chengfen Yi
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Xiaoru Zhao
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Tianyou Ma
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Cuiyan Wu
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
- Cuiyan Wu, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China.
| | - Jinghong Chen
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
- Jinghong Chen, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China.
| |
Collapse
|
47
|
Lyu Y, Deng H, Qu C, Qiao L, Liu X, Xiao X, Liu J, Guo Z, Zhao Y, Han J, Lammi MJ. Identification of proteins and N-glycosylation sites of knee cartilage in Kashin-Beck disease compared with osteoarthritis. Int J Biol Macromol 2022; 210:128-138. [PMID: 35526762 DOI: 10.1016/j.ijbiomac.2022.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/02/2022] [Indexed: 11/18/2022]
Abstract
The aim of this study was to identify crucial proteins and N-glycosylated sites in the pathological mechanism of Kashin-Beck disease (KBD) compared with osteoarthritis (OA). Nine KBD knee subjects and nine OA knee subjects were selected for the study. Quantitative proteomics and N-glycoproteomics data of KBD and OA were obtained by protein and N-glycoprotein enrichment and LC-MS/MS analysis. Differentially expressed proteins or N-glycosylation sites were examined with a comparative analysis between KBD and OA. Total 2205 proteins were identified in proteomic analysis, of which 375 were significantly different. Among these, 121 proteins were up-regulated and 254 were down-regulated. In N-glycoproteomic analysis, 278 different N-glycosylated sites that were related to 187 N-glycoproteins were identified. Proteins and their N-glycosylated sites are associated with KBD pathological process including ITGB1, LRP1, ANO6, COL1A1, MXRA5, DPP4, and CSPG4. CRLF1 and GLG1 are proposed to associate with both KBD and OA pathological processes. Key pathways in KBD vs. OA proteomic and N-glycoproteomic analysis contained extracellular matrix receptor interaction, focal adhesion, phagosome, protein digestion, and absorption. N-glycosylation may influence the pathological process by affecting the integrity of chondrocytes or cartilage. It regulated the intercellular signal transduction pathway, which contributes to cartilage destruction in KBD.
Collapse
Affiliation(s)
- Yizhen Lyu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Huan Deng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Umeå 90185, Sweden
| | - Lichun Qiao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xuan Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiang Xiao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jiaxin Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ziwei Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| | - Mikko J Lammi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China; Department of Integrative Medical Biology, Umeå University, Umeå 90187, Sweden
| |
Collapse
|
48
|
Ning Y, Hu M, Gong Y, Huang R, Xu K, Chen S, Zhang F, Liu Y, Chen F, Chang Y, Zhao G, Li C, Zhou R, Lammi MJ, Guo X, Wang X. Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Res Ther 2022; 24:129. [PMID: 35637503 PMCID: PMC9150333 DOI: 10.1186/s13075-022-02819-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. Methods Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. Results The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. Conclusion Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02819-5.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Cheng Li
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Rong Zhou
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China. .,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
49
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
50
|
Kang X, Liu Y, Gong Y, Huang L, Liu H, Hu M, Huang R, Chen F, Chen S, Zhang F, Ning Y, Li C, Zhou R, Zhao H, Wang X, Guo X. The Status of Selenium and Zinc in the Urine of Children From Endemic Areas of Kashin-Beck Disease Over Three Consecutive Years. Front Nutr 2022; 9:862639. [PMID: 35464016 PMCID: PMC9033266 DOI: 10.3389/fnut.2022.862639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Selenium deficiency is one of the main risk factors for Kashin-Beck disease (KBD). This study aimed to detect the status of selenium and zinc in the urine of children from endemic areas of KBD over three consecutive years and to evaluate whether selenium and zinc levels in children in Shaanxi Province remain normal after stopping selenium supplementation. The samples of urine were collected in consecutive years (2017–2019) to detect selenium content by hydride generation atomic fluorescence spectrometry (HGAFS) and to detect zinc content by atomic absorption spectrophotometry (AAS). Generalized estimation equation (GEE) analysis was integrated to assess the comprehensive nutritional status and dietary structure of children. Data were processed in duplicate and analyzed by SPSS 18.0. This study included 30 X-ray-positive KBD cases and 123 healthy children aged 7–12 years. A total of 424 urine and 137 hair samples were collected over three consecutive years for selenium determination. The mean value of urinary selenium in all subjects was 6.86 μg/l (2017), 8.26 μg/l (2018), and 4.04 μg/l (2019), and the mean value of urinary zinc in all subjects was 0.36 mg/l (2017), 0.39 mg/l (2018), and 0.31 mg/l (2019) for the three consecutive years of 2017–2019. The mean values of urinary selenium were 6.56 and 6.94 μg/l (2017), 8.69 and 8.14 μg/l (2018), and 4.57 and 3.90 μg/l (2019) in the KBD-X and normal groups, respectively; and the mean value of urinary zinc were 0.38 and 0.35 mg/l (2017), 0.41 and 0.39 mg/l (2018), and 0.43 and 0.28 mg/l (2019) in the KBD-X and normal groups, respectively. The mean value of hair selenium in 137 subjects was 275.08 μg/kg and the mean values of hair selenium were 267.48 and 276.61 μg/kg in the KBD-X group and normal group, respectively. The level of selenium/zinc showed a trend of increasing first and then decreasing during the three consecutive years. The level of selenium in all subjects from the endemic areas was lower than normal, which reminds us to monitor the state of KBD constantly and adjust selenium salt supplementation in accordance with the changes in the KBD state.
Collapse
Affiliation(s)
- Xin Kang
- Department of Sports Medicine, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lin Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hongliang Liu
- Department of Orthopedics, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cheng Li
- Department of Kashin-Beck Disease and Keshan Disease Prevention, Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Rong Zhou
- Department of Kashin-Beck Disease and Keshan Disease Prevention, Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Hongmou Zhao
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Xi Wang
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Xiong Guo
| |
Collapse
|