1
|
Gilmer G, Iijima H, Hettinger ZR, Jackson N, Bergmann J, Bean AC, Shahshahan N, Creed E, Kopchak R, Wang K, Houston H, Franks JM, Calderon MJ, St Croix C, Thurston RC, Evans CH, Ambrosio F. Menopause-induced 17β-estradiol and progesterone loss increases senescence markers, matrix disassembly and degeneration in mouse cartilage. NATURE AGING 2025:10.1038/s43587-024-00773-2. [PMID: 39820791 DOI: 10.1038/s43587-024-00773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
Female individuals who are post-menopausal present with higher incidence of knee osteoarthritis (KOA) than male counterparts; however, the mechanisms underlying this disparity are unknown. The most commonly used preclinical models lack human-relevant menopausal phenotypes, which may contribute to our incomplete understanding of sex-specific differences in KOA pathogenesis. Here we chemically induced menopause in middle-aged (14-16 months) C57/BL6N female mice. When we mapped the trajectory of KOA over time, we found that menopause aggravated cartilage degeneration relative to non-menopause controls. Network medicine analyses revealed that loss of 17β-estradiol and progesterone with menopause enhanced susceptibility to senescence and extracellular matrix disassembly. In vivo, restoration of 17β-estradiol and progesterone in menopausal mice protected against cartilage degeneration compared to untreated menopausal controls. Accordingly, post-menopausal human chondrocytes displayed decreased markers of senescence and increased markers of chondrogenicity when cultured with 17β-estradiol and progesterone. These findings implicate menopause-associated senescence and extracellular matrix disassembly in the sex-specific pathogenesis of KOA.
Collapse
Affiliation(s)
- Gabrielle Gilmer
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Natalie Jackson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliana Bergmann
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Biological Sciences in the Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nafiseh Shahshahan
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Ekaterina Creed
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Rylee Kopchak
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Hannah Houston
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Jonathan M Franks
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Calderon
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette St Croix
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebecca C Thurston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher H Evans
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA.
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA.
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Naved BA, Han S, Koss KM, Kando MJ, Wang JJ, Weiss C, Passman MG, Wertheim JA, Luo Y, Zhang ZJ. Multivariate description of gait changes in a mouse model of peripheral nerve injury and trauma. PLoS One 2025; 20:e0312415. [PMID: 39774494 PMCID: PMC11706367 DOI: 10.1371/journal.pone.0312415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/05/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Animal models of nerve injury are important for studying nerve injury and repair, particularly for interventions that cannot be studied in humans. However, the vast majority of gait analysis in animals has been limited to univariate analysis even though gait data is highly multi-dimensional. As a result, little is known about how various spatiotemporal components of the gait relate to each other in the context of peripheral nerve injury and trauma. We hypothesize that a multivariate characterization of gait will reveal relationships among spatiotemporal components of gait with biological relevance to peripheral nerve injury and trauma. We further hypothesize that legitimate relationships among said components will allow for more accurate classification among distinct gait phenotypes than if attempted with univariate analysis alone. METHODS DigiGait data was collected of mice across groups representing increasing degrees of damage to the neuromusculoskeletal sequence of gait; that is (a) healthy controls, (b) nerve damage only via total nerve transection + reconnection of the femoral and sciatic nerves, and (c) nerve, muscle, and bone damage via total hind-limb transplantation. Multivariate relationships among the 30+ spatiotemporal measures were evaluated using exploratory factor analysis and forward feature selection to identify the features and latent factors that best described gait phenotypes. The identified features were then used to train classifier models and compared to a model trained with features identified using only univariate analysis. RESULTS 10-15 features relevant to describing gait in the context of increasing degrees of traumatic peripheral nerve injury were identified. Factor analysis uncovered relationships among the identified features and enabled the extrapolation of a set of latent factors that further described the distinct gait phenotypes. The latent factors tied to biological differences among the groups (e.g. alterations to the anatomical configuration of the limb due to transplantation or aberrant fine motor function due to peripheral nerve injury). Models trained using the identified features generated values that could be used to distinguish among pathophysiological states with high statistical significance (p < .001) and accuracy (>80%) as compared to univariate analysis alone. CONCLUSION This is the first performance evaluation of a multivariate approach to gait analysis and the first demonstration of superior performance as compared to univariate gait analysis in animals. It is also the first study to use multivariate statistics to characterize and distinguish among different gradations of gait deficit in animals. This study contributes a comprehensive, multivariate characterization pipeline for application in the study of any pathologies in which gait is a quantitative translational outcome metric.
