1
|
Porter A, Newcomb E, DiStefano S, Poplawski J, Kim J, Axe M, Lucas Lu X. Triamcinolone acetonide has minimal effect on short- and long-term metabolic activities of cartilage. J Orthop Res 2024; 42:2426-2436. [PMID: 38860529 PMCID: PMC11479848 DOI: 10.1002/jor.25913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Intra-articular corticosteroid injections, such as triamcinolone acetonide (TA), are commonly used by clinicians to manage joint synovial inflammation. However, due to conflicting evidence in literature, there is a fear among clinicians that the injections may be harmful to otherwise healthy cartilage in young patients. The purpose of this study was to evaluate the effects of TA on young, healthy chondrocytes. Articular cartilage samples were harvested from bovine knee joints (1-2 months old). In both healthy and inflammatory (interleukin-1β) challenged cartilage, samples were treated with TA at doses ranging from 1 nM to 200 μM. Following a short- (2 days) or long-term (10-14 days) treatment, chondrocyte viability, proliferation, and extracellular matrix (ECM) synthesis and degradation were evaluated with a click chemistry-based technique. Chondrocyte viability, proliferation, and anabolic activity were all minimally affected by short-term and long-term TA treatment. After both acute and sustained inflammatory challenges, TA reduced the catabolic activities in cartilage, reducing nascent glycosaminoglycan loss and maintaining cartilage mechanical properties. Overall, at physiologically relevant doses, TA had minimal negative impact on chondrocytes when maintained within their native ECM. Clinical significance: The findings provide new insight for current clinical practices concerning the use of TA in intra-articular injections, especially in young patients, and established a foundation for future investigations into the impact of corticosteroids on joint homeostasis.
Collapse
Affiliation(s)
- Annie Porter
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Emily Newcomb
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Steven DiStefano
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Jacob Poplawski
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Jonathan Kim
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Michael Axe
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Xin Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Li D, Zheng S, Wei P, Xu Y, Hu W, Ma S, Tang C, Wang L. Synchronized long-term delivery of growth hormone and insulin-like growth factor 1 through poly (lactic-co-glycolic acid) nanoparticles on polycaprolactone scaffolds for enhanced osteochondral regeneration. Int J Biol Macromol 2024:136781. [PMID: 39454927 DOI: 10.1016/j.ijbiomac.2024.136781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The regeneration of osteochondral defects is challenging due to the complex structure of the osteochondral unit. This study aimed to develop a biomimetic scaffold by loading growth hormone (GH) and insulin-like growth factor-1 (IGF-1) into poly (lactic-co-glycolic acid) (PLGA) nanoparticles and incorporating them into polycaprolactone (PCL) scaffolds to promote synchronized osteochondral regeneration. The nanoparticles were successfully immobilized onto PCL scaffolds pre-modified with polydopamine (PDA) to enhance cell adhesion and proliferation. The scaffolds exhibited a sustained release of GH and IGF-1 over 30 days. In vitro studies using rabbit adipose-derived stem cells (ADSCs) showed that the GH/IGF-1 nanoparticle-loaded scaffolds (PCL/PDA/M-PLGA) significantly promoted cell proliferation, chondrogenic differentiation, and osteogenic differentiation compared to control PCL/PDA scaffolds. In vivo experiments using a rabbit osteochondral defect model revealed that the PCL/PDA/M-PLGA scaffolds facilitated superior osteochondral regeneration, evidenced by increased subchondral bone formation and cartilage matrix deposition. Overall, this study demonstrates the potential of GH/IGF-1 nanoparticle-loaded PCL scaffolds for synchronized osteochondral regeneration and provides a promising strategy for treating osteochondral defects.
Collapse
Affiliation(s)
- Dong Li
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Trauma Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People's Republic of China
| | - Suyang Zheng
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Peiran Wei
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yan Xu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wenhao Hu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Orthopedics, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, People's Republic of China
| | - Shengshan Ma
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Sports Medicine, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, People's Republic of China
| | - Cheng Tang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Liming Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Hamada M, Eskelinen ASA, Florea C, Mikkonen S, Nieminen P, Grodzinsky AJ, Tanska P, Korhonen RK. Loss of collagen content is localized near cartilage lesions on the day of injurious loading and intensified on day 12. J Orthop Res 2024. [PMID: 39312444 DOI: 10.1002/jor.25975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Joint injury can lead to articular cartilage damage, excessive inflammation, and post-traumatic osteoarthritis (PTOA). Collagen is an essential component for cartilage function, yet current literature has limited understanding of how biochemical and biomechanical factors contribute to collagen loss in injured cartilage. Our aim was to investigate spatially dependent changes in collagen content and collagen integrity of injured cartilage, with an explant model of early-stage PTOA. We subjected calf knee cartilage explants to combinations of injurious loading (INJ), interleukin-1α-challenge (IL) and physiological cyclic loading (CL). Using Fourier transform infrared microspectroscopy, collagen content (Amide I band) and collagen integrity (Amide II/1338 cm-1 ratio) were estimated on days 0 and 12 post-injury. We found that INJ led to lower collagen content near lesions compared to intact regions on day 0 (p < 0.001). On day 12, near-lesion collagen content was lower compared to day 0 (p < 0.05). Additionally, on day 12, INJ, IL, and INJ + IL groups exhibited lower collagen content along most of tissue depth compared to free-swelling control group (p < 0.05). CL groups showed higher collagen content along most of tissue depth compared to corresponding groups without CL (p < 0.05). Immunohistochemical analysis revealed higher MMP-1 and MMP-3 staining intensities localized within cell lacunae in INJ group compared to CTRL group on day 0. Our results suggest that INJ causes rapid loss of collagen content near lesions, which is intensified on day 12. Additionally, CL could mitigate the loss of collagen content at intact regions after 12 days.
Collapse
Affiliation(s)
- Moustafa Hamada
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Atte S A Eskelinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Cristina Florea
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petteri Nieminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Alan J Grodzinsky
- Departments of Biological Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, Massachusetts, USA
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Paz A, Lavikainen J, Turunen MJ, García JJ, Korhonen RK, Mononen ME. Knee-Loading Predictions with Neural Networks Improve Finite Element Modeling Classifications of Knee Osteoarthritis: Data from the Osteoarthritis Initiative. Ann Biomed Eng 2024; 52:2569-2583. [PMID: 38842728 PMCID: PMC11329407 DOI: 10.1007/s10439-024-03549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation.
Collapse
Affiliation(s)
- Alexander Paz
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, 70211, Kuopio, Finland.
- Escuela de Ingeniería Civil y Geomática, Universidad del Valle, Cali, Colombia.
| | - Jere Lavikainen
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Wellbeing Services County of North Savo, Kuopio, Finland
| | - Mikael J Turunen
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, 70211, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Wellbeing Services County of North Savo, Kuopio, Finland
| | - José J García
- Escuela de Ingeniería Civil y Geomática, Universidad del Valle, Cali, Colombia
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, 70211, Kuopio, Finland
| | - Mika E Mononen
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, 70211, Kuopio, Finland
| |
Collapse
|
5
|
Grottkau BE, Hui Z, Pang Y. Cellular Patterning Alone Using Bioprinting Regenerates Articular Cartilage Through Native-Like Cartilagenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308694. [PMID: 38763898 DOI: 10.1002/smll.202308694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Few studies have proved that bioprinting itself helps recapitulate native tissue functions mainly because the bioprinted macro shape can rarely, if ever, influence cell function. This can be more problematic in bioprinting cartilage, generally considered more challenging to engineer. Here a new method is shown to micro-pattern chondrocytes within bioprinted sub-millimeter micro tissues, denoted as patterned micro-articular-cartilages tissues (PA-MCTs). Under the sole influence of bioprinted cellular patterns. A pattern scoring system is developed after over 600 bioprinted cellular patterns are analyzed. The top-scored pattern mimics that of the isogenous group in native articular cartilage. Under the sole influence of this pattern during PA-MCTs bio-assembling into macro-cartilage and repairing cartilage defects, chondrogenic cell phenotype is preserved, and cartilagenesis is initiated and maintained. Neocartilage tissues from individual and assembled PA-MCTs are comparable to native articular cartilage and superior to cartilage bioprinted with homogeneously distributed cells in morphology, biochemical components, cartilage-specific protein and gene expression, mechanical properties, integration with host tissues, zonation forming and stem cell chondrogenesis. PA-MCTs can also be used as osteoarthritic and healthy cartilage models for therapeutic drug screening and cartilage development studies. This cellular patterning technique can pave a new way for bioprinting to recapitulate native tissue functions via tissue genesis.
Collapse
Affiliation(s)
- Brian E Grottkau
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhixin Hui
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yonggang Pang
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
6
|
Weber P, Asadikorayem M, Surman F, Zenobi-Wong M. Zwitterionic polymer-dexamethasone conjugates penetrate and protect cartilage from inflammation. Mater Today Bio 2024; 26:101049. [PMID: 38654933 PMCID: PMC11035115 DOI: 10.1016/j.mtbio.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Improving the pharmacokinetics of intra-articularly injected therapeutics is a major challenge in treating joint disease. Small molecules and biologics are often cleared from the joint within hours, which greatly reduces their therapeutic efficacy. Furthermore, they are often injected at high doses, which can lead to local cytotoxicity and systemic side effects. In this study, we present modular polymer-drug conjugates of zwitterionic poly(carboxybetaine acrylamide) (pCBAA) and the anti-inflammatory glucocorticoid dexamethasone (DEX) to create cartilage-targeted carriers with slow-release kinetics. pCBAA polymers showed excellent cartilage penetration (full thickness in 1 h) and retention (>50 % after 2 weeks of washing). DEX was loaded onto the pCBAA polymer by employing two different DEX-bearing comonomers to produce pCBAA-co-DEX conjugates with different release kinetics. The slow-releasing conjugate showed zero-order release kinetics in PBS over 70 days. The conjugates elicited no oxidative stress on chondrocytes compared to dose-matched free DEX and protected bovine cartilage explants from the inflammatory response after treatment with IL-1β. By combining cartilage targeting and sustained drug release properties, the pCBAA-co-DEX conjugates solve many issues of today's intra-articular therapeutics, which could ultimately enable better long-term clinical outcomes with fewer side effects.
