1
|
Ruan H, Zhu T, Ma T, Liu Y, Zheng J. Short-term high-fat diet post-ACLT surgery activates chondrocyte AMPK pathway and slows articular cartilage degeneration in rats. J Funct Foods 2025; 124:106609. [DOI: 10.1016/j.jff.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
2
|
Mo H, Sun K, Hou Y, Ruan Z, He Z, Liu H, Li L, Wang Z, Guo F. Inhibition of PA28γ expression can alleviate osteoarthritis by inhibiting endoplasmic reticulum stress and promoting STAT3 phosphorylation. Bone Joint Res 2024; 13:659-672. [PMID: 39564812 PMCID: PMC11577458 DOI: 10.1302/2046-3758.1311.bjr-2023-0361.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Aims Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Haokun Mo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Tabbaa SM, Guilak F, Lemmerman LR, Glembotski N, D'Lima DD, Wang T, Bugbee WD. Elevated Lipid Metabolites in Stored Clinical OCA Media Correlate With Chondrocyte Death. Am J Sports Med 2024; 52:2119-2128. [PMID: 38857056 DOI: 10.1177/03635465241252653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND A major limitation of osteochondral allografts (OCA) is the deterioration of cartilage health associated with cell death during prolonged storage. However, little is known about the mechanisms that contribute to chondrocyte death during storage. PURPOSE/HYPOTHESIS This study aimed to determine whether bioactive lipid metabolites accumulate in the storage media of OCA and whether they are associated with a loss of chondrocyte viability during prolonged storage. It was hypothesized that free fatty acids (FFAs) would accumulate over time in the storage media of OCA and adversely affect cartilage health during storage. STUDY DESIGN Controlled laboratory study. METHODS A group of 21 (n = 6-8 OCA/treatment group) fresh human hemicondylar OCA tissues and media were analyzed after 7, 28, and 68 days of prolonged cold (4°C) storage. Targeted mass spectrometry analysis was used to quantify bioactive FFAs, as well as primary (lipid hydroperoxide [ROOH]) and secondary (malondialdehyde) lipid oxidation products. Chondrocyte viability was measured using a fluorescence-based live/dead assay and confocal microscopy. RESULTS The concentration of all targeted fatty acid metabolites in storage media was significantly increased with increased cold storage time (P < .05). ROOH was significantly higher on day 28 of cold storage. No difference in secondary ROOH products in storage media was observed. Chondrocyte viability significantly declined in both the en face and the vertical cross-sectional analysis with increased cold storage time and inversely correlated with fatty acid metabolites (P < .05). CONCLUSION It is well established that elevated levels of certain FFAs and lipid oxidation products can alter cell function and cause cell death via lipotoxicity and other mechanisms. This work is the first to identify elevated levels of FFA metabolites and primary oxidation lipid products in the storage media from clinical OCA. The concentrations of FFA metabolites were measured at levels (>100 µM) known to induce cell death and were directly correlated with chondrocyte viability. CLINICAL RELEVANCE These findings provide important targets for understanding why cartilage health declines during cold storage, which can be used to optimize media formulations and improve graft health.
Collapse
Affiliation(s)
- Suzanne M Tabbaa
- University of California, San Francisco, San Francisco, California, USA
| | - Farshid Guilak
- Washington University, St. Louis, Missouri, USA
- Shriners Hospitals for Children, St. Louis, Missouri, USA
| | | | | | | | - Tong Wang
- University of Tennessee, Knoxville, Tennessee, USA
| | | |
Collapse
|
4
|
Mocanu V, Timofte DV, Zară-Dănceanu CM, Labusca L. Obesity, Metabolic Syndrome, and Osteoarthritis Require Integrative Understanding and Management. Biomedicines 2024; 12:1262. [PMID: 38927469 PMCID: PMC11201254 DOI: 10.3390/biomedicines12061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoarthritis (OA) is a progressive chronic disease affecting the articular joints, leading to pain and disability. Unlike traditional views that primarily link OA to aging, recent understanding portrays it as a multifactorial degenerative disease of the entire joint. Emerging research highlights metabolic and immune dysregulation in OA pathogenesis, emphasizing the roles of obesity, dyslipidemia, and insulin resistance in altering joint homeostasis. Recent studies have increasingly focused on the complex role of white adipose tissue (WAT) in OA. WAT not only serves metabolic functions but also plays a critical role in systemic inflammation through the release of various adipokines. These adipokines, including leptin and adiponectin, have been implicated in exacerbating cartilage erosion and promoting inflammatory pathways within joint tissues. The overlapping global crises of obesity and metabolic syndrome have significantly impacted joint health. Obesity, now understood to contribute to mechanical joint overload and metabolic dysregulation, heightens the risk of developing OA, particularly in the knee. Metabolic syndrome compounds these risks by inducing chronic inflammation and altering macrophage activity within the joints. The multifaceted effects of obesity and metabolic syndrome extend beyond simple joint loading. These conditions disrupt normal joint function by modifying tissue composition, promoting inflammatory macrophage polarization, and impairing chondrocyte metabolism. These changes contribute to OA progression, highlighting the need for targeted therapeutic strategies that address both the mechanical and biochemical aspects of the disease. Recent advances in understanding the molecular pathways involved in OA suggest potential therapeutic targets. Interventions that modulate macrophage polarization, improve chondrocyte function, or normalize adipokine levels could serve as preventative or disease-modifying therapies. Exploring the role of diet, exercise, and pharmacological interventions in modulating these pathways offers promising avenues for reducing the burden of OA. Furthermore, such methods could prove cost-effective, avoiding the increase in access to healthcare.
Collapse
Affiliation(s)
- Veronica Mocanu
- Center for Obesity BioBehavioral Experimental Research, Department of Morpho-Functional Sciences II (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Daniel Vasile Timofte
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Camelia-Mihaela Zară-Dănceanu
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania; (C.-M.Z.-D.); (L.L.)
| | - Luminita Labusca
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania; (C.-M.Z.-D.); (L.L.)
- Department of Orthopedics, “Sf. Spiridon” Emergency Clinical Hospital, 700111 Iasi, Romania
| |
Collapse
|
5
|
Li X, Zhao C, Mao C, Sun G, Yang F, Wang L, Wang X. Oleic and linoleic acids promote chondrocyte apoptosis by inhibiting autophagy via downregulation of SIRT1/FOXO1 signaling. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167090. [PMID: 38378085 DOI: 10.1016/j.bbadis.2024.167090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Osteoarthritis (OA) is a complex joint disease that currently has no cure. OA involves metabolic disorders in chondrocytes and an imbalance between autophagy and apoptosis. As a common risk factor for OA, obesity induces changes in the fatty acid composition of synovial fluid, thereby disturbing chondrocyte homeostasis. However, whether unsaturated fatty acids affect the development of OA by regulating chondrocyte autophagy remains unclear. This study aimed to determine the effects of oleic and linoleic acids on chondrocyte autophagy and related mechanisms. Based on the mass spectrometry results, the levels of multiple unsaturated fatty acids, including oleic and linoleic acids, in the synovial fluid of patients with OA and obesity were significantly higher than those in patients with OA only. Moreover, we found that FOXO1 and SIRT1 were downregulated after oleic and linoleic acids treatment of chondrocytes, which inhibited chondrocyte autophagy. Importantly, the upregulation of SIRT1 and FOXO1 expression not only increased the level of autophagy but also improved the expression of chondrocyte extracellular matrix proteins. Furthermore, upregulated SIRT1 and FOXO1 expression alleviated the destruction of the articular cartilage in an OA rat model. Our results suggest that SIRT1/FOXO1 signaling can alleviate oleic acid- and linoleic acid-induced cartilage degradation both in vitro and in vivo and that the SIRT1/FOXO1 pathway may serve as an effective treatment target for inhibiting OA progression.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chuanyuan Mao
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guantong Sun
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Fei Yang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Xiaoqing Wang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
6
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
7
|
Liu Y, Zhou C, Tan J, Wu T, Pan C, Liu J, Cheng X. Ganoderic acid A slows osteoarthritis progression by attenuating endoplasmic reticulum stress and blocking NF-Κb pathway. Chem Biol Drug Des 2024; 103:e14382. [PMID: 37984927 DOI: 10.1111/cbdd.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 08/03/2023] [Indexed: 11/22/2023]
Abstract
Osteoarthritis (OA) is a prevalent degenerative pathology, however, there exists a lack of cost-effective pharmacological interventions that efficaciously inhibit its progression. ganoderic acid A (GAA), a triterpenoid derived from Ganoderma lucidum, possesses antiapoptotic and -inflammatory effects. Our objective was to better understand the therapeutic effects of GAA on OA as well as to elucidate the underlying mechanisms of its action. To establish an OA cell model in vitro, chondrocytes (CHONs) were treated with interleukin (IL)-1β. Subsequently, the investigation was conducted afterward according to the following indicators: cell viability, apoptosis, inflammation, and extracellular matrix (ECM) degradation. Western blotting analysis (WB) was employed to assess both endoplasmic reticulum (ER) stress and proteins associated with the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, based on molecular docking studies, GAA exhibits a significant binding competence to p65. OA mouse models were constructed by performing a destabilization medial meniscus (DMM) operation. Moreover, histopathology and immunohistochemistry were used to determine the GAA therapeutic effect in reducing OA in vivo. Our findings revealed that GAA has antiapoptotic, anti-inflammatory, and anti-ECM degradation effects by inhibiting the ER stress and NF-κB axis in CHONs in vitro. Furthermore, our findings suggest that GAA may attenuate the progression of osteoarthritis in vivo. GAA can protect CHONs by regulating apoptosis, ECM changes, and inflammation thereby preventing OA progression. These promising results indicate that GAA may be a therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuankun Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianye Tan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Jiangxi, China