Collapse
Affiliation(s)
- Bilal A. Naved
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States of America
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Shuling Han
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Kyle M. Koss
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
- Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Mary J. Kando
- Behavioral Phenotyping Core, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Craig Weiss
- Behavioral Phenotyping Core, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Maya G. Passman
- Barnard College, Columbia University, New York, NY United States of America
| | - Jason A. Wertheim
- Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Zheng J. Zhang
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
3
|
Shelest O, Tindel I, Lauzon M, Dawson A, Ho R. Delineating sex-dependent and anatomic decline of motor functions in the SOD1G93A mouse model of amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628968. [PMID: 39763885 PMCID: PMC11702811 DOI: 10.1101/2024.12.17.628968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The transgenic SOD1G93A mouse model is the most widely used animal model of amyotrophic lateral sclerosis (ALS), a fatal disease of motor neuron degeneration. While genetic background influences onset and progression variability of motor dysfunction, the C57BL/6 background most reliably exhibits robust ALS phenotypes; thus, it is the most widely used strain in mechanistic studies. In this model, paresis begins in the hindlimbs and spreads rostrally to the forelimbs. Males experience earlier onset, greater disease severity, and shorter survival than females. However, the influence of sex on patterns of declining motor function between forelimbs and hindlimbs as well as among distinct, spinal-innervated muscle groups within each limb are not fully understood. To provide a higher resolution framework of degenerating motor function across the body, we conducted more comprehensive, limb-dependent and independent measures of motor decline over the course of disease. Subsequently, we compared the timing and intensity of these features across sex, and we consider to what extent these patterns are conserved in clinical observations from human ALS patients. We found male mice experienced earlier and less localized onset than females. We also report distinct motor features decline at different rates between sexes. Finally, mice showed differences in correlation between the decline of left- and right-side measures of the hindlimb. Consequently, our findings reinforce and refine the utility of the SOD1 mouse in modeling more highly resolved, sex-specific differences in ALS patient motor behavior. This may better guide preclinical studies in stratifying patients by sex and anatomical site of onset.
Collapse
Affiliation(s)
- Oksana Shelest
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ian Tindel
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marie Lauzon
- Biostatistics Shared Resource, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ashley Dawson
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ritchie Ho
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Hughes NC, Roberts DC, Tarchini B, Cullen KE. Instrumented swim test for quantifying motor impairment in rodents. Sci Rep 2024; 14:29270. [PMID: 39587238 PMCID: PMC11589839 DOI: 10.1038/s41598-024-80344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Swim tests are highly effective for identifying vestibular deficits in rodents by offering significant vestibular motor challenges with reduced proprioceptive input, unlike rotarod and balance beam tests. Traditional swim tests rely on subjective assessments, limiting objective quantification and reproducibility. We present a novel instrumented swim test using a miniature motion sensor with a 3D accelerometer and 3D gyroscope affixed to the rodent's head. This setup robustly quantifies six-dimensional motion-three translational and three rotational axes-during swimming with high temporal resolution. We demonstrate the test's capabilities by comparing head movements of Gpr156-/- mutant mice, which have impaired otolith organ development, to their heterozygous littermates. Our results show axis-specific differences in head movement probability distribution functions and dynamics that identify mice with the Gpr156 mutation. Axis-specific power spectrum analyses reveal selective movement alterations within distinct frequency ranges. Additionally, our spherical visualization and 3D analysis quantifies swimming performance based on head vector distance from upright. We use this analysis to generate a single classifier metric-a weighted average of an animal's head deviation from upright during swimming. This metric effectively distinguishes animals with vestibular dysfunction from those with normal vestibular function. Overall, this instrumented swim test provides quantitative metrics for assessing performance and identifying subtle, axis- and frequency-specific deficits not captured by existing systems. This novel quantitative approach can enhance understanding of rodent sensorimotor function including enabling more selective and reproducible studies of vestibular-motor deficits.
Collapse
Affiliation(s)
- Natasha C Hughes
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dale C Roberts
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Johns LT, Smythe MP, Dewberry LS, Staiger EA, Allen K, Brooks SA. Digital video analysis reveals gait parameters that predict performance in the jumping test phase of three-day eventing. J Equine Vet Sci 2024; 141:105166. [PMID: 39159896 DOI: 10.1016/j.jevs.2024.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
In international equestrian sport, visual inspections assess gait and lameness to protect the welfare of performance horses during competition. Horses competing internationally in three-day eventing must pass two mandatory inspections (pre-competition and post-cross country) before attempting the final phase: the jumping test (JT). We hypothesized that digitally quantifying objective gait parameters captured during the two mandatory inspections will identify locomotor characteristics that predict success during the jumping test. Utilizing the DeepLabCut (DLC) software package for labeling of anatomical landmarks and a custom analysis pipeline we calculated gait parameters for 194 competition horses at the trot. During the pre-competition inspection, relative trot speed was significantly associated (P = 0.0060, GLMM), and the forelimb travel trended towards significance (P =0.0800, GLMM), with achieving a clear round in the later jumping test. Post-cross country, the forelimb travel significantly predicted JT results (P = 0.0188, GLMM). As our parameters are scaled for body size, these parameters may indicate conformational characteristics for superior jumping ability and overall athletic fitness. Within each competitive effort, comparisons of the post-cross country and pre-competition observations revealed that the change in speed and duty factor were significantly different in the group that accrued jumping faults (P = 0.00376 and P = 0.02430, GLMM), perhaps capturing locomotor signs of exercise fatigue. Further work employing these approaches to better understand competition performance will encourage the use of objective measures to protect sport horse welfare, as well as provide an advantageous tool for