Collapse
Affiliation(s)
- Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| |
Collapse
|
7
|
Dec P, Żyłka M, Burszewski P, Modrzejewski A, Pawlik A. Recent Advances in the Use of Stem Cells in Tissue Engineering and Adjunct Therapies for Tendon Reconstruction and Future Perspectives. Int J Mol Sci 2024; 25:4498. [PMID: 38674084 PMCID: PMC11050411 DOI: 10.3390/ijms25084498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Due to their function, tendons are exposed to acute injuries. This type of damage to the musculoskeletal system represents a challenge for clinicians when natural regeneration and treatment methods do not produce the expected results. Currently, treatment is long and associated with long-term complications. In this review, we discuss the use of stem cells in the treatment of tendons, including how to induce appropriate cell differentiation based on gene therapy, growth factors, tissue engineering, proteins involved in regenerative process, drugs and three-dimensional (3D) structures. A multidirectional approach as well as the incorporation of novel components of the therapy will improve the techniques used and benefit patients with tendon injuries in the future.
Collapse
Affiliation(s)
- Paweł Dec
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Małgorzata Żyłka
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Piotr Burszewski
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
8
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
10
|
Damjanov N, Zekovic A. Intra-articular autologous conditioned serum and triamcinolone injections in patients with knee osteoarthritis: a controlled, randomized, double-blind study. J Int Med Res 2023; 51:3000605231203851. [PMID: 37818751 PMCID: PMC10566289 DOI: 10.1177/03000605231203851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE This study was performed to assess the impact of autologous conditioned serum (ACS) when added to preceding intra-articular glucocorticoid therapy on pain, function, and quality of life outcomes over 24 weeks. METHODS In this single-center, randomized controlled trial involving 40 patients with advanced knee osteoarthritis (Kellgren-Lawrence grades III and IV), ACS or saline placebo was injected after 40 mg triamcinolone acetonide (TA) intra-articular injection. Numerical rating scale (NRS) pain scores and Knee Injury and Osteoarthritis Outcome Score (KOOS) assessments were conducted at baseline and at weeks 3, 6, 12, and 24. The primary endpoint was the change in KOOS Pain at 24 weeks. Patient safety events were also monitored. RESULTS At week 24, TA + ACS significantly improved KOOS Pain, Symptoms, Activities of Daily Living, Quality of Life, and KOOS Sport scores. TA + ACS also outperformed TA + placebo in NRS pain scores (average and maximum intensity) at week 24 and NRS pain score (at rest) at weeks 12 and 24. The TA injection followed by ACS or placebo was well-tolerated. CONCLUSION ACS adds long-term pain relief and functional improvement to the short-term pain relief provided by glucocorticoids.
Collapse
Affiliation(s)
- Nemanja Damjanov
- University of Belgrade School of Medicine, Institute of Rheumatology, Belgrade, Serbia
| | | |
Collapse
|
11
|
Xie C, Sun Q, Dong Y, Lu H, Li W, Lin Z, Li K, Cheng J, Liu Z, Qi J, Tang B, Lin L. Calcitriol-Loaded Multifunctional Nanospheres with Superlubricity for Advanced Osteoarthritis Treatment. ACS NANO 2023. [PMID: 37326369 DOI: 10.1021/acsnano.3c04241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Osteoarthritis (OA) is characterized by the lubrication dysfunction of a cartilage sliding interface caused by chronic joint inflammation, and effective nonsurgical therapy for advanced OA remains lacking. Addressing chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation simultaneously may hopefully tackle this challenge. Herein, we developed superlubricative zein@alginate/strontium@calcitriol (ZASC) nanospheres to treat advanced OA. ZASC was confirmed to significantly improve joint lubrication through traditional tribological tests and our proposed tribological experiment to mimic the intra-articular condition based on the human medial tibiofemoral joint tissues. This finding was attributed to the hydration lubrication formed around the alginate-strontium spheres that enabled ball-bearing lubrication and the filling of cartilage defects. Moreover, ZASCs that released calcitriol in a sustained manner showed proliferative, anti-inflammatory, and anti-apoptosis effects in vitro. Further experiments demonstrated that ZASC exerted chondroprotective effects by inhibiting the breakdown of the extracellular matrix in patient-derived OA cartilage explants. In vivo results demonstrated that ZASC can effectively maintain a normal gait to improve joint function, inhibit abnormal bone remodeling and cartilage degradation in early OA and can effectively reverse the advanced OA progression. Therefore, ZASC is a potentially nonsurgical therapeutic strategy for advanced OA treatments.
Collapse
Affiliation(s)
- Chao Xie
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Qili Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Yu Dong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Huiwen Lu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Wenhua Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Zhaowei Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Jinhao Cheng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Zhanpeng Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Jie Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Bin Tang
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| |
Collapse
|
12
|
Johnston BM, Grodzinsky AJ, Hammond PT. Charge shielding effects of PEG bound to NH 2-terminated PAMAM dendrimers - an experimental approach. SOFT MATTER 2023; 19:3033-3046. [PMID: 37038739 PMCID: PMC10131161 DOI: 10.1039/d2sm01698b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cationic poly(amido amine) (PAMAM) dendrimers exhibit great potential for use in drug delivery, but their high charge density leads to an inherent cytotoxicity. To increase biocompatibility, many studies have attached poly(ethylene glycol) (PEG) chains to the dendrimer surface. It is unclear how these tethered PEG chains influence the physicochemical properties of the dendrimer. Here, we develop a fluorescence-based assay utilizing anionic biological tissue to quantify the electrostatic binding affinity of a library of PEG-PAMAM conjugates with various PEG chain lengths and grafting densities. We find that covalently bound PEG chains reduce the electrostatic binding affinity more significantly than what can be achieved through covalent bonds only. Contrary to previous thought, this reduction is not explained by the steric hindrance effects of PEG chains, suggesting that other, non-covalent interactions between PEG and PAMAM are present. Using acetylated PAMAM conjugates, we convert electrostatic binding affinity to the number of charged amines accessible to the physiological environment. These data, coupled with 1H-NMR, allows us to study more closely the non-covalent interactions between PEG and PAMAM. We find that increasing PEG chain length increases the number of non-covalent interactions. Additionally, at low grafting densities, increasing the number of PEG chains on the PAMAM surface also increases the non-covalent interactions. At higher grafting densities, however, PEG chains sterically repel one another, forcing chains to elongate away from the surface and reducing the number of interactions between PAMAM and individual PEG chains. The data presented here provides a framework for a more precise mechanistic understanding of how the length and density of tethered PEG chains on PAMAM dendrimers influence drug delivery properties.
Collapse
Affiliation(s)
- Brandon M Johnston
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
- Koch Institute for Integrative Cancer Research, 500 Main St, Cambridge, MA, 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Paula T Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
- Koch Institute for Integrative Cancer Research, 500 Main St, Cambridge, MA, 02139, USA
| |
Collapse
|
13
|
Zhang C, Vedadghavami A, He T, Charles JF, Bajpayee AG. Cationic Carrier Mediated Delivery of Anionic Contrast Agents in Low Doses Enable Enhanced Computed Tomography Imaging of Cartilage for Early Osteoarthritis Diagnosis. ACS NANO 2023; 17:6649-6663. [PMID: 36989423 PMCID: PMC10629240 DOI: 10.1021/acsnano.2c12376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 06/03/2023]
Abstract
Cartilage tissue exhibits early degenerative changes with onset of osteoarthritis (OA). Early diagnosis is critical as there is only a narrow time window during which therapeutic intervention can reverse disease progression. Computed tomography (CT) has been considered for cartilage imaging as a tool for early OA diagnosis by introducing radio-opaque contrast agents like ioxaglate (IOX) into the joint. IOX, however, is anionic and thus repelled by negatively charged cartilage glycosaminoglycans (GAGs) that hinders its intra-tissue penetration and partitioning, resulting in poor CT attenuation. This is further complicated by its short intra-tissue residence time owing to rapid clearance from joints, which necessitates high doses causing toxicity concerns. Here we engineer optimally charged cationic contrast agents based on cartilage negative fixed charge density by conjugating cartilage targeting a cationic peptide carrier (CPC) and multi-arm avidin nanoconstruct (mAv) to IOX, such that they can penetrate through the full thickness of cartilage within 6 h using electrostatic interactions and elicit similar CT signal with about 40× lower dose compared to anionic IOX. Their partitioning and distribution correlate strongly with spatial GAG distribution within healthy and early- to late-stage arthritic bovine cartilage tissues at 50-100× lower doses than other cationic contrast agents used in the current literature. The use of contrast agents at low concentrations also allowed for delineation of cartilage from subchondral bone as well as other soft tissues in rat tibial joints. These contrast agents are safe to use at current doses, making CT a viable imaging modality for early detection of OA and staging of its severity.