| |
Collapse
|
8
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Li XF, Yan-Zou D, Liu WB, Desouky HE. High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1079-1095. [PMID: 37831370 DOI: 10.1007/s10695-023-01240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006. The transcriptional levels of glucose-regulated protein 78 (grp78), inositol requiring enzyme 1 (ire1), spliced X box-binding protein 1 (xbp1), DnaJ heat shock protein family (Hsp40) member B9 (dnajb9), tumor necrosis factor alpha (tnf-α), nuclear factor-kappa B (nf-κb), monocyte chemoattractant protein-1 (mcp-1), and interleukin-6 (il-6) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax, caspases-3, and caspases-9, ZO-1, Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Dong Yan-Zou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| | - Hesham Eed Desouky
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Beheria, 22713, Egypt
| |
Collapse
|
9
|
Khin PP, Lee JH, Jun HS. Pancreatic Beta-cell Dysfunction in Type 2 Diabetes. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231154152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic β-cells produce and secrete insulin to maintain blood glucose levels within a narrow range. Defects in the function and mass of β-cells play a significant role in the development and progression of diabetes. Increased β-cell deficiency and β-cell apoptosis are observed in the pancreatic islets of patients with type 2 diabetes. At an early stage, β-cells adapt to insulin resistance, and their insulin secretion increases, but they eventually become exhausted, and the β-cell mass decreases. Various causal factors, such as high glucose, free fatty acids, inflammatory cytokines, and islet amyloid polypeptides, contribute to the impairment of β-cell function. Therefore, the maintenance of β-cell function is a logical approach for the treatment and prevention of diabetes. In this review, we provide an overview of the role of these risk factors in pancreatic β-cell loss and the associated mechanisms. A better understanding of the molecular mechanisms underlying pancreatic β-cell loss will provide an opportunity to identify novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Phyu Phyu Khin
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Han Lee
- Department of Marine Bio-industry, Hanseo University, Seosan, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, 21, Namdong-daero 774, beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| |
Collapse
|
10
|
Wen ZQ, Lin J, Xie WQ, Shan YH, Zhen GH, Li YS. Insights into the underlying pathogenesis and therapeutic potential of endoplasmic reticulum stress in degenerative musculoskeletal diseases. Mil Med Res 2023; 10:54. [PMID: 37941072 PMCID: PMC10634069 DOI: 10.1186/s40779-023-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system, including osteoarthritis, osteoporosis, intervertebral disc degeneration (IVDD), and sarcopenia. As the global population ages, degenerative musculoskeletal diseases are becoming more prevalent. However, the pathogenesis of degenerative musculoskeletal diseases is not fully understood. Previous studies have revealed that endoplasmic reticulum (ER) stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER, contributing to degenerative musculoskeletal diseases. By affecting cartilage degeneration, synovitis, meniscal lesion, subchondral bone remodeling of osteoarthritis, bone remodeling and angiogenesis of osteoporosis, nucleus pulposus degeneration, annulus fibrosus rupture, cartilaginous endplate degeneration of IVDD, and sarcopenia, ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases. Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases. These pilot studies provide foundations for further evaluation of the feasibility, efficacy, and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials. In this review, we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases. In a future perspective, we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease, potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators, as well as underlying challenges and obstacles in bench-to-beside research.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215001, China
| | - Wen-Qing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Han Shan
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ge-Hua Zhen
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Sun W, Yue J, Xu T, Cui Y, Huang D, Shi H, Xiong J, Sun W, Yi Q. Xanthohumol alleviates palmitate-induced inflammation and prevents osteoarthritis progression by attenuating mitochondria dysfunction/NLRP3 inflammasome axis. Heliyon 2023; 9:e21282. [PMID: 37964828 PMCID: PMC10641167 DOI: 10.1016/j.heliyon.2023.e21282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative joint disease worldwide. Obesity has been linked to OA, and increased free fatty acid levels (e.g., palmitate) contribute to inflammatory responses and cartilage degradation. Xanthohumol (Xn), a bioactive prenylated chalcone, was shown to exhibit antioxidative, anti-inflammatory, and anti-obesity capacities in multiple diseases. However, a clear description of the preventive effects of Xn on obesity-associated OA is unavailable. This study aimed to assess the chondroprotective function of Xn on obesity-related OA. The in vitro levels of inflammatory and ECM matrix markers in human chondrocytes were assessed after the chondrocytes were treated with PA and Xn. Additionally, in vivo cartilage degeneration was assessed following oral administration of HFD and Xn. This study found that Xn treatment completely reduces the inflammation and extracellular matrix degradation caused by PA. The proposed mechanism involves AMPK signaling pathway activation by Xn, which increases mitochondrial biogenesis, attenuates mitochondrial dysfunction, and inhibits NLRP3 inflammasome and the NF-κB signaling pathway induced by PA. In summary, this study highlights that Xn could decrease inflammation reactions and the degradation of the cartilage matrix induced by PA by inhibiting the NLRP3 inflammasome and attenuating mitochondria dysfunction in human chondrocytes.
Collapse
Affiliation(s)
- Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- The Central Laboratory, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518035, China
| | - Jiaji Yue
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Tianhao Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Yinxing Cui
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dixi Huang
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, 518035, China
| | - Qian Yi
- Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan, 646099, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
12
|
Tan L, Armstrong AR, Rosas S, Patel CM, Wiele SSV, Willey JS, Carlson CS, Yammani RR. Nuclear protein-1 is the common link for pathways activated by aging and obesity in chondrocytes: A potential therapeutic target for osteoarthritis. FASEB J 2023; 37:e23133. [PMID: 37566478 PMCID: PMC10939173 DOI: 10.1096/fj.202201700rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Pathways leading to osteoarthritis (OA) are diverse depending on the risk factors involved; thus, developing OA therapeutics has been challenging. Here we report that nuclear protein-1 (Nupr1), a stress-inducible protein/transcription factor, is activated by pathways associated with obesity and aging in chondrocytes. Treatment of human chondrocytes with free fatty acids (palmitate and oleate; a model for high-fat diet/obesity) induced PERK signaling and increased expression of caspase-3, TRB3, and Nupr1. On the other hand, treatment of chondrocytes with menadione (oxidative stress inducer) induced oxidation of IRE1, activated antioxidant response (higher Nrf2 expression), and increased expression of Nupr1 and matrix metalloproteinases. Experimental OA was induced by destabilization of the medial meniscus (DMM) in the knee joints of Nupr1+/+ and Nupr1-/- mice. Loss of Nupr1 expression reduced the severity of cartilage lesions in this model. Together, our findings suggest that Nupr1 is a common factor activated by signaling pathways activated by obesity (ER stress) and age (oxidative stress) and a potential drug target for OA resulting from various risk factors.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexandra R. Armstrong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Samuel Rosas
- Department of Orthopaedic Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Chirayu M. Patel
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sabrina S. Vander Wiele
- Department of Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, USA
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Raghunatha R. Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
13
|
Bestepe F, Fritsche C, Lakhotiya K, Niosi CE, Ghanem GF, Martin GL, Pal-Ghosh R, Becker-Greene D, Weston J, Hollan I, Risnes I, Rynning SE, Solheim LH, Feinberg MW, Blanton RM, Icli B. Deficiency of miR-409-3p improves myocardial neovascularization and function through modulation of DNAJB9/p38 MAPK signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:995-1009. [PMID: 37332476 PMCID: PMC10276151 DOI: 10.1016/j.omtn.2023.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
Angiogenesis is critical for tissue repair following myocardial infarction (MI), which is exacerbated under insulin resistance or diabetes. MicroRNAs are regulators of angiogenesis. We examined the metabolic regulation of miR-409-3p in post-infarct angiogenesis. miR-409-3p was increased in patients with acute coronary syndrome (ACS) and in a mouse model of acute MI. In endothelial cells (ECs), miR-409-3p was induced by palmitate, while vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) decreased its expression. Overexpression of miR-409-3p decreased EC proliferation and migration in the presence of palmitate, whereas inhibition had the opposite effects. RNA sequencing (RNA-seq) profiling in ECs identified DNAJ homolog subfamily B member 9 (DNAJB9) as a target of miR-409-3p. Overexpression of miR-409-3p decreased DNAJB9 mRNA and protein expression by 47% and 31% respectively, while enriching DNAJB9 mRNA by 1.9-fold after Argonaute2 microribonucleoprotein immunoprecipitation. These effects were mediated through p38 mitogen-activated protein kinase (MAPK). Ischemia-reperfusion (I/R) injury in EC-specific miR-409-3p knockout (KO) mice (miR-409ECKO) fed a high-fat, high-sucrose diet increased isolectin B4 (53.3%), CD31 (56%), and DNAJB9 (41.5%). The left ventricular ejection fraction (EF) was improved by 28%, and the infarct area was decreased by 33.8% in miR-409ECKO compared with control mice. These findings support an important role of miR-409-3p in the angiogenic EC response to myocardial ischemia.
Collapse
Affiliation(s)
- Furkan Bestepe
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Colette Fritsche
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Kartik Lakhotiya
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Carolyn E. Niosi
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - George F. Ghanem
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Ruma Pal-Ghosh
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Dakota Becker-Greene
- Cardiovascular Division, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Weston
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Ivana Hollan
- Department of Health Sciences, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Ivar Risnes
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Stein Erik Rynning
- Department of Heart Diseases, Haukeland University Hospital, Bergen, Norway
| | | | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Basak Icli
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
14
|
Kim SH, Yun C, Kwon D, Lee YH, Kwak JH, Jung YS. Effect of Isoquercitrin on Free Fatty Acid-Induced Lipid Accumulation in HepG2 Cells. Molecules 2023; 28:molecules28031476. [PMID: 36771140 PMCID: PMC9919102 DOI: 10.3390/molecules28031476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Liver metabolic disorders and oxidative stress are crucial factors in the development of nonalcoholic fatty liver disease (NAFLD); however, treatment strategies to combat NAFLD remain poorly established, presenting an important challenge that needs to be addressed. Herein, we aimed to examine the effect of isoquercitrin on lipid accumulation induced by exogenous free fatty acids (FFA) using HepG2 cells and elucidate the underlying molecular mechanism. The cells were exposed to 0.5 mM FFA to induce intracellular lipid accumulation, followed by co-treatment with isoquercitrin to confirm the potential inhibitory effect on FFA-induced lipid production. HepG2 cells exposed to FFA alone exhibited intracellular lipid accumulation, compromised endoplasmic reticulum (ER) stress, and enhanced expression of proteins and genes involved in lipid synthesis; however, co-treatment with isoquercitrin decreased the expression of these molecules in a dose-dependent manner. Furthermore, isoquercitrin could activate AMP-activated protein kinase (AMPK), a key regulatory protein of hepatic fatty acid oxidation, suppressing new lipid production by phosphorylating acetyl-CoA carboxylase (ACC) and inhibiting sterol regulatory element-binding transcription factor 1 (SREBP-1)/fatty acid synthase (FAS) signals. Overall, these findings suggest that isoquercitrin can be employed as a therapeutic agent to improve NAFLD via the regulation of lipid metabolism by targeting the AMPK/ACC and SREBP1/FAS pathways.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Chawon Yun
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-5102816
| |
Collapse
|
15
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
16
|
Böttcher-Loschinski R, Rial Saborido J, Böttcher M, Kahlfuss S, Mougiakakos D. Lipotoxicity as a Barrier for T Cell-Based Therapies. Biomolecules 2022; 12:biom12091182. [PMID: 36139021 PMCID: PMC9496045 DOI: 10.3390/biom12091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Nowadays, T-cell-based approaches play an increasing role in cancer treatment. In particular, the use of (genetically engineered) T-cells has heralded a novel era for various diseases with previously poor outcomes. Concurrently, the relationship between the functional behavior of immune cells and their metabolic state, known as immunometabolism, has been found to be an important determinant for the success of immunotherapy. In this context, immune cell metabolism is not only controlled by the expression of transcription factors, enzymes and transport proteins but also by nutrient availability and the presence of intermediate metabolites. The lack of as well as an oversupply of nutrients can be detrimental and lead to cellular dysfunction and damage, potentially resulting in reduced metabolic fitness and/or cell death. This review focusses on the detrimental effects of excessive exposure of T cells to fatty acids, known as lipotoxicity, in the context of an altered lipid tumor microenvironment. Furthermore, implications of T cell-related lipotoxicity for immunotherapy will be discussed, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Judit Rial Saborido
- Medical Department 5–Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology, and Inflammation (GCI3), Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sascha Kahlfuss
- Health Campus Immunology, Infectiology, and Inflammation (GCI3), Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- CHaMP, Center for Health and Medical Prevention, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Medical Department 5–Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Health Campus Immunology, Infectiology, and Inflammation (GCI3), Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
17
|
Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022; 11:cells11050844. [PMID: 35269467 PMCID: PMC8909283 DOI: 10.3390/cells11050844] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Free fatty acids (FFAs) play numerous vital roles in the organism, such as contribution to energy generation and reserve, serving as an essential component of the cell membrane, or as ligands for nuclear receptors. However, the disturbance in fatty acid homeostasis, such as inefficient metabolism or intensified release from the site of storage, may result in increased serum FFA levels and eventually result in ectopic fat deposition, which is unfavorable for the organism. The cells are adjusted for the accumulation of FFA to a limited extent and so prolonged exposure to elevated FFA levels results in deleterious effects referred to as lipotoxicity. Lipotoxicity contributes to the development of diseases such as insulin resistance, diabetes, cardiovascular diseases, metabolic syndrome, and inflammation. The nonobvious organs recognized as the main lipotoxic goal of action are the pancreas, liver, skeletal muscles, cardiac muscle, and kidneys. However, lipotoxic effects to a significant extent are not organ-specific but affect fundamental cellular processes occurring in most cells. Therefore, the wider perception of cellular lipotoxic mechanisms and their interrelation may be beneficial for a better understanding of various diseases’ pathogenesis and seeking new pharmacological treatment approaches.
Collapse
|
18
|
Cao X, Cui Z, Ding Z, Chen Y, Wu S, Wang X, Huang J. An osteoarthritis subtype characterized by synovial lipid metabolism disorder and fibroblast-like synoviocyte dysfunction. J Orthop Translat 2022; 33:142-152. [PMID: 35330945 PMCID: PMC8919236 DOI: 10.1016/j.jot.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background The heterogeneity of osteoarthritis (OA) significantly limits the effectiveness of pharmacological treatments in an unselected patient population. In this context, the identification of OA subtypes is meaningful for the development of therapies that target specific types of OA pathogenesis. Methods Expression array profiles of 70 OA and 36 control synovial samples were extracted from the GEO database. Unsupervised consensus clustering was performed based on the most variable genes to identify OA subclusters. Next, Joint samples from OA patients were obtained. We divided the OA patient into two subpopulations according to synovial ADCY7 levels. Synovium and cartilage samples from different OA subpopulations were evaluated. In addition, we established a high-fat diet (HFD)-induced rat OA model. We evaluated OA progression, lipid metabolism, synovitis and fibroblast-like synoviocytes (FLS) function in this HFD-induced OA model. Results 70 OA patients were categorized into three distinct subclusters. We noted that one subcluster was characterized by synovial lipid metabolism disorder GO terms. We further identified the most noticeable KEGG pathway “Regulation of lipolysis in adipocytes” in this subcluster as well as the most significantly differentially expressed gene, ADCY7. We found that the ADCY7 high expressing group (32.6%) exhibited features of synovial inflammatory lipolysis epithelial-mesenchymal transition (EMT) tendency, as well as faster join space narrowing. The HFD induced OA-like degeneration in rat joints. We observed similar synovial inflammatory lipolysis and EMT in FLS, characterized by higher proliferative and invasive activity and elevated proinflammatory and procatabolic properties. ADCY7 was highly expressed in the synovium of the HFD-OA model rats and the inhibition of ADCY7 effectively attenuated these HFD-induced degenerative changes as well as synovial inflammatory lipolysis and FLS dysfunction. In HFD-FLSs, ADCY7 promoted the phosphorylation of PKA as well as its downstream lipid droplet-associated protein PLIN1 and hormone-sensitive lipase (HSL). The inhibition of PKA largely alleviated ADCY7-mediated HFD-FLS dysfunction. Conclusions We described a synovial EMT and lipid metabolism disorder in the pathogenesis of OA. This novel mechanism may represent a currently undefined OA subtype. ADCY7 is a potential molecular marker of this pathomechanism. The Translational potential of this article Utilizing synovial samples from OA patients, we identified a subpopulation with high ADCY7 expression. This may represent a currently undefined OA subtype and explain the clinical phenomenon of more severe synovial inflammation in obese OA patients. In addition, we established an HFD-induced OA rat model and found an upregulation of ADCY7 in the synovium. We confirmed that the inhibition of ADCY7 could effectively attenuate HFD-induced degenerative changes as well as the inflammatory lipolysis and FLS dysfunction observed in the rat model. This suggests that ADCY7 and its downstream pathways are potential pharmacological targets for treating this lipid-metabolism-disorder-related OA mechanism.