Collapse
Affiliation(s)
- Chenzhen Zhang
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Armin Vedadghavami
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Tengfei He
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Julia F. Charles
- Department
of Orthopaedic Surgery, Brigham and Women’s
Hospital, 60 Fenwood Road, Boston, Massachusetts 02115, United States
| | - Ambika G. Bajpayee
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Szapary HJ, Flaman L, Frank E, Chubinskaya S, Dwivedi G, Grodzinsky AJ. Effects of dexamethasone and dynamic loading on cartilage of human osteochondral explants challenged with inflammatory cytokines. J Biomech 2023; 149:111480. [PMID: 36791513 DOI: 10.1016/j.jbiomech.2023.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Post-traumatic osteoarthritis (PTOA), characterized by articular cartilage degradation initiated in an inflammatory environment after traumatic joint injury, can lead to alterations in cartilage biomechanical properties. Low dose dexamethasone (Dex) shows chondroprotection in cartilage challenged with inflammatory cytokines, but little is known about the structural biomechanical response of human cartilage to Dex in such a diseased state. This study examined changes in the biomechanical properties and biochemical composition of the cartilage within human osteochondral explants in response to treatment with exogenous cytokines, Dex, and a regimen of cyclic loading at the start and end of culture. Osteochondral explants were harvested from five pairs of human ankle talocrural joints (Collins grade 0-1) and cultured for 10 days with/without exogenous cytokines (100 ng/mL TNFα, 50 ng/mL IL-6, 250 ng/mL sIL-6R) ± Dex (100 nM). Biomechanical testing on day-0 and day-10 enabled estimation of the unconfined compression equilibrium modulus (Ey), dynamic stiffness (Ed) and hydraulic permeability (kp) of cartilage excised from bone, accompanied by biochemical assessment of media and cartilage tissue. Dex preserved chondrocyte cell viability and decreased sulfated glycosaminoglycan (sGAG) loss and nitric oxide release, but did not alter Ey, Ed and kp (before or after loading) on day-10. In the cytokine/cytokine+Dex treated groups, sGAG content exhibited a weaker correlation with Ey and Ed than at baseline, suggesting an important role for structural rather than biochemical changes in producing biomechanical alterations in response to cytokines and Dex. These findings aid in forming a more complete profile of potential clinical effects of Dex for use in OA/PTOA treatment regimens.
Collapse
Affiliation(s)
- Hannah J Szapary
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.
| | - Lisa Flaman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliot Frank
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Susan Chubinskaya
- Departments of Pediatrics, Orthopedic Surgery and Medicine (Section of Rheumatology), Rush University Medical Center, Chicago, IL 60612, USA.
| | - Garima Dwivedi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Bi R, Luo X, Li Q, Li P, Li H, Fan Y, Ying B, Zhu S. Igf1 Regulates Fibrocartilage Stem Cells, Cartilage Growth, and Homeostasis in the Temporomandibular Joint of Mice. J Bone Miner Res 2023; 38:556-567. [PMID: 36722289 DOI: 10.1002/jbmr.4782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Temporomandibular joint (TMJ) growth requires orchestrated interactions between various cell types. Recent studies revealed that fibrocartilage stem cells (FCSCs) in the TMJ cartilage play critical roles as cell resources for joint development and repair. However, the detailed molecular network that influences FCSC fate during TMJ cartilage development remains to be elucidated. Here, we investigate the functional role of Igf1 in FCSCs for TMJ cartilage growth and homeostasis by lineage tracing using Gli1-CreER+ ; Tmflfl mice and conditional Igf1 deletion using Gli1-/Col2-CreER+ ; Igf1fl/fl mice. In Gli1-CreER+ ; Tmflfl mice, red fluorescence+ (RFP+ ) FCSCs show a favorable proliferative capacity. Igf1 deletion in Gli1+ /Col2+ cell lineages leads to distinct pathological changes in TMJ cartilage. More serious cartilage thickness and cell density reductions are found in the superficial layers in Gli1-CreER+ ; Igf1fl/fl mice. After long-term Igf1 deletion, a severe disordered cell arrangement is found in both groups. When Igf1 is conditionally deleted in vivo, the red fluorescent protein-labeled Gli1+ FCSC shows a significant disruption of chondrogenic differentiation, cell proliferation, and apoptosis leading to TMJ cartilage disarrangement and subchondral bone loss. Immunostaining shows that pAkt signaling is blocked in all cartilage layers after the Gli1+ -specific deletion of Igf1. In vitro, Igf1 deletion disrupts FCSC capacities, including proliferation and chondrogenesis. Moreover, the deletion of Igf1 in FCSCs significantly aggravates the joint osteoarthritis phenotype in the unilateral anterior crossbite mouse model, characterized by decreased cartilage thickness and cell numbers as well as a loss of extracellular matrix secretions. These findings uncover Igf1 as a regulator of TMJ cartilage growth and repair. The deletion of Igf1 disrupts the progenitor capacity of FCSCs, leading to a disordered cell distribution and exaggerating TMJ cartilage dysfunction. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueting Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianli Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haohan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binbin Ying
- Department of Stomatology, Ningbo First Hospital, Ningbo, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Faisal TR, Adouni M, Dhaher YY. Surrogate modeling of articular cartilage degradation to understand the synergistic role of MMP-1 and MMP-9: a case study. Biomech Model Mechanobiol 2023; 22:43-56. [PMID: 36201069 DOI: 10.1007/s10237-022-01630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
A characteristic feature of arthritic diseases is cartilage extracellular matrix (ECM) degradation, often orchestrated by the overexpression of matrix metalloproteinases (MMPs) and other proteases. The interplay between fibril level degradation and the tissue-level aggregate response to biomechanical loading was explored in this work by a computational multiscale cartilaginous model. We considered the relative abundance of collagenases (MMP-1) and gelatinases (MMP-9) in surrogate models, where the diffusion (spatial distribution) of these enzymes and the subsequent, co-localized fibrillar damage were spatially randomized with Latin Hypercube Sampling. The computational model was constructed by incorporating the results from prior molecular dynamics simulations (tensile test) of microfibril degradation into a hyper-elastoplastic fibril-reinforced cartilage model. Including MMPs-mediated collagen fibril-level degradation in computational models may help understand the ECM pathomechanics at the tissue level. The mechanics of cartilage tissue and fibril show variations in mechanical integrity depending on the different combinations of MMPs-1 and 9 with a concentration ratio of 1:1, 3:1, and 1:3 in simulated indentation tests. The fibril yield (local failure) was initiated at 20.2 ± 3.0 (%) and at 23.0 ± 2.8 (%) of bulk strain for col 1:gel 3 and col 3: gel 1, respectively. The reduction in failure stress (global response) was 39.8% for col 1:gel 3, 37.5% for col 1:gel 1, and 36.7% for col 3:gel 1 compared with the failure stress of the degradation free tissue. These findings indicate that cartilage's global and local mechanisms of failure largely depend on the relative abundance of the two key enzymes-collagenase (MMP-1) and gelatinase (MMP-9) and the spatial characteristics of diffusion across the layers of the cartilage ECM.
Collapse
Affiliation(s)
- Tanvir R Faisal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70508, USA.
| | - Malek Adouni
- Department of Mechanical Engineering, Australian College of Kuwait, East Mishref, Kuwait City, P.O. Box 1411, Kuwait
| | - Yasin Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwest, Dallas, TX, USA
- Department of Orthopedic Surgery, University of Texas Southwest, Dallas, TX, USA
- Department of Biomedical Engineering, University of Texas Southwest, Dallas, TX, USA
| |
Collapse
|
17
|
Kosonen JP, Eskelinen ASA, Orozco GA, Nieminen P, Anderson DD, Grodzinsky AJ, Korhonen RK, Tanska P. Injury-related cell death and proteoglycan loss in articular cartilage: Numerical model combining necrosis, reactive oxygen species, and inflammatory cytokines. PLoS Comput Biol 2023; 19:e1010337. [PMID: 36701279 PMCID: PMC9879441 DOI: 10.1371/journal.pcbi.1010337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/06/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a common musculoskeletal disease that leads to deterioration of articular cartilage, joint pain, and decreased quality of life. When OA develops after a joint injury, it is designated as post-traumatic OA (PTOA). The etiology of PTOA remains poorly understood, but it is known that proteoglycan (PG) loss, cell dysfunction, and cell death in cartilage are among the first signs of the disease. These processes, influenced by biomechanical and inflammatory stimuli, disturb the normal cell-regulated balance between tissue synthesis and degeneration. Previous computational mechanobiological models have not explicitly incorporated the cell-mediated degradation mechanisms triggered by an injury that eventually can lead to tissue-level compositional changes. Here, we developed a 2-D mechanobiological finite element model to predict necrosis, apoptosis following excessive production of reactive oxygen species (ROS), and inflammatory cytokine (interleukin-1)-driven apoptosis in cartilage explant. The resulting PG loss over 30 days was simulated. Biomechanically triggered PG degeneration, associated with cell necrosis, excessive ROS production, and cell apoptosis, was predicted to be localized near a lesion, while interleukin-1 diffusion-driven PG degeneration was manifested more globally. Interestingly, the model also showed proteolytic activity and PG biosynthesis closer to the levels of healthy tissue when pro-inflammatory cytokines were rapidly inhibited or cleared from the culture medium, leading to partial recovery of PG content. The numerical predictions of cell death and PG loss were supported by previous experimental findings. Furthermore, the simulated ROS and inflammation mechanisms had longer-lasting effects (over 3 days) on the PG content than localized necrosis. The mechanobiological model presented here may serve as a numerical tool for assessing early cartilage degeneration mechanisms and the efficacy of interventions to mitigate PTOA progression.