Collapse
|
19
|
Ma H, Xie C, He G, Chen Z, Lu H, Wu H, Cai H, Dai Z, Li B, Xu C, Xue E. Sparstolonin B suppresses free fatty acid palmitate-induced chondrocyte inflammation and mitigates post-traumatic arthritis in obese mice. J Cell Mol Med 2021; 26:725-735. [PMID: 34953038 PMCID: PMC8817118 DOI: 10.1111/jcmm.17099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Abnormal lipid metabolism, such as systemic increased free fatty acid, results in overproduction of pro‐inflammatory enzymes and cytokines, which is crucial in the development of obesity‐related osteoarthritis (OA). However, there are only a few drugs that target the lipotoxicity of OA. Recent researches have documented that the traditional Chinese medicine, Sparstolonin B (Ssn B), exerted anti‐inflammatory effects in various diseases, but not yet in OA. On the basis of this evidence, our works purposed to evaluate the effect of Ssn B on free fatty acid (FFA) palmitate (PA)‐stimulated human osteoarthritic chondrocytes and obesity‐associated mouse OA model. We found that Ssn B suppressed PA‐triggered inflammatory response and extracellular matrix catabolism in a concentration‐dependent approach. In vivo, Ssn B treatment inhibited cartilage degeneration and subchondral bone calcification caused by joint mechanical imbalance and alleviated metabolic inflammation in obesity. Mechanistically, co‐immunoprecipitine and molecular docking analysis showed that the formation of tolllike receptor 4 (TLR4)/myeloid differentiation protein‐2 (MD‐2) complex caused by PA was blocked by Ssn B. Subsequently, it leads to inactivation of PA‐caused myeloid differentiation factor 88 (MyD88)‐dependent nuclear factor‐kappaB (NF‐κB) cascade. Together, these findings demonstrated that Ssn B is a potential treatment agent for joint degenerative diseases in obese individuals.
Collapse
Affiliation(s)
- Haiwei Ma
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenglong Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaolu He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Zhengtai Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Lu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongqiang Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hancheng Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Zihan Dai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Baolong Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Enxing Xue
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Marei WFA, Leroy JLMR. Cellular Stress Responses in Oocytes: Molecular Changes and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:171-189. [PMID: 34921349 DOI: 10.1007/5584_2021_690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The oocyte may be exposed to several sources of stress during its growth and maturation, which may lead to reduced fertility. Unfolded protein responses (UPRs) play a central role to maintain cell survival and repair. Transcription of heat shock proteins (HSPs) is a key element to facilitate reestablishment of cellular homeostasis. Unlike somatic cells, cellular mechanisms by which oocytes can sense and respond to stress are not well described. In here, we provide an overview about the impact of cellular stress, particularly due to lipotoxicity, oxidative stress, and heat stress on oocyte developmental competence. Next, we focus on the expression of HSPs in oocytes and their potential role in UPRs in oocytes and embryos. This is based on a comprehensive shotgun proteomic analysis of mature bovine oocytes performed in our laboratory, as well as a literature review. The topic is discussed in light of our understanding of similar mechanisms in other cell types and the limited transcriptional activity in oocytes. More fundamental research is needed both at the transcriptomic and proteomic levels to further understand cell stress response mechanisms in oocytes and early developing embryos, their critical interactions, and their long-term effects. Strategies to provide targeted external support to prevent or reduce cell stress levels during oocyte maturation or early embryo development under maternal metabolic stress conditions should be developed to maximize the odds of producing good quality embryos and guarantee optimal viability.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium. .,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
21
|
Tan L, Harper LR, Armstrong A, Carlson CS, Yammani RR. Dietary saturated fatty acid palmitate promotes cartilage lesions and activates the unfolded protein response pathway in mouse knee joints. PLoS One 2021; 16:e0247237. [PMID: 33617553 PMCID: PMC7899342 DOI: 10.1371/journal.pone.0247237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/03/2021] [Indexed: 01/10/2023] Open
Abstract
Increased intake of dietary saturated fatty acids has been linked to obesity and the development of Osteoarthritis (OA). However, the mechanism by which these fats promote cartilage degradation and the development of OA is not clearly understood. Here, we report the effects of consumption of common dietary saturated and unsaturated fatty acids, palmitate and oleate, respectively, on body weight, metabolic factors, and knee articular cartilage in a mouse model of diet-induced obesity. Mice fed on a diet rich in saturated or unsaturated fatty acid gained an equal amount of weight; however, mice fed a palmitate diet, but not a control or oleate diet, exhibited more cartilage lesions and increased expression of 1) unfolded protein response (UPR)/endoplasmic reticulum (ER) stress markers including BIP, P-IRE1α, XBP1, ATF4, and CHOP; 2) apoptosis markers CC3 and C-PARP; and 3) negative cell survival regulators Nupr1 and TRB3, in knee articular cartilage. Palmitate-induced apoptosis was confirmed by TUNEL staining. Likewise, dietary palmitate was also increased the circulatory levels of classic proinflammatory cytokines, including IL-6 and TNF-α. Taken together, our results demonstrate that increased weight gain is not sufficient for the development of obesity-linked OA and suggest that dietary palmitate promotes UPR/ER stress and cartilage lesions in mouse knee joints. This study validates our previous in vitro findings and suggests that ER stress could be the critical metabolic factor contributing to the development of diet/obesity induced OA.
Collapse
Affiliation(s)
- Li Tan
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Lindsey R. Harper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Alexandra Armstrong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Raghunatha R. Yammani
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail:
| |
Collapse
|
22
|
Yang M, Chang Z, Ji H. Characterization and expression analysis of ATG4 paralogs in response to the palmitic acid induced-ER stress in Ctenopharyngodon idellus kidney cells. Comp Biochem Physiol B Biochem Mol Biol 2021; 252:110525. [DOI: 10.1016/j.cbpb.2020.110525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/22/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
|
23
|
Tan L, Register TC, Yammani RR. Age-Related Decline in Expression of Molecular Chaperones Induces Endoplasmic Reticulum Stress and Chondrocyte Apoptosis in Articular Cartilage. Aging Dis 2020; 11:1091-1102. [PMID: 33014525 PMCID: PMC7505268 DOI: 10.14336/ad.2019.1130] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is a major risk factor for the development of osteoarthritis (OA). One hallmark of aging is loss of proteostasis resulting in increased cellular stress and cell death. However, its effect on the development of OA is not clear. Here, using knee articular cartilage tissue from young and old cynomolgus monkeys (Macaca fascicularis), we demonstrate that with aging there is loss of molecular chaperone expression resulting in endoplasmic reticulum (ER) stress and cell death. Chondrocytes from aged articular cartilage showed decreased expression of molecular chaperones, including protein disulfide isomerase, calnexin, and Ero1-like protein alpha, and increased immunohistochemical staining for ER stress markers (phosphorylated IRE1 alpha, spliced X-box binding protein-1, activating transcription factor 4 and C/EBP homologous protein), and apoptotic markers [cleaved caspase 3 and cleaved poly(ADP-ribose) polymerase], suggesting that decreased expression of molecular chaperone during aging induces ER stress and chondrocyte apoptosis in monkey articular cartilage. Apoptosis induced by aging-associated ER stress was further confirmed by TUNEL staining. Aged monkey cartilage also showed increased expression of nuclear protein 1 (Nupr1) and tribbles related protein-3 (TRB3), known regulators of apoptosis and cell survival pathways. Treatment of cultured monkey chondrocytes with a small molecule chemical chaperone, 4-phenylbutyric acid (PBA, a general ER stress inhibitor) or PERK Inhibitor I (an ER stress inhibitor specifically targeting the PERK branch of the unfolded protein response pathway), decreased the expression of ER stress and apoptotic markers and reduced the expression of Nupr1 and TRB3. Consistent with the above finding, knockdown of calnexin expression induces ER stress and apoptotic markers in normal human chondrocytes in vitro. Taken together, our study clearly demonstrates that aging promotes loss of proteostasis and induces ER stress and chondrocyte apoptosis in articular cartilage. Thus, restoring proteostasis using chemical/molecular chaperone or ER stress inhibitor could be a therapeutic option to treat aged-linked OA.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas C Register
- Departments of Pathology and Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
24
|
Sharmin MM, Mizusawa M, Hayashi S, Arai W, Sakata S, Yonekura S. Effects of fatty acids on inducing endoplasmic reticulum stress in bovine mammary epithelial cells. J Dairy Sci 2020; 103:8643-8654. [PMID: 32622599 DOI: 10.3168/jds.2019-18080] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Fatty acids play important roles in the regulation of endoplasmic reticulum (ER) stress-induced apoptosis in different cells. Currently, the effects of fatty acids on bovine mammary epithelial cells (MEC) remain unknown. Our study examined bovine MEC viability and measured unfolded protein response (UPR)-related gene and protein expressions following fatty acid treatments. To evaluate the role of fatty acids, we treated MAC-T cells (a line of MEC) with 100 to 400 μM of saturated (palmitic and stearic acid) and unsaturated (palmitoleic, oleic, linoleic, and linolenic acid) fatty acids and 1 to 5 mM of short- and medium-chain fatty acids (acetic, propionic, butyric, and octanoic acid). Thereafter, we determined UPR-related gene expression using quantitative real-time PCR. Palmitic acid stimulated expression of XBP1s, ATF4, ATF6A, and C/EBP homologous protein (CHOP). Stearic acid increased expression of XBP1s and CHOP and decreased expression of ATF4 and ATF6A. Results of Western blot analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that palmitic and stearic acid reduced MAC-T cell viability and induced extreme ER stress by increasing the protein expression of ER stress markers, such as phospho-PKR-like endoplasmic reticulum kinase, phospho-eIF2α, cleaved CASP-3, and CHOP. Among unsaturated long-chain fatty acids, palmitoleic acid increased expression of ATF4 and ATF6A. Oleic acid increased expression of XBP1s, ATF4, and ATF6A. Linoleic and linolenic acids increased expression of XBP1s, ATF4, and ATF6A but decreased expression of XBP1s and ATF6A at the highest dose. Although palmitoleic, oleic, and linoleic acid decreased CHOP expression, only palmitoleic acid increased MAC-T cell viability. Therefore, unsaturated long-chain fatty acids did not induce severe ER stress. Acetic, propionic, and butyric acids decreased expression of ATF4, ATF6A, and CHOP and increased XBP1s expression. Although only octanoic acid increased ATF4 and ATF6A expressions, it lowered expression of XBP1s and CHOP. Although fatty acid treatment did not increase the levels of ER stress proteins, butyric and octanoic acids reduced cell viability, possibly because of early differentiation. These results suggest that saturated fatty acids play important roles in MEC viability by inducing severe ER stress compared with unsaturated fatty acids. In addition, acetic and propionic acids (short- and medium-chain fatty acids) reduced ER stress. Therefore, the present study reflects the new insight that serum fatty acid concentration plays an important role in maintaining the lactation physiology of dairy cows.