Collapse
Affiliation(s)
- Joonas P. Kosonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| | | | - Gustavo A. Orozco
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Petteri Nieminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Donald D. Anderson
- Departments of Orthopedics & Rehabilitation and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Alan J. Grodzinsky
- Departments of Biological Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rami K. Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
18
|
Miescher I, Rieber J, Calcagni M, Buschmann J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review. Int J Mol Sci 2023; 24:ijms24032370. [PMID: 36768692 PMCID: PMC9916536 DOI: 10.3390/ijms24032370] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Tendon injuries suffer from a slow healing, often ending up in fibrovascular scar formation, leading to inferior mechanical properties and even re-rupture upon resumption of daily work or sports. Strategies including the application of growth factors have been under view for decades. Insulin-like growth factor-1 (IGF-1) is one of the used growth factors and has been applied to tenocyte in vitro cultures as well as in animal preclinical models and to human patients due to its anabolic and matrix stimulating effects. In this narrative review, we cover the current literature on IGF-1, its mechanism of action, in vitro cell cultures (tenocytes and mesenchymal stem cells), as well as in vivo experiments. We conclude from this overview that IGF-1 is a potent stimulus for improving tendon healing due to its inherent support of cell proliferation, DNA and matrix synthesis, particularly collagen I, which is the main component of tendon tissue. Nevertheless, more in vivo studies have to be performed in order to pave the way for an IGF-1 application in orthopedic clinics.
Collapse
|
19
|
Miramini S, Smith DW, Gardiner BS, Zhang L. Computational Modelling for Managing Pathways to Cartilage Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:83-93. [PMID: 37052848 DOI: 10.1007/978-3-031-25588-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Over several decades the perception and therefore description of articular cartilage changed substantially. It has transitioned from being described as a relatively inert tissue with limited repair capacity, to a tissue undergoing continuous maintenance and even adaption, through a range of complex regulatory processes. Even from the narrower lens of biomechanics, the engagement with articular cartilage has changed from it being an interesting, slippery material found in the hostile mechanical environment between opposing long bones, to an intriguing example of mechanobiology in action. The progress revealing this complexity, where physics, chemistry, material science and biology are merging, has been described with increasingly sophisticated computational models. Here we describe how these computational models of cartilage as an integrated system can be combined with the approach of structural reliability analysis. That is, causal, deterministic models placed in the framework of the probabilistic approach of structural reliability analysis could be used to understand, predict, and mitigate the risk of cartilage failure or pathology. At the heart of this approach is seeing cartilage overuse and disease processes as a 'material failure', resulting in failure to perform its function, which is largely mechanical. One can then describe pathways to failure, for example, how homeostatic repair processes can be overwhelmed leading to a compromised tissue. To illustrate this 'pathways to failure' approach, we use the interplay between cartilage consolidation and lubrication to analyse the increase in expected wear rates associated with cartilage defects or meniscectomy.
Collapse
Affiliation(s)
- Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - David W Smith
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
| | - Bruce S Gardiner
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Kim B, Bonassar LJ. Understanding the Influence of Local Physical Stimuli on Chondrocyte Behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:31-44. [PMID: 37052844 DOI: 10.1007/978-3-031-25588-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Investigating the mechanobiology of chondrocytes is challenging due to the complex micromechanical environment of cartilage tissue. The innate zonal differences and poroelastic properties of the tissue combined with its heterogeneous composition create spatial- and temporal-dependent cell behavior, which further complicates the investigation. Despite the numerous challenges, understanding the mechanobiology of chondrocytes is crucial for developing strategies for treating cartilage related diseases as chondrocytes are the only cell type within the tissue. The effort to understand chondrocyte behavior under various mechanical stimuli has been ongoing over the last 50 years. Early studies examined global biosynthetic behavior under unidirectional mechanical stimulus. With the technological development in high-speed confocal imaging techniques, recent studies have focused on investigating real-time individual and collective cell responses to multiple / combined modes of mechanical stimuli. Such efforts have led to tremendous advances in understanding the influence of local physical stimuli on chondrocyte behavior. In addition, we highlight the wide variety of experimental techniques, spanning from static to impact loading, and analysis techniques, from biochemical assays to machine learning, that have been utilized to study chondrocyte behavior. Finally, we review the progression of hypotheses about chondrocyte mechanobiology and provide a perspective on the future outlook of chondrocyte mechanobiology.
Collapse
Affiliation(s)
- Byumsu Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
21
|
Selig M, Azizi S, Walz K, Lauer JC, Rolauffs B, Hart ML. Cell morphology as a biological fingerprint of chondrocyte phenotype in control and inflammatory conditions. Front Immunol 2023; 14:1102912. [PMID: 36860844 PMCID: PMC9968733 DOI: 10.3389/fimmu.2023.1102912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Little is known how inflammatory processes quantitatively affect chondrocyte morphology and how single cell morphometric data could be used as a biological fingerprint of phenotype. Methods We investigated whether trainable high-throughput quantitative single cell morphology profiling combined with population-based gene expression analysis can be used to identify biological fingerprints that are discriminatory of control vs. inflammatory phenotypes. The shape of a large number of chondrocytes isolated from bovine healthy and human osteoarthritic (OA) cartilages was quantified under control and inflammatory (IL-1β) conditions using a trainable image analysis technique measuring a panel of cell shape descriptors (area, length, width, circularity, aspect ratio, roundness, solidity). The expression profiles of phenotypically relevant markers were quantified by ddPCR. Statistical analysis, multivariate data exploration, and projection-based modelling were used for identifying specific morphological fingerprints indicative of phenotype. Results Cell morphology was sensitive to both cell density and IL-1β. In both cell types, all shape descriptors correlated with expression of extracellular matrix (ECM)- and inflammatory-regulating genes. A hierarchical clustered image map revealed that individual samples sometimes responded differently in control or IL-1β conditions than the overall population. Despite these variances, discriminative projection-based modeling revealed distinct morphological fingerprints that discriminated between control and inflammatory chondrocyte phenotypes: the most essential morphological characteristics attributable to non-treated control cells was a higher cell aspect ratio in healthy bovine chondrocytes and roundness in OA human chondrocytes. In contrast, a higher circularity and width in healthy bovine chondrocytes and length and area in OA human chondrocytes indicated an inflammatory (IL-1β) phenotype. When comparing the two species/health conditions, bovine healthy and human OA chondrocytes exhibited comparable IL-1β-induced morphologies in roundness, a widely recognized marker of chondrocyte phenotype, and aspect ratio. Discussion Overall, cell morphology can be used as a biological fingerprint for describing chondrocyte phenotype. Quantitative single cell morphometry in conjunction with advanced methods for multivariate data analysis allows identifying morphological fingerprints that can discriminate between control and inflammatory chondrocyte phenotypes. This approach could be used to assess how culture conditions, inflammatory mediators, and therapeutic modulators regulate cell phenotype and function.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Saman Azizi
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Kathrin Walz
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Jasmin C Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
22
|
Kurz B, Hart ML, Rolauffs B. Mechanical Articular Cartilage Injury Models and Their Relevance in Advancing Therapeutic Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:107-124. [PMID: 37052850 DOI: 10.1007/978-3-031-25588-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This chapter details how Alan Grodzinsky and his team unraveled the complex electromechanobiological structure-function relationships of articular cartilage and used these insights to develop an impressively versatile shear and compression model. In this context, this chapter focuses (i) on the effects of mechanical compressive injury on multiple articular cartilage properties for (ii) better understanding the molecular concept of mechanical injury, by studying gene expression, signal transduction and the release of potential injury biomarkers. Furthermore, we detail how (iii) this was used to combine mechanical injury with cytokine exposure or co-culture systems for generating a more realistic trauma model to (iv) investigate the therapeutic modulation of the injurious response of articular cartilage. Impressively, Alan Grodzinsky's research has been and will remain to be instrumental in understanding the proinflammatory response to injury and in developing effective therapies that are based on an in-depth understanding of complex structure-function relationships that underlay articular cartilage function and degeneration.
Collapse
Affiliation(s)
- Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Kiel, Germany.
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
23
|
Rydén M, Önnerfjord P. In Vitro Models and Proteomics in Osteoarthritis Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:57-68. [PMID: 37052846 DOI: 10.1007/978-3-031-25588-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This review summarizes and exemplifies the current understanding of osteoarthritis in vitro models and describes their relevance for new insights in the future of osteoarthritis research. Our friend and highly appreciated colleague, Prof. Alan Grodzinsky has contributed greatly to the understanding of joint tissue biology and cartilage biomechanics. He frequently utilizes in vitro models and cartilage explant cultures, and recent work also includes proteomics studies. This review is dedicated to honor his 75-year birthday and will focus on recent proteomic in vitro studies related to osteoarthritis, and within this topic highlight some of his contributions to the field.