Collapse
Affiliation(s)
- Mst Mamuna Sharmin
- Graduate School of Medicine, Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Moeko Mizusawa
- Graduate School of Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Satoko Hayashi
- Graduate School of Medicine, Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Wataru Arai
- Graduate School of Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Shotaro Sakata
- Graduate School of Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan; Graduate School of Science and Technology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 399-4598, Japan.
| |
Collapse
|
25
|
Yu X, Zheng G, Hu Z, Tang S, Xu J, Shang P, Tang Q, Liu H. Asiatic acid ameliorates obesity-related osteoarthritis by inhibiting myeloid differentiation protein-2. Food Funct 2020; 11:5513-5524. [PMID: 32514515 DOI: 10.1039/d0fo00571a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Obesity is related to osteoarthritis (OA). Aberrant lipid metabolism results in increased levels of free fatty acids, such as palmitate (PA), leading to inflammatory responses and excess catabolism of chondrocytes. Asiatic acid (AA), a plant anti-inflammatory compound, has been reported to exert protective effects for several diseases, but its effect on obesity-related OA is still unclear. The aim of this study is to evaluate the chondro-protective effect of AA on PA-induced human chondrocytes and a high fat diet (HFD)-fed mouse cartilage degeneration model. In vitro, the levels of the inflammatory and extracellular matrix (ECM) markers of chondrocytes after being treated with PA (500 μM) and AA (2.5-10 μM) were determined using western blotting and immunofluorescence enzyme-linked immunosorbent assay (ELISA). In vivo, after the oral administration of HFD and AA, X-ray examination, safranin O staining, and ELISA assay were conducted to evaluate cartilage calcification and degeneration and cytokine and adipokine levels in the serum of mice. AA treatment eliminated the inflammation caused by PA and extracellular matrix degradation. Mechanistically, AA blocked the stimulation of the NF-κB pathway. Analysis with co-immunoprecipitation and molecular docking indicated that the MD-2/TLR4 complex was a target of AA. In vivo, AA treatment not only prevented HFD-induced OA changes but also reduced proinflammatory cytokine and adipokine production in obese mice. AA exerted a chondroprotective effect by inhibiting the TLR4/MD-2 axis, thus showing promise for treating obesity-related OA.
Collapse
Affiliation(s)
- Xingfang Yu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Gang Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Zhichao Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Shangkun Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Jianchen Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| | - Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Haixiao Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China.
| |
Collapse
|
26
|
Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes. PLoS One 2020; 15:e0232630. [PMID: 32357187 PMCID: PMC7194368 DOI: 10.1371/journal.pone.0232630] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays an essential role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Berberine (BBR), an isoquinoline alkaloid isolated from Chinese medicinal herbs, has been widely used to treat various diseases, including liver diseases for hundreds of years. The previous studies have shown that BBR inhibits high fat-diet-induced steatosis and inflammation in rodent models of NAFLD. However, the underlying molecular mechanisms remain unclear. This study is aimed to identify the potential mechanisms by which BBR inhibits free fatty acid (FFA) and LPS-induced inflammatory response in mouse macrophages and hepatocytes. Mouse RAW264.7 macrophages and primary mouse hepatocytes were treated with palmitic acid (PA) or LPS or both with or without BBR (0–10 μM) for different periods (0–24 h). The mRNA and protein levels of proinflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1) and ER stress genes (CHOP, ATF4, XBP-1) were detected by real-time RT-PCR, Western blot and ELISA, respectively. The results indicated that BBR significantly inhibited PA and LPS-induced activation of ER stress and expression of proinflammatory cytokines in macrophages and hepatocytes. PA/LPS-mediated activation of ERK1/2 was inhibited by BBR in a dose-dependent manner. In summary, BBR inhibits PA/LPS-induced inflammatory responses through modulating ER stress-mediated ERK1/2 activation in macrophages and hepatocytes.
Collapse
|
27
|
Tan L, Harper L, McNulty MA, Carlson CS, Yammani RR. High-fat diet induces endoplasmic reticulum stress to promote chondrocyte apoptosis in mouse knee joints. FASEB J 2020; 34:5818-5826. [PMID: 32124494 DOI: 10.1096/fj.201902746r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/31/2022]
Abstract
Mice fed a high-fat diet (HFD) become obese and develop osteoarthritis (OA)-like lesions, including chondrocyte apoptosis, in the knee joints. However, the mechanism by which HFD/obesity induces chondrocyte apoptosis is not clearly understood. In the present study, male mice were fed a low-fat diet (LFD, 10% kcal), HFD (45% kcal), or a HFD administered with 0.5 g/kg bodyweight of 4-phenyl butyric acid (PBA, a small chaperone known to ease endoplasmic reticulum [ER] stress), via the drinking water. At the end of the 18-week study, stifle (knee) joints from all animals were collected, fixed, paraffin embedded, and sectioned. Immunostaining of joints from the HFD group showed increased expression of ER stress and apoptotic markers and increased expression of nuclear protein 1 and tribbles related protein-3 compared to the LFD group. Mice on HFD also showed higher percentage of chondrocyte death, lower chondrocyte numbers per cartilage area, and thickening of subchondral bone. Administration of PBA alleviated all of the HFD-induced symptoms. Our study demonstrated that HFD induces ER stress to promote chondrocyte death and subchondral bone thickening, which could be relieved by alleviating ER stress via PBA administration, suggesting that ER stress could play an important role in obesity-linked OA and could be targeted for OA therapeutics.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lindsey Harper
- Veterinary Clinical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Margaret A McNulty
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cathy S Carlson
- Veterinary Clinical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
28
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
29
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Highly Glycolytic Immortalized Human Dermal Microvascular Endothelial Cells are Able to Grow in Glucose-Starved Conditions. Biomolecules 2019; 9:biom9080332. [PMID: 31374952 PMCID: PMC6723428 DOI: 10.3390/biom9080332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells form the inner lining of blood vessels, in a process known as angiogenesis. Excessive angiogenesis is a hallmark of several diseases, including cancer. The number of studies in endothelial cell metabolism has increased in recent years, and new metabolic targets for pharmacological treatment of pathological angiogenesis are being proposed. In this work, we wanted to address experimental evidence of substrate (namely glucose, glutamine and palmitate) dependence in immortalized dermal microvascular endothelial cells in comparison to primary endothelial cells. In addition, due to the lack of information about lactate metabolism in this specific type of endothelial cells, we also checked their capability of utilizing extracellular lactate. For fulfilling these aims, proliferation, migration, Seahorse, substrate uptake/utilization, and mRNA/protein expression experiments were performed. Our results show a high glycolytic capacity of immortalized dermal microvascular endothelial cells, but an early independence of glucose for cell growth, whereas a total dependence of glutamine to proliferate was found. Additionally, in contrast with reported data in other endothelial cell lines, these cells lack monocarboxylate transporter 1 for extracellular lactate incorporation. Therefore, our results point to the change of certain metabolic features depending on the endothelial cell line.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Ana R Quesada
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain.