Collapse
Affiliation(s)
- Martin Rydén
- Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
24
|
Korhonen RK, Eskelinen ASA, Orozco GA, Esrafilian A, Florea C, Tanska P. Multiscale In Silico Modeling of Cartilage Injuries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:45-56. [PMID: 37052845 DOI: 10.1007/978-3-031-25588-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Injurious loading of the joint can be accompanied by articular cartilage damage and trigger inflammation. However, it is not well-known which mechanism controls further cartilage degradation, ultimately leading to post-traumatic osteoarthritis. For personalized prognostics, there should also be a method that can predict tissue alterations following joint and cartilage injury. This chapter gives an overview of experimental and computational methods to characterize and predict cartilage degradation following joint injury. Two mechanisms for cartilage degradation are proposed. In (1) biomechanically driven cartilage degradation, it is assumed that excessive levels of strain or stress of the fibrillar or non-fibrillar matrix lead to proteoglycan loss or collagen damage and degradation. In (2) biochemically driven cartilage degradation, it is assumed that diffusion of inflammatory cytokines leads to degradation of the extracellular matrix. When implementing these two mechanisms in a computational in silico modeling workflow, supplemented by in vitro and in vivo experiments, it is shown that biomechanically driven cartilage degradation is concentrated on the damage environment, while inflammation via synovial fluid affects all free cartilage surfaces. It is also proposed how the presented in silico modeling methodology may be used in the future for personalized prognostics and treatment planning of patients with a joint injury.
Collapse
Affiliation(s)
- Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Atte S A Eskelinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Gustavo A Orozco
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Amir Esrafilian
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Cristina Florea
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Wiciński M, Szwedowski D, Wróbel Ł, Jeka S, Zabrzyński J. The Influence of Body Mass Index on Growth Factor Composition in the Platelet-Rich Plasma in Patients with Knee Osteoarthritis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:40. [PMID: 36612361 PMCID: PMC9819567 DOI: 10.3390/ijerph20010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND An abnormally high body mass index is strongly associated with knee osteoarthritis. Usually, obese patients are excluded from clinical trials involving PRP intra-articular injections. Growth factors have been demonstrated to have a disease-modifying effect on KOA treatment, even though data on their influence on treatment effectiveness in obese patients are lacking. PURPOSE To prospectively compare the level of selected growth factors including transforming growth factor-b (TGF-β), epidermal growth factor (EGF), fibroblast growth factor, insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) in platelet-rich plasma (PRP) in obese patients and patients with normal BMI. METHODS A total of 49 patients were included in the study according to inclusion and exclusion criteria. The groups strongly differed in body mass index (median values 21.6 vs. 32.15). Concentrations of growth factors were measured with an enzyme-linked immunosorbent assay. Statistical significance was determined with the Mann-Whitney U test. The compliance of the distribution of the results with the normal distribution was checked using the Shapiro-Wilk test separately for both groups. RESULTS There were no statistically significant differences in median marker levels between groups. Statistically significant Pearson correlations were observed between IGF-1 serum level and age (weak negative, r = -0.294, p = 0.041) and gender (moderate positive, r = 0.392, 0.005). CONCLUSIONS BMI does not influence the level of selected growth factors in patients with knee osteoarthritis. Obese and non-obese patients had similar compositions of PDGF, TGF-β, EGF, FGF-2, IGF-1, and VEGF. PRP can be used in both groups with similar effects associated with growth factors' influence on articular cartilage.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Dawid Szwedowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Dr. A. Jurasza St. 2, 85-094 Bydgoszcz, Poland
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy
| | - Łukasz Wróbel
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Sławomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85168 Bydgoszcz, Poland
| | - Jan Zabrzyński
- Department of General Orthopedics, Musculoskeletal Oncology and Trauma Surgery, University of Medical Sciences, 61-701 Poznan, Poland
- Department of Pathology, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
26
|
Shentu CY, Yan G, Xu DC, Chen Y, Peng LH. Emerging pharmaceutical therapeutics and delivery technologies for osteoarthritis therapy. Front Pharmacol 2022; 13:945876. [PMID: 36467045 PMCID: PMC9712996 DOI: 10.3389/fphar.2022.945876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 10/03/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common joint degenerative diseases in the world. At present, the management of OA depends on the lifestyle modification and joint replacement surgery, with the lifespan of prosthesis quite limited yet. Effective drug treatment of OA is essential. However, the current drugs, such as the non-steroidal anti-inflammatory drugs and acetaminophen, as well as glucosamine, chondroitin sulfate, hyaluronic acid, are accompanied by obvious side effects, with the therapeutic efficacy to be enhanced. Recently, novel reagents such as IL-1 antagonists and nerve growth factor inhibitors have entered clinical trials. Moreover, increasing evidence demonstrated that active ingredients of natural plants have great potential for treating OA. Meanwhile, the use of novel drug delivery strategies may overcome the shortcomings of conventional preparations and enhance the bioavailability of drugs, as well as decrease the side effects significantly. This review therefore summarizes the pathological mechanisms, management strategies, and research progress in the drug molecules including the newly identified active ingredient derived from medicinal plants for OA therapy, with the drug delivery technologies also summarized, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for OA therapy.
Collapse
Affiliation(s)
- Cheng-Yu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Chen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
27
|
Predicting Transport of Intra-Articularly Injected Growth Factor Fusion Proteins into Human Knee Joint Cartilage. Acta Biomater 2022; 153:243-259. [DOI: 10.1016/j.actbio.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
|
28
|
Sani M, Hosseinie R, Latifi M, Shadi M, Razmkhah M, Salmannejad M, Parsaei H, Talaei-Khozani T. Engineered artificial articular cartilage made of decellularized extracellular matrix by mechanical and IGF-1 stimulation. BIOMATERIALS ADVANCES 2022; 139:213019. [PMID: 35882114 DOI: 10.1016/j.bioadv.2022.213019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Cartilage engineering has the potential to overcome clinical deficiency in joint disorders. Decellularized extracellular matrix (dECM) has great biocompatibility and bioactivity and can be considered an appropriate natural scaffold for tissue engineering applications. Both insulin-like growth factor-1 (IGF-1) and mechanical compression stimulate the production of cartilage ECM, modulate mechanical properties, and gene expression. The current investigation aimed to fabricate a high-quality moldable artificial cartilage by exposing the chondrocytes in biomimicry conditions using cartilage dECM, IGF-1, and mechanical stimulations. In this study, an ad hoc bioreactor was designed to apply dynamic mechanical stimuli (10 % strain, 1 Hz) on chondrocyte-laden cartilage dECM-constructs with/without IGF-1 supplementation for 2 weeks, 3 h/day. Our data revealed that mechanical stimulation had no adverse effect on cell viability and proliferation. However, it elevated the expression of chondrogenic markers such as collagen type II (COL2A1), aggrecan (ACAN), and proteoglycan-4 (PRG-4), and reduced the expression of matrix metalloproteinase-3 (MMP-3). Mechanical stimulation also promoted higher newly formed glycosaminoglycan (GAG) and produced more aligned fibers that can be responsible for higher Young's modulus of the engineered construct. Even though IGF-1 demonstrated some extent of improvement in developing neocartilage, it was not as effective as mechanical stimulation. Neither IGF-1 nor compression elevated the collagen type I expression. Compression and IGF-1 showed a synergistic impact on boosting the level of COL2A1 but not the other factors. In conclusion, mechanical stimulation on moldable cartilage dECM can be considered a good technique to fabricate artificial cartilage with higher functionality.
Collapse
Affiliation(s)
- Mahsa Sani
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran.
| | - Radmarz Hosseinie
- Department of Mechanical Engineering College of Engineering, Fasa University, Fasa, Iran
| | - Mona Latifi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Shadi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahin Salmannejad
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Parsaei
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran; Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research center, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Nanomedicine and regenerative medicine approaches in osteoarthritis therapy. Aging Clin Exp Res 2022; 34:2305-2315. [PMID: 35867240 DOI: 10.1007/s40520-022-02199-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022]
Abstract
Osteoarthritis (OA), the most common chronic joint disease, is a degenerative disease that affects 7% of the worldwide population, more than 500 million people all over the world. OA is the main factor of disability in elderly people which decreases the quality of life of patients. It is characterized by joint pain, low bone density, and deterioration of the joint structure. Despite ongoing novel advances in drug discovery and drug delivery, OA therapy is still a big challenge since there is no available effective treatment and the existing therapies mainly focus on pain and symptomatic management rather than improving and/or suppressing its progression. This review aims to summarize the currently available and novel emerging therapies for OA including regenerative medicine and nanotechnology-based materials and formulations at the clinical and experimental levels. Applications of regenerative medicine and novel technologies such as nanotechnology in OA treatments have opened a new window to support OA patients by offering treatments that could halt or delay OA progression satisfactorily or provide an effective cure in near future. Nanomedicine and regenerative medicine suggest novel alternatives in the regeneration of cartilage, repair of bone damage, and control of chronic pain in OA therapy.