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
30
|
Feng K, Chen Z, Pengcheng L, Zhang S, Wang X. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J Cell Physiol 2019; 234:18192-18205. [PMID: 30854676 DOI: 10.1002/jcp.28452] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Abstract
Apoptosis of chondrocytes are the main initiator of osteoarthritis (OA) and can be explained by oxidative stress and endoplasmic reticulum (ER) stress, thus the pharmacological interventions aimed at inhibiting of these pathways may be a promising approach for the management of OA. Quercetin is a member of the flavonoid family and has antioxidant and anti-inflammatory properties in degenerative diseases. However, its effects and potential mechanisms on the pathological process of OA are not very clear. The present study aimed to investigate the protective effects of quercetin on OA and the underlying mechanisms. The tert-butyl hydroperoxide (TBHP)-stimulated rat chondrocytes and destabilization of the medial meniscus OA rat model was used to explore the protective effects of quercetin. Our results showed that quercetin treatment can attenuate oxidative stress, ER stress, and associated apoptosis. Moreover, quercetin inhibited ER stress through activating the sirtuin1/adenosine monophosphate-activated protein kinase (SIRT1/AMPK) signaling pathway. The protective effects of quercetin were also observed in OA rat model which is evidenced by abolished cartilage degeneration and decreased chondrocytes apoptosis in the knee joints. Our results suggested that quercetin is a promising treatment for OA.
Collapse
Affiliation(s)
- Kai Feng
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhaoxun Chen
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Liu Pengcheng
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shuhong Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoqing Wang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Zhang J, Wang X, Liu H, Li Z, Chen F, Wang H, Zheng Z, Wang J. TNF-α enhances apoptosis by promoting chop expression in nucleus pulposus cells: role of the MAPK and NF-κB pathways. J Orthop Res 2019; 37:697-705. [PMID: 30561076 DOI: 10.1002/jor.24204] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023]
Abstract
CHOP has been shown to be involved in AF cells apoptosis and disc degeneration in a rat model. The aim of this study was to investigate the regulatory effects of TNF-α on C/EBP homologous protein (CHOP) and the role of CHOP in nucleus pulposus (NP) cell apoptosis. The effects of TNF-α on chop were measured by qPCR, Western blot, and immunofluorescence. TNF receptor involvement was analyzed by small interfering RNA (siRNA), Western blotting, immunofluorescence, and qPCR. The effects of NF-κB and MAPK on TNF-α-mediated chop promoter activity were studied using siRNAs, Western blotting, immunofluorescence, and qPCR. The regulatory effects of TNF-α-induced CHOP on Bcl-2 and Bax were studied using siRNAs, Western blotting, immunofluorescence, and qPCR. Flow cytometric and TUNEL analyses were performed to investigate the effects of chop on NP cell apoptosis. Increased CHOP expression was observed in NP cells after TNF-α treatment. Treatment of cells with TNF receptor, NF-κB, and ERK/JNK-MAPK inhibitors or siRNAs abolished the effects of cytokines on CHOP expression. Pharmacological siRNA knockdown of chop promoted Bax, decreased Bcl-2, and attenuated TNF-α-mediated cell apoptosis. During intervertebral disc degeneration (IVDD), TNF-α binds to TNF receptors and controls the JNK/ERK-MAPK, and NF-κB signaling pathways in NP cells, increasing CHOP expression. This change up-regulates the pro-apoptotic protein Bax and down-regulates the anti-apoptosis protein Bcl-2, inducing cell apoptosis. This study suggests a potential therapeutic target for controlling the inflammatory-induced apoptosis associated with IVDD. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Department of Spine Surgery, Shenzhen Second People's Hospital, The 1st Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, PR China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The 6th Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zemin Li
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Fan Chen
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hua Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhaomin Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| |
Collapse
|
32
|
Nupr1 regulates palmitate-induced apoptosis in human articular chondrocytes. Biosci Rep 2019; 39:BSR20181473. [PMID: 30674641 PMCID: PMC6379229 DOI: 10.1042/bsr20181473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity, a major risk factor for the development of osteoarthritis (OA), is associated with increased circulating levels of free fatty acids (FFA). However, the role of these FFAs in OA pathophysiology is not clearly understood. In the present study, we found that palmitate treatment of human primary articular chondrocytes increased the expression of ER stress markers [activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP)] and apoptosis markers [cytochrome c and cleaved caspase-3 (CC3)]. Palmitate treatment also increased the expression of Nuclear protein 1 (Nupr1) and tribbles related protein 3 (TRB3), which are known negative regulators of cell survival pathways. Knockdown of Nupr1 or CHOP expression inhibited palmitate mediated increased expression of TRB3 and CC3, indicating that Nupr1 and CHOP cooperate to regulate cell survival and apoptotic pathways in human chondrocytes. Nupr1 knockdown had no effect on CHOP expression whereas CHOP knockdown abolished the palmitate-mediated Nupr1 expression, indicating that CHOP is functional upstream to Nupr1 in this pathway. Moreover, overexpression of Nupr1 markedly increased the basal expression of pro-apoptotic molecules, including cytochrome c and CC3. Taken together, our study demonstrates that Nupr1 plays a crucial role in palmitate-induced apoptosis in human chondrocytes and Nupr1 as a potential novel drug target for the treatment of OA.
Collapse
|
33
|
Liang W, Li X, Hu L, Ding S, Kang J, Shen J, Zheng C, Li C, Ye H, Asakawa T. An in vitro validation of the therapeutic effects of Tougu Xiaotong capsule on tunicamycin-treated chondrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:215-221. [PMID: 30342192 DOI: 10.1016/j.jep.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tougu Xiaotong capsule (TXC) is a Chinese herbal compound that belongs to a range of Chinese herbs functioning as 'kidney invigorators and liver softeners' commonly used to treat osteoarthritis (OA) in China. AIMS OF THE STUDY The aims of the present study are to confirm the therapeutic effects of TXC in an OA cell model and to determine the mechanisms involved in such effects. MATERIALS AND METHODS A tunicamycin (Tm)-exposed OA cell model was employed, and the effects of TXC were confirmed by observing cell viability and apoptosis. The reduced cell viability and increased apoptosis caused by Tm were improved by TXC, confirming the cellular protection of TXC. We then investigated the expression of biomarkers related to the endoplasmic reticulum (ER) stress pathway, including microRNA-211 (miR-211), a regulator in the ER stress pathway. RESULTS Downregulation of X-box binding protein 1 (Xbp-1) and miR-211 expression following Tm administration was reversed by TXC. Moreover, the upregulation by Tm of the expression levels of binding immunoglobulin protein, Xbp-1, activating transcription factor 4, C/EBP-homologous protein, Caspase-9 and Caspase-3 was downregulated by TXC. These results indicated that the ER stress pathway-related mechanism may play a potential role in the therapeutic effects of TXC. CONCLUSIONS The present study provides evidence of the therapeutic effects of TXC at the cell level and describes a cellular model for establishing the mechanisms of the effects of TXC used in the treatment of OA.
Collapse
Affiliation(s)
- Wenna Liang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Liu Hu
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Shanshan Ding
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Jie Kang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Jianying Shen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Chunsong Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Candong Li
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Tetsuya Asakawa
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China; Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, 1-20-1, Higashi-ku, Hamamatsu-city, Shizuoka 431-3192, Japan
| |
Collapse
|
34
|
Harasymowicz NS, Dicks A, Wu CL, Guilak F. Physiologic and pathologic effects of dietary free fatty acids on cells of the joint. Ann N Y Acad Sci 2019; 1440:36-53. [PMID: 30648276 DOI: 10.1111/nyas.13999] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
Fatty acids (FAs) are potent organic compounds that not only can be used as an energy source during nutrient deprivation but are also involved in several essential signaling cascades in cells. Therefore, a balanced intake of different dietary FAs is critical for the maintenance of cellular functions and tissue homeostasis. A diet with an imbalanced fat composition creates a risk for developing metabolic syndrome and various musculoskeletal diseases, including osteoarthritis (OA). In this review, we summarize the current state of knowledge and mechanistic insights regarding the role of dietary FAs, such as saturated FAs, omega-6 polyunsaturated FAs (PUFAs), and omega-3 PUFAs on joint inflammation and OA pathogeneses. In particular, we review how different types of dietary FAs and their derivatives distinctly affect a variety of cells within the joint, including chondrocytes, osteoblasts, osteoclasts, and synoviocytes. Understanding the molecular mechanisms underlying the effects of FAs on metabolic behavior, anabolic, and catabolic processes, as well as the inflammatory response of joint cells, may help identify therapeutic targets for the prevention of metabolic joint diseases.