Collapse
|
30
|
Vedadghavami A, Hakim B, He T, Bajpayee AG. Cationic peptide carriers enable long-term delivery of insulin-like growth factor-1 to suppress osteoarthritis-induced matrix degradation. Arthritis Res Ther 2022; 24:172. [PMID: 35858920 PMCID: PMC9297664 DOI: 10.1186/s13075-022-02855-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) has the potential to be used for osteoarthritis (OA) treatment but has not been evaluated in clinics yet owing to toxicity concerns. It suffers from short intra-joint residence time and a lack of cartilage targeting following its intra-articular administration. Here, we synthesize an electrically charged cationic formulation of IGF-1 by using a short-length arginine-rich, hydrophilic cationic peptide carrier (CPC) with a net charge of +14, designed for rapid and high uptake and retention in both healthy and arthritic cartilage. METHODS IGF-1 was conjugated to CPC by using a site-specific sulfhydryl reaction via a bifunctional linker. Intra-cartilage depth of penetration and retention of CPC-IGF-1 was compared with the unmodified IGF-1. The therapeutic effectiveness of a single dose of CPC-IGF-1 was compared with free IGF-1 in an IL-1α-challenged cartilage explant culture post-traumatic OA model. RESULTS CPC-IGF-1 rapidly penetrated through the full thickness of cartilage creating a drug depot owing to electrostatic interactions with negatively charged aggrecan-glycosaminoglycans (GAGs). CPC-IGF-1 remained bound within the tissue while unmodified IGF-1 cleared out. Treatment with a single dose of CPC-IGF-1 effectively suppressed IL-1α-induced GAG loss and nitrite release and rescued cell metabolism and viability throughout the 16-day culture period, while free IGF at the equivalent dose was not effective. CONCLUSIONS CPC-mediated depot delivery of IGF-1 protected cartilage by suppressing cytokine-induced catabolism with only a single dose. CPC is a versatile cationic motif that can be used for intra-cartilage delivery of other similar-sized drugs.
Collapse
Affiliation(s)
| | - Bill Hakim
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Tengfei He
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Departments of Mechanical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
31
|
宗 路, 吴 乾, 董 仲, 黄 立, 杨 惠. [Research progress of nanomaterials for intra-articular targeted drug delivery in treatment of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:908-914. [PMID: 35848190 PMCID: PMC9288906 DOI: 10.7507/1002-1892.202203033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Indexed: 01/24/2023]
Abstract
Objective To review the research progress of intra-articular targeted delivery of nanomaterials in the treatment of osteoarthritis (OA). Methods The domestic and foreign related literature on intra-articular targeted delivery of nanomaterials for the treatment of OA was extensively reviewed, and their targeting strategies were discussed and summarized. Results Rapid drug clearance from the joint remains a critical limitation in drug efficacy. Nanocarriers can not only significantly improve the residence profiles of drugs in the joint, but also achieve targeted delivery of drugs to specific joint tissues through active or passive targeting strategies. Conclusion With the continuous development of various emerging tissue- or cell-specific drugs, the targeted delivery of drugs with nanomaterials promise to realize the clinical translation of these drugs in the treatment of OA.
Collapse
Affiliation(s)
- 路杰 宗
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 乾 吴
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
- 昆山市第一人民医院骨科(江苏昆山 215300)Department of Orthopedics, the First People’s Hospital of Kunshan, Kunshan Jiangsu, 215300, P. R. China
| | - 仲琛 董
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 立新 黄
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 惠林 杨
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| |
Collapse
|
32
|
Orozco GA, Eskelinen AS, Kosonen JP, Tanaka MS, Yang M, Link TM, Ma B, Li X, Grodzinsky AJ, Korhonen RK, Tanska P. Shear strain and inflammation-induced fixed charge density loss in the knee joint cartilage following ACL injury and reconstruction: A computational study. J Orthop Res 2022; 40:1505-1522. [PMID: 34533840 PMCID: PMC8926939 DOI: 10.1002/jor.25177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/13/2021] [Accepted: 09/01/2021] [Indexed: 02/04/2023]
Abstract
Excessive tissue deformation near cartilage lesions and acute inflammation within the knee joint after anterior cruciate ligament (ACL) rupture and reconstruction surgery accelerate the loss of fixed charge density (FCD) and subsequent cartilage tissue degeneration. Here, we show how biomechanical and biochemical degradation pathways can predict FCD loss using a patient-specific finite element model of an ACL reconstructed knee joint exhibiting a chondral lesion. Biomechanical degradation was based on the excessive maximum shear strains that may result in cell apoptosis, while biochemical degradation was driven by the diffusion of pro-inflammatory cytokines. We found that the biomechanical model was able to predict substantial localized FCD loss near the lesion and on the medial areas of the lateral tibial cartilage. In turn, the biochemical model predicted FCD loss all around the lesion and at intact areas; the highest FCD loss was at the cartilage-synovial fluid-interface and decreased toward the deeper zones. Interestingly, simulating a downturn of an acute inflammatory response by reducing the cytokine concentration exponentially over time in synovial fluid led to a partial recovery of FCD content in the cartilage. Our novel numerical approach suggests that in vivo FCD loss can be estimated in injured cartilage following ACL injury and reconstruction. Our novel modeling platform can benefit the prediction of PTOA progression and the development of treatment interventions such as disease-modifying drug testing and rehabilitation strategies.
Collapse
Affiliation(s)
- Gustavo A. Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland,Department of Biomedical Engineering, Lund University, Box 188, 221 00, Lund, Sweden
| | - Atte S.A. Eskelinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Joonas P. Kosonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Matthew S. Tanaka
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Mingrui Yang
- Department of Biomedical Engineering, Lerner Research Institute, Program of Advanced Musculoskeletal Imaging (PAMI), 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Benjamin Ma
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1500 Owens St, San Francisco, CA 94158, USA
| | - Xiaojuan Li
- Department of Biomedical Engineering, Lerner Research Institute, Program of Advanced Musculoskeletal Imaging (PAMI), 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alan J. Grodzinsky
- Departments of Biological Engineering, Electrical Engineering and Computer Science and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Yliopistonranta 1, FI-70210 Kuopio, Finland
| |
Collapse
|
33
|
Guo X, Lou J, Wang F, Fan D, Qin Z. Recent Advances in Nano-Therapeutic Strategies for Osteoarthritis. Front Pharmacol 2022; 13:924387. [PMID: 35800449 PMCID: PMC9253376 DOI: 10.3389/fphar.2022.924387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis and the leading cause of disability globally. It tends to occur in middle age or due to an injury or obesity. OA occurs with the onset of symptoms, including joint swelling, joint effusion, and limited movement at a late stage of the disease, which leads to teratogenesis and loss of joint function. During the pathogenesis of this degenerative joint lesion, several local inflammatory responses are activated, resulting in synovial proliferation and pannus formation that facilitates the destruction of the bone and the articular cartilage. The commonly used drugs for the clinical diagnosis and treatment of OA have limitations such as low bioavailability, short half-life, poor targeting, and high systemic toxicity. With the application of nanomaterials and intelligent nanomedicines, novel nanotherapeutic strategies have shown more specific targeting, prolonged half-life, refined bioavailability, and reduced systemic toxicity, compared to the existing medications. In this review, we summarized the recent advancements in new nanotherapeutic strategies for OA and provided suggestions for improving the treatment of OA.
Collapse
Affiliation(s)
- Xinjing Guo
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jia Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fazhan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| | - Daoyang Fan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| |
Collapse
|
34
|
Porter A, Wang L, Han L, Lu XL. Bio-orthogonal Click Chemistry Methods to Evaluate the Metabolism of Inflammatory Challenged Cartilage after Traumatic Overloading. ACS Biomater Sci Eng 2022; 8:2564-2573. [PMID: 35561285 PMCID: PMC10461521 DOI: 10.1021/acsbiomaterials.2c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During traumatic joint injuries, impact overloading can cause mechanical damage to the cartilage. In the following inflammation phase, excessive inflammatory cytokines (e.g., interleukin-1β (IL-1β)) can act on chondrocytes, causing over-proliferation, apoptosis, and extracellular matrix (ECM) degradation that can lead to osteoarthritis. This study investigated the combined effects of traumatic overloading and IL-1β challenge on the metabolic activities of chondrocytes. Bovine cartilage explants underwent impact overloading followed by IL-1β exposure at a physiologically relevant dosage (1 ng/mL). New click chemistry-based methods were developed to visualize and quantify the proliferation of in situ chondrocytes in a nondestructive manner without the involvement of histological sectioning or antibodies. Click chemistry-based methods were also employed to measure the ECM synthesis and degradation in cartilage explants. As the click reactions are copper-free and bio-orthogonal, i.e., with negligible cellular toxicity, cartilage ECM was cultured and studied for 6 weeks. Traumatic overloading induced significant cell death, mainly in the superficial zone. The high number of dead cells reduced the overall proliferation of chondrocytes as well as the synthesis of glycosaminoglycan (GAG) and collagen contents, but overloading alone had no effects on ECM degradation. IL-1β challenge had little effect on cell viability, proliferation, or protein synthesis but induced over 40% GAG loss in 10 days and 61% collagen loss in 6 weeks. For the overloaded samples, IL-1β induced greater degrees of degradation, with 68% GAG loss in 10 days and 80% collagen loss in 6 weeks. The results imply a necessary immediate ease of inflammation after joint injuries when trauma damage on cartilage is present. The new click chemistry methods could benefit many cellular and tissue engineering studies, providing convenient and sensitive assays of metabolic activities of cells in native three-dimensional (3D) environments.