Collapse
Affiliation(s)
- Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
35
|
Fan L, He Z, Head SA, Zhou Y, Lu T, Feng X, Zhang X, Zhang M, Dang Y, Jiang X, Wang M. Clofoctol and sorafenib inhibit prostate cancer growth via synergistic induction of endoplasmic reticulum stress and UPR pathways. Cancer Manag Res 2018; 10:4817-4829. [PMID: 30425575 PMCID: PMC6205540 DOI: 10.2147/cmar.s175256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background/Purpose Prostate cancer is a major burden on public health and a major cause of morbidity and mortality among men worldwide. Drug combination therapy is known as a powerful tool for the treatment of cancer. The aim of this study is to evaluate the synergistic inhibitory mechanisms of clofoctol and sorafenib in the treatment of prostate cancer. However, the molecular mechanisms of this phenomenon have not been illuminated clearly. In this study, we investigated the anti-tumor effects of clofoctol in combination with sorafenib in vitro and in vivo. Methods The activity and mechanism of clofoctol in combination with sorafenib were examined in PC-3cells. mRNA and protein expression of key players in the ER stress pathway were detected with RT-PCR and Western blotting. Cell viability was estimated by CCK-8 assay or Alamar blue assay, and apoptosis and cell cycle were monitored and measured by flow cytometry. PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. The therapeutic regimen was initiated when the tumor began showing signs of growth and treatment continued for 5 weeks. Results Our data indicate that clofototol and sorafenib induce cell death through synergistic induction of endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response (UPR). Combination therapy with clofoctol and sorafenib induced an upregulation of markers of all three ER stress pathways: PERK, IRE1 and ATF6. In addition, combination therapy with clofoctol and sorafenib markedly inhibited the growth of prostate cancer xenograft tumors, compared with clofoctol or sorafenib alone. Conclusion The combination of clofoctol and sorafenib can serve as a novel clinical treatment regimen, potentially enhancing antitumor efficacy in prostate cancer and decreasing the dose and adverse effects of either clofoctol or sorafenib alone. These results lay the foundation for subsequent research on this novel therapeutic regimen in human prostate cancer.
Collapse
Affiliation(s)
- Lixia Fan
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Zhenglei He
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Ting Lu
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Xulong Feng
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Xueqing Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Meng Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Yongjun Dang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinghong Jiang
- Department of Neurobiology, Medical College, Soochow University, Suzhou, China,
| | - Minghua Wang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| |
Collapse
|
36
|
Ye Z, Liu G, Guo J, Su Z. Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes Rev 2018. [PMID: 29514392 DOI: 10.1111/obr.12673] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an epidemic disease that is increasing worldwide and is a major risk factor for many metabolic diseases. However, effective agents for the prevention or treatment of obesity remain limited. Therefore, it is urgent to clarify the pathophysiological mechanisms underlying the development and progression of obesity and exploit potential agents to cure and prevent this disease. According to a recent study series, obesity is associated with the development of endoplasmic reticulum stress and the activation of its stress responses (unfolded protein response) in metabolically active tissues, which contribute to the development of obesity-related insulin and leptin resistance, inflammation and energy imbalance. Hypothalamic endoplasmic reticulum stress is the central mechanism underlying the development of obesity-associated leptin resistance and disruption of energy homeostasis; thus, targeting endoplasmic reticulum stress offers a promising therapeutic strategy for improving leptin sensitivity, increasing energy expenditure and ultimately combating obesity. In this review, we highlight the relationship between and mechanism underlying hypothalamic endoplasmic reticulum stress and obesity-associated leptin resistance and energy imbalance and provide new insight regarding strategies for the treatment of obesity.
Collapse
Affiliation(s)
- Z Ye
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - G Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - J Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Z Su
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
37
|
Mallik A, Yammani RR. Saturated fatty acid palmitate negatively regulates autophagy by promoting ATG5 protein degradation in meniscus cells. Biochem Biophys Res Commun 2018; 502:370-374. [PMID: 29852167 DOI: 10.1016/j.bbrc.2018.05.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022]
Abstract
Obesity and associated metabolic factors are major risk factors for the development of osteoarthritis. Previously, we have shown that the free fatty acid palmitate induces endoplasmic reticulum (ER) stress and induces apoptosis in meniscus cells. However, the molecular mechanisms involved in these effects are not clearly understood. In our current study, we found that palmitate inhibits autophagy by modulating the protein levels of autophagy-related genes-5 (ATG5) that is associated with decreased lipidation of LC3 and increased activation of cleaved caspase 3. Pretreatment of meniscus cells with 4-phenyl butyric acid, a small molecule chemical chaperone that alleviates ER stress, or with MG-132, a proteasome inhibitor, restored normal levels of ATG5 and autophagosome formation, and decreased expression of cleaved caspase 3. Thus, our data suggest that palmitate downregulates autophagy in meniscus cells by degrading ATG5 protein via ER-associated protein degradation, and thus promotes apoptosis. This is the first study to demonstrate that palmitate-induced endoplasmic reticulum stress negatively regulates autophagy.
Collapse
Affiliation(s)
- Aritra Mallik
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
38
|
Twayana KS, Ravanan P. Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sci 2018; 205:73-90. [PMID: 29730169 DOI: 10.1016/j.lfs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Cell responds to stress by activating various modes of stress responses which aim for minimal damage to cells and speedy recovery from the insults. However, unresolved stresses exceeding the tolerance limit lead to cell death (apoptosis, autophagy etc.) that helps to get rid of damaged cells and protect cell integrity. Furthermore, aberrant stress responses are the hallmarks of several pathophysiologies (neurodegeneration, metabolic diseases, cancer etc.). The catastrophic remodulation of stress responses is observed in cancer cells in favor of their uncontrolled growth. Whereas pro-survival stress responses redirected to death signaling provokes excessive cell death in neurodegeneration. Clear understanding of such mechanistic link to disease progression is required in order to modulate these processes for new therapeutic targets. The current review explains this with respect to novel drug discoveries and other breakthroughs in therapeutics.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
39
|
Wu L, Liu H, Li L, Xu D, Gao Y, Guan Y, Chen Q. 5,7,3',4'-Tetramethoxyflavone protects chondrocytes from ER stress-induced apoptosis through regulation of the IRE1α pathway. Connect Tissue Res 2018; 59:157-166. [PMID: 28436754 PMCID: PMC6104397 DOI: 10.1080/03008207.2017.1321639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY To investigate the roles of endoplasmic reticulum (ER) transmembrane sensor inositol-requiring enzyme-1 (IRE1)α signaling in ER stress-induced chondrocyte apoptosis, and to determine the molecular mechanisms underlying chondroprotective activity of 5,7,3',4'-tetramethoxyflavone (TMF) from Murraya exotica. MATERIALS AND METHODS IRE1α was knocked down by siRNA transfection in chondrocytes, which were harvested from rats' knee cartilages. Chondrocytes with IRE1α deficiency were administrated with tunicamycin (TM) and TMF. Chondrocyte apoptosis was quantified by flow cytometry and DAPI/TUNEL staining. Expression of mRNA and proteins was quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western-blot, respectively. RESULTS IRE1α deficiency significantly increased the rate of TM-induced chondrocyte apoptosis, down-regulated the expression of pro-survival factors XBP1S and Bcl-2, and up-regulated pro-apoptotic factors CHOP, p-JNK, and caspase-3. TMF suppressed TM-induced chondrocyte apoptosis by activating the expression of IRE1α, which reversed the expression patterns of downstream pro-survival and pro-apoptotic factors due to IRE1α deficiency. CONCLUSION The mechanism of TMF in protecting chondrocytes against ER stress-induced apoptosis might be associated with regulating the activity of ER sensor IRE1α and its downstream pathway.
Collapse
Affiliation(s)
- Longhuo Wu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA;,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Haiqing Liu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA;,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Daohua Xu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA;,Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Yun Gao
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Yingjie Guan
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Qian Chen
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
40
|
|
41
|
Nazli SA, Loeser RF, Chubinskaya S, Willey JS, Yammani RR. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes. Osteoarthritis Cartilage 2017; 25:1516-1521. [PMID: 28545881 PMCID: PMC5565687 DOI: 10.1016/j.joca.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. METHODS C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. RESULTS Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. CONCLUSIONS Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes.
Collapse
Affiliation(s)
- Sumaiya A. Nazli
- Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Richard F. Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC
| | | | | | - Raghunatha R. Yammani
- Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC,Corresponding author: Raghunatha R. Yammani, PhD, Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157,
| |
Collapse
|
42
|
Navid F, Colbert RA. Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nat Rev Rheumatol 2016; 13:25-40. [PMID: 27904144 DOI: 10.1038/nrrheum.2016.192] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rheumatic diseases represent a heterogeneous group of inflammatory conditions, many of which involve chronic activation of both innate and adaptive immune responses by multiple genetic and environmental factors. These immune responses involve the secretion of excessive amounts of cytokines and other signalling mediators by activated immune cells. The endoplasmic reticulum (ER) is the cellular organelle that directs the folding, processing and trafficking of membrane-bound and secreted proteins, including many key components of the immune response. Maintaining homeostasis in the ER is critical to cell function and survival. Consequently, elaborate mechanisms have evolved to sense and respond to ER stress through three main signalling pathways that together comprise the unfolded protein response (UPR). Activation of the UPR can rapidly resolve the accumulation of misfolded proteins, direct permanent changes in the size and function of cells during differentiation, and critically influence the immune response and inflammation. Recognition of the importance of ER stress and UPR signalling pathways in normal and dysregulated immune responses has greatly increased in the past few years. This Review discusses several settings in which ER stress contributes to the pathogenesis of rheumatic diseases and considers some of the therapeutic opportunities that these discoveries provide.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Building 10, Room 12N248B,10 Center Drive, Bethesda, Maryland 20892, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Building 10, Room 12N248B,10 Center Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Sekar S, Crawford R, Xiao Y, Prasadam I. Dietary Fats and Osteoarthritis: Insights, Evidences, and New Horizons. J Cell Biochem 2016; 118:453-463. [DOI: 10.1002/jcb.25758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sunderajhan Sekar
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
- The Prince Charles Hospital; Orthopedic Department; Brisbane Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| |
Collapse
|
44
|
Reisig G, Kreinest M, Richter W, Wagner-Ecker M, Dinter D, Attenberger U, Schneider-Wald B, Fickert S, Schwarz ML. Osteoarthritis in the Knee Joints of Göttingen Minipigs after Resection of the Anterior Cruciate Ligament? Missing Correlation of MRI, Gene and Protein Expression with Histological Scoring. PLoS One 2016; 11:e0165897. [PMID: 27820852 PMCID: PMC5098790 DOI: 10.1371/journal.pone.0165897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction The Göttingen Minipig (GM) is used as large animal model in articular cartilage research. The aim of the study was to introduce osteoarthritis (OA) in the GM by resecting the anterior cruciate ligament (ACLR) according to Pond and Nuki, verified by histological and magnetic resonance imaging (MRI) scoring as well as analysis of gene and protein expression. Materials and Methods The eight included skeletally mature female GM were assessed after ACLR in the left and a sham operation in the right knee, which served as control. 26 weeks after surgery the knee joints were scanned using a 3-Tesla high-field MR tomography unit with a 3 T CP Large Flex Coil. Standard proton-density weighted fat saturated sequences in coronal and sagittal direction with a slice thickness of 3 mm were used. The MRI scans were assessed by two radiologists according to a modified WORMS-score, the X-rays of the knee joints by two evaluators. Osteochondral plugs with a diameter of 4mm were taken for histological examination from either the main loading zone or the macroscopic most degenerated parts of the tibia plateau or condyle respectively. The histological sections were blinded and scored by three experts according to Little et al. Gene expression analysis was performed from surrounding cartilage. Expression of adamts4, adamts5, acan, col1A1, col2, il-1ß, mmp1, mmp3, mmp13, vegf was determined by qRT-PCR. Immunohistochemical staining (IH) of Col I and II was performed. IH was scored using a 4 point grading (0—no staining; 3-intense staining). Results and Discussion Similar signs of OA were evident both in ACLR and sham operated knee joints with the histological scoring result of the ACLR joints with 6.48 ± 5.67 points and the sham joints with 6.86 ± 5.84 points (p = 0.7953) The MRI scoring yielded 0.34 ± 0.89 points for the ACLR and 0.03 ± 0.17 for the sham knee joints. There was no correlation between the histological and MRI scores (r = 0.10021). The gene expression profiles as well as the immunohistochemical findings showed no significant differences between ACLR and sham knee joints. In conclusion, both knee joints showed histological signs of OA after 26 weeks irrespective of whether the ACL was resected or not. As MRI results did not match the histological findings, MRI was obviously unsuitable to diagnose the OA in GM. The analysis of the expression patterns of the 10 genes could not shed light on the question, whether sham operation also induced cartilage erosion or if the degeneration was spontaneous. The modified Pond-Nuki model may be used with reservation in the adult minipig to induce an isolated osteoarthritis.
Collapse
Affiliation(s)
- Gregor Reisig
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kreinest
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Mechthild Wagner-Ecker
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Dietmar Dinter
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Ulrike Attenberger
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Barbara Schneider-Wald
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fickert
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus L. Schwarz
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
45
|
Huang N, Yu Y, Qiao J. Dual role for the unfolded protein response in the ovary: adaption and apoptosis. Protein Cell 2016; 8:14-24. [PMID: 27638465 PMCID: PMC5233609 DOI: 10.1007/s13238-016-0312-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is the principal organelle responsible for several specific cellular functions including synthesis and folding of secretory or membrane proteins, lipid metabolism, and Ca2+ storage. Different physiological as well as pathological stress conditions can, however, perturb ER homeostasis, giving rise to an accumulation of unfolded or misfolded proteins in the ER lumen, a condition termed ER stress. To deal with an increased folding demand, cells activate the unfolded protein response (UPR), which is initially protective but can become detrimental if ER stress is severe and prolonged. Accumulating evidence demonstrates a link between the UPR and ovarian development and function, including follicular growth and maturation, follicular atresia, and corpus luteum biogenesis. Additionally, ER stress and the UPR may also play an important role in the ovary under pathological conditions. Understanding the molecular mechanisms related to the dual role of unfolded protein response in the ovarian physiology and pathology may reveal the pathogenesis of some reproductive endocrine diseases and provide a new guidance to improve the assisted reproductive technology. Here we review the current literature and discuss concepts and progress in understanding the UPR, and we also analyze the role of ER stress and the UPR in the ovary.
Collapse
Affiliation(s)
- Ning Huang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
46
|
Matschke J, Wiebeck E, Hurst S, Rudner J, Jendrossek V. Role of SGK1 for fatty acid uptake, cell survival and radioresistance of NCI-H460 lung cancer cells exposed to acute or chronic cycling severe hypoxia. Radiat Oncol 2016; 11:75. [PMID: 27251632 PMCID: PMC4888512 DOI: 10.1186/s13014-016-0647-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background Unsaturated fatty acids (FA) are required for cancer cell growth. In normoxia cells can generate unsaturated FA from saturated stearic and palmitic acid by desaturation. However, since the desaturation step is oxygen-dependent hypoxic cancer cells display an increased dependence on the uptake of unsaturated FA. Up to now the mechanism of increased FA uptake in hypoxia is largely unknown. Here we aimed to study the role of human serum and glucocorticoid-inducible kinase (SGK1) in the regulation of FA uptake in cancer cells exposed to acute or chronic cycling hypoxia and explore its use as target for the radiosensitization of hypoxic cancer cells. Methods The effect of SGK1-inhibition (GSK650394) on NCI-H460 lung adenocarcinoma cells exposed to normoxia, acute or chronic cycling hypoxia was analyzed under standard and serum-deprived conditions by short-term proliferation, apoptosis and cell death assays. The impact of SGK1-inhibition on radiation sensitivity was determined by standard colony formation assays. The effect of GSK650394 on FA uptake was quantified by measuring intracellular accumulation of fluorescent FA (C1-BODIPY®-C12). Results Exposure to acute or chronic cycling hypoxia was associated with up-regulated expression of SGK1 in NCI-H460 cells, increased uptake of FA from the culture medium, and increased sensitivity to serum deprivation. Survival of serum-deprived hypoxic NCI-H460 cells was rescued by the addition of the unsaturated FA, oleic acid, whereas the saturated FA, palmitic acid was highly toxic to the hypoxic cancer cells. Interestingly, SGK1 inhibition abrogated the rescue effect of oleic acid in serum-deprived hypoxic cancer cells and this effect was associated with a reduction in FA uptake particularly in anoxia-tolerant cancer cells exposed to severe hypoxia. Finally, SKG1 inhibition decreased long-term survival and potently sensitized the parental and anoxia-tolerant NCI-H460 cells to the cytotoxic effects of ionizing radiation in normoxia as well as the anoxia-tolerant cancer cells in severe hypoxia. Conclusions Our data suggest that SGK1 plays a role in the regulation of FA uptake that becomes essential under conditions of acute or chronic cycling hypoxia. We assume that SGK1 may represent a promising therapeutic target for the eradication of hypoxic cancer cells.
Collapse
Affiliation(s)
- Johann Matschke
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Elisa Wiebeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Sebastian Hurst
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany.
| |
Collapse
|