Collapse
Affiliation(s)
- Annie Porter
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
35
|
Black RM, Flaman LL, Lindblom K, Chubinskaya S, Grodzinsky AJ, Önnerfjord P. Tissue catabolism and donor-specific dexamethasone response in a human osteochondral model of post-traumatic osteoarthritis. Arthritis Res Ther 2022; 24:137. [PMID: 35689293 PMCID: PMC9185927 DOI: 10.1186/s13075-022-02828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Post-traumatic osteoarthritis (PTOA) does not currently have clinical prognostic biomarkers or disease-modifying drugs, though promising candidates such as dexamethasone (Dex) exist. Many challenges in studying and treating this disease stem from tissue interactions that complicate understanding of drug effects. We present an ex vivo human osteochondral model of PTOA to investigate disease effects on cartilage and bone homeostasis and discover biomarkers for disease progression and drug efficacy. METHODS Human osteochondral explants were harvested from normal (Collins grade 0-1) ankle talocrural joints of human donors (2 female, 5 male, ages 23-70). After pre-equilibration, osteochondral explants were treated with a single-impact mechanical injury and TNF-α, IL-6, and sIL-6R ± 100 nM Dex for 21 days and media collected every 2-3 days. Chondrocyte viability, tissue DNA content, and glycosaminoglycan (sGAG) percent loss to the media were assayed and compared to untreated controls using a linear mixed effects model. Mass spectrometry analysis was performed for both cartilage tissue and pooled culture medium, and the statistical significance of protein abundance changes was determined with the R package limma and empirical Bayes statistics. Partial least squares regression analyses of sGAG loss and Dex attenuation of sGAG loss against proteomic data were performed. RESULTS Injury and cytokine treatment caused an increase in the release of matrix components, proteases, pro-inflammatory factors, and intracellular proteins, while tissue lost intracellular metabolic proteins, which was mitigated with the addition of Dex. Dex maintained chondrocyte viability and reduced sGAG loss caused by injury and cytokine treatment by 2/3 overall, with donor-specific differences in the sGAG attenuation effect. Biomarkers of bone metabolism had mixed effects, and collagen II synthesis was suppressed with both disease and Dex treatment by 2- to 5-fold. Semitryptic peptides associated with increased sGAG loss were identified. Pro-inflammatory humoral proteins and apolipoproteins were associated with lower Dex responses. CONCLUSIONS Catabolic effects on cartilage tissue caused by injury and cytokine treatment were reduced with the addition of Dex in this osteochondral PTOA model. This study presents potential peptide biomarkers of early PTOA progression and Dex efficacy that can help identify and treat patients at risk of PTOA.
Collapse
Affiliation(s)
- Rebecca Mae Black
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Lisa L Flaman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karin Lindblom
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Susan Chubinskaya
- Departments of Pediatrics, Orthopedic Surgery and Medicine (Section of Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Eskelinen ASA, Florea C, Tanska P, Hung HK, Frank EH, Mikkonen S, Nieminen P, Julkunen P, Grodzinsky AJ, Korhonen RK. Cyclic loading regime considered beneficial does not protect injured and interleukin-1-inflamed cartilage from post-traumatic osteoarthritis. J Biomech 2022; 141:111181. [DOI: 10.1016/j.jbiomech.2022.111181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
|
37
|
He T, Shaw I, Vedadghavami A, Bajpayee AG. Single-Dose Intra-Cartilage Delivery of Kartogenin Using a Cationic Multi-Arm Avidin Nanocarrier Suppresses Cytokine-Induced Osteoarthritis-Related Catabolism. Cartilage 2022; 13:19476035221093072. [PMID: 35491681 PMCID: PMC9251829 DOI: 10.1177/19476035221093072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Kartogenin (KGN) has proven as a both chondrogenic and chondroprotective drug for osteoarthritis (OA) therapy. However, being a small hydrophobic molecule, KGN suffers from rapid joint clearance and inability to penetrate cartilage to reach chondrocytes following intra-articular administration. As such multiple high doses are needed that can lead to off-target effects including stimulation and tissue outgrowth. Here we design charge-based cartilage targeting formulation of KGN by using a multi-arm cationic nano-construct of Avidin (mAv) that can rapidly penetrate into cartilage in high concentrations owing to weak-reversible electrostatic binding interactions with negatively charged aggrecan-glycosaminoglycans (GAGs) and form an extended-release drug depot such that its therapeutic benefit can be reaped in just a single dose. DESIGN We synthesized 2 novel formulations, one with a releasable ester linker (mAv-OH-KGN, release half-life ~58 h) that enables sustained KGN release over 2 weeks and another with a non-releasable amide linker (mAv-NH-KGN) that relies on mAv's ability to be uptaken and endocytosed by chondrocytes for drug delivery. Their effectiveness in suppressing cytokine-induced catabolism was evaluated in vitro using cartilage explant culture model. RESULTS A single 100 μM dose of cartilage homing mAv-KGN was significantly more effective in suppressing cytokine-induced GAG loss, cell death, inflammatory response and in rescuing cell metabolism than a single dose of free KGN; multiple doses of free KGN were needed to match this therapeutic response. CONCLUSION mAv mediated delivery of KGN is promising and can facilitate clinical translation of KGN for OA treatment with only a single dose.
Collapse
Affiliation(s)
- Tengfei He
- Department of Bioengineering,
Northeastern University, Boston, MA, USA
| | - Irfhan Shaw
- Department of Bioengineering,
Northeastern University, Boston, MA, USA
| | | | - Ambika G. Bajpayee
- Department of Bioengineering,
Northeastern University, Boston, MA, USA
- Department of Mechanical Engineering,
Northeastern University, Boston, MA, USA
| |
Collapse
|
38
|
Chan MWY, Gomez-Aristizábal A, Mahomed N, Gandhi R, Viswanathan S. A tool for evaluating novel osteoarthritis therapies using multivariate analyses of human cartilage-synovium explant co-culture. Osteoarthritis Cartilage 2022; 30:147-159. [PMID: 34547432 DOI: 10.1016/j.joca.2021.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/07/2021] [Accepted: 09/14/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is a need to incorporate multiple tissues into in vitro OA models to evaluate novel therapeutics. This approach is limited by inherent donor variability. We present an optimized research tool: a human OA cartilage-synovium explant co-culture model (OA-EXM) that employs donor-matched lower and upper limit response controls combined with statistical approaches to address variability. Multiple rapid read-outs allow for evaluation of therapeutics while cataloguing cartilage-synovium interactions. DESIGN 48-h human explant cultures were sourced from OA knee arthroplasties. An OA-like cartilage-synovium co-culture baseline was established relative to donor-matched upper limit supraphysiological pro-inflammatory cytokine and lower limit OA cartilage or synovium alone controls. 100 nM dexamethasone treatment validated possible "rescue effects" within the OA-EXM dual tissue environment. Gene expression, proteoglycan loss, MMP activity, and soluble protein concentrations were analyzed using blocking and clustering methods. RESULTS The OA-EXM demonstrates the value of the co-culture approach as the addition of OA synovium increases OA cartilage proteoglycan loss and expression of MMP1, MMP3, MMP13, CXCL8, CCL2, IL6, and PTGS2, but not to the extent of supraphysiological stimulation. Conversely, OA cartilage does not affect gene expression or MMP activity of OA synovium. Dexamethasone shows dual treatment effects on synovium (pro-resolving macrophage upregulation, protease downregulation) and cartilage (pro-inflammatory, catabolic, and anabolic downregulation), and decreases soluble CCL2 levels in co-culture, thereby validating OA-EXM utility. CONCLUSIONS The OA-EXM is representative of late-stage OA pathology, captures dual interactions between cartilage and synovium, and combined with statistical strategies provides a rapid, sensitive research tool for evaluating OA therapeutics.
Collapse
Affiliation(s)
- M W Y Chan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - A Gomez-Aristizábal
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada.
| | - N Mahomed
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada.
| | - R Gandhi
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada.
| | - S Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Canada.
| |
Collapse
|
39
|
Intra-Articular Drug Delivery for Osteoarthritis Treatment. Pharmaceutics 2021; 13:pharmaceutics13122166. [PMID: 34959445 PMCID: PMC8703898 DOI: 10.3390/pharmaceutics13122166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease affecting millions of people worldwide. Currently, clinical nonsurgical treatments of OA are only limited to pain relief, anti-inflammation, and viscosupplementation. Developing disease-modifying OA drugs (DMOADs) is highly demanded for the efficient treatment of OA. As OA is a local disease, intra-articular (IA) injection directly delivers drugs to synovial joints, resulting in high-concentration drugs in the joint and reduced side effects, accompanied with traditional oral or topical administrations. However, the injected drugs are rapidly cleaved. By properly designing the drug delivery systems, prolonged retention time and targeting could be obtained. In this review, we summarize the drugs investigated for OA treatment and recent advances in the IA drug delivery systems, including micro- and nano-particles, liposomes, and hydrogels, hoping to provide some information for designing the IA injected formulations.
Collapse
|
40
|
Arabiyat AS, Chen H, Erndt-Marino J, Burkhard K, Scola L, Fleck A, Wan LQ, Hahn MS. Hyperosmolar Ionic Solutions Modulate Inflammatory Phenotype and sGAG Loss in a Cartilage Explant Model. Cartilage 2021; 13:713S-721S. [PMID: 32975437 PMCID: PMC8804856 DOI: 10.1177/1947603520961167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to compare the effects of hyperosmolar sodium (Na+), lithium (Li+) and potassium (K+) on catabolic and inflammatory osteoarthritis (OA) markers and sulfated glycosaminoglycan (sGAG) loss in TNF-α-stimulated cartilage explants. METHODS Explants from bovine stifle joints were stimulated with TNF-α for 1 day to induce cartilage degradation followed by supplementation with 50 mM potassium chloride (KCl), 50 mM lithium chloride (LiCl), 50 mM sodium chloride (NaCl), or 100 nM dexamethasone for an additional 6 days. We assessed the effect of TNF-α stimulation and hyperosmolar ionic treatment on sGAG loss and expression of OA-associated proteins: ADAMTS-5, COX-2, MMP-1, MMP-13, and VEGF. RESULTS TNF-α treatment increased sGAG loss (P < 0.001) and expression of COX-2 (P = 0.018), MMP-13 (P < 0.001), and VEGF (P = 0.017) relative to unstimulated controls. Relative to activated controls, LiCl and dexamethasone treatment attenuated sGAG loss (P = 0.008 and P = 0.042, respectively) and expression of MMP-13 (P = 0.005 and P = 0.036, respectively). In contrast, KCl treatment exacerbated sGAG loss (P = 0.032) and MMP-1 protein expression (P = 0.010). NaCl treatment, however, did not alter sGAG loss or expression of OA-related proteins. Comparing LiCl and KCl treatment shows a potent reduction (P < 0.05) in catabolic and inflammatory mediators following LiCl treatment. CONCLUSION These results suggest that these ionic species elicit varying responses in TNF-α-stimulated explants. Cumulatively, these findings support additional studies of hyperosmolar ionic solutions for potential development of novel intraarticular injections targeting OA.
Collapse
Affiliation(s)
- Ahmad S. Arabiyat
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Hongyu Chen
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Josh Erndt-Marino
- Department of Biomedical Engineering,
Tufts University, Medford, MA, USA
| | - Katie Burkhard
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Lisa Scola
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Allison Fleck
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Leo Q. Wan
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| |
Collapse
|
41
|
Black RM, Wang Y, Struglics A, Lorenzo P, Chubinskaya S, Grodzinsky AJ, Önnerfjord P. Proteomic clustering reveals the kinetics of disease biomarkers in bovine and human models of post-traumatic osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3. [DOI: 10.1016/j.ocarto.2021.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
42
|
Reversible changes in the 3D collagen fibril architecture during cyclic loading of healthy and degraded cartilage. Acta Biomater 2021; 136:314-326. [PMID: 34563724 PMCID: PMC8631461 DOI: 10.1016/j.actbio.2021.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
Biomechanical changes to the collagen fibrillar architecture in articular cartilage are believed to play a crucial role in enabling normal joint function. However, experimentally there is little quantitative knowledge about the structural response of the Type II collagen fibrils in cartilage to cyclic loading in situ, and the mechanisms that drive the ability of cartilage to withstand long-term repetitive loading. Here we utilize synchrotron small-angle X-ray scattering (SAXS) combined with in-situ cyclic loading of bovine articular cartilage explants to measure the fibrillar response in deep zone articular cartilage, in terms of orientation, fibrillar strain and inter-fibrillar variability in healthy cartilage and cartilage degraded by exposure to the pro-inflammatory cytokine IL-1β. We demonstrate that under repeated cyclic loading the fibrils reversibly change the width of the fibrillar orientation distribution whilst maintaining a largely consistent average direction of orientation. Specifically, the effect on the fibrillar network is a 3-dimensional conical orientation broadening around the normal to the joint surface, inferred by 3D reconstruction of X-ray scattering peak intensity distributions from the 2D pattern. Further, at the intrafibrillar level, this effect is coupled with reversible reduction in fibrillar pre-strain under compression, alongside increase in the variability of fibrillar pre-strain. In IL-1β degraded cartilage, the collagen rearrangement under cyclic loading is disrupted and associated with reduced tissue stiffness. These finding have implications as to how changes in local collagen nanomechanics might drive disease progression or vice versa in conditions such as osteoarthritis and provides a pathway to a mechanistic understanding of such diseases. Statement of significance Structural deterioration in biomechanically loaded musculoskeletal organs, e.g., joint osteoarthritis and back pain, are linked to breakdown and changes in their collagen-rich cartilaginous tissue matrix. A critical component enabling cartilage biomechanics is the ultrastructural collagen fibrillar network in cartilage. However, experimental probes of the dynamic structural response of cartilage collagen to biomechanical loads are limited. Here, we use X-ray scattering during cyclic loading (as during walking) on joint tissue to show that cartilage fibrils resist loading by a reversible, three-dimensional orientation broadening and disordering mechanism at the molecular level, and that inflammation reduces this functionality. Our results will help understand how changes to small-scale tissue mechanisms are linked to ageing and osteoarthritic progression, and development of biomaterials for joint replacements.
Collapse
|
43
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
44
|
Gupta N, Kamath S M, Rao SK, D J, Patil S, Gupta N, Arunachalam KD. Kaempferol loaded albumin nanoparticles and dexamethasone encapsulation into electrospun polycaprolactone fibrous mat – Concurrent release for cartilage regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
46
|
Hybrid fluorescence-AFM explores articular surface degeneration in early osteoarthritis across length scales. Acta Biomater 2021; 126:315-325. [PMID: 33753314 DOI: 10.1016/j.actbio.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Atomic force microscopy (AFM) has become a powerful tool for the characterization of materials at the nanoscale. Nevertheless, its application to hierarchical biological tissue like cartilage is still limited. One reason is that such samples are usually millimeters in size, while the AFM delivers much more localized information. Here a combination of AFM and fluorescence microscopy is presented where features on a millimeter sized tissue sample are selected by fluorescence microscopy on the micrometer scale and then mapped down to nanometer precision by AFM under native conditions. This served us to show that local changes in the organization of fluorescent stained cells, a marker for early osteoarthritis, correlate with a significant local reduction of the elastic modulus, local thinning of the collagen fibers, and a roughening of the articular surface. This approach is not only relevant for cartilage, but in general for the characterization of native biological tissue from the macro- to the nanoscale. STATEMENT OF SIGNIFICANCE: Different length scales have to be studied to understand the function and dysfunction of hierarchically organized biomaterials or tissues. Here we combine a highly stable AFM with fluorescence microscopy and precisely motorized movement to correlate micro- and nanoscopic properties of articular cartilage on a millimeter sized sample under native conditions. This is necessary for unraveling the relationship between microscale organization of chondrocytes, micrometer scale changes in articular cartilage properties and nanoscale organization of collagen (including D-banding). We anticipate that such studies pave the way for a guided design of hierarchical biomaterials.
Collapse
|
47
|
Perni S, Prokopovich P. Optimisation and feature selection of poly-beta-amino-ester as a drug delivery system for cartilage. J Mater Chem B 2021; 8:5096-5108. [PMID: 32412019 PMCID: PMC7412864 DOI: 10.1039/c9tb02778e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug localisation is one of the main challenges in treating cartilage; poly-beta-amino-esters (PBAEs) drug conjugates are a possible solution; their efficacy depends on the polymer structure hence the full potential of this system is still unknown.
Drug localisation is still one of the main challenges in treating pathologies affecting cartilage; poly-beta-amino-esters (PBAEs) drug conjugates are a possible solution; however, their efficacy highly depends on the polymer structure hence the full potential of this delivery system is still unknown. For the purpose of optimising the delivery system design, a large library of PBAEs was synthesised and dexamethasone (DEX) uptake in cartilage was determined. All three components of PBAE (amine, acrylate and end-capping) impacted the outcome. The most effective PBAE identified enhanced DEX uptake by 8 folds compared to an equivalent dose of the commercial formulation and also prevented, through delivery of DEX, the cartilage degradation caused by IL-1α (interleukine1α). A chemometrics based predictive model was constructed and PBAEs properties most affecting the performance of the drug delivery systems were identified. This model will allow further computer based PBAEs optimisation and fast track the bench to market process for this delivery system.
Collapse
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
48
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
49
|
Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 2021; 519:111052. [PMID: 33068640 PMCID: PMC7736189 DOI: 10.1016/j.mce.2020.111052] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Growth hormone (GH) and its mediator, the insulin-like growth factor-1 (IGF-1) regulate somatic growth, metabolism and many aspects of aging. As such, actions of GH/IGF have been studied in many tissues and organs over decades. GH and IGF-1 are part of the hypothalamic/pituitary somatotrophic axis that consists of many other regulatory hormones, receptors, binding proteins, and proteases. In humans, GH/IGF actions peak during pubertal growth and regulate skeletal acquisition through stimulation of extracellular matrix production and increases in bone mineral density. During aging the activity of these hormones declines, a state called somatopaguss, which associates with deleterious effects on the musculoskeletal system. In this review, we will focus on GH/IGF-1 action in bone and cartilage. We will cover many studies that have utilized congenital ablation or overexpression of members of this axis, as well as cell-specific gene-targeting approaches used to unravel the nature of the GH/IGF-1 actions in the skeleton in vivo.
Collapse
Affiliation(s)
- Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA.
| |
Collapse
|
50
|
Current Nanoparticle-Based Technologies for Osteoarthritis Therapy. NANOMATERIALS 2020; 10:nano10122368. [PMID: 33260493 PMCID: PMC7760945 DOI: 10.3390/nano10122368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint disease that is characterized by joint pain and stiffness, and limitation of motion and the major cause of disability, which reduces life quality of patients and brings a large economic burden to the family and society. Current clinical treatment is mostly limited to symptomatic treatment aimed at pain alleviation and functional improvement, rather than suppressing the progression of OA. Nanotechnology is a promising strategy for the treatment of OA. In this review, we summarize the current experimental progress that focuses on technologies such as liposomes, micelles, dendrimers, polymeric nanoparticles (PNPs), exosomes, and inorganic nanoparticles (NPs) for their potential treatment of OA.
Collapse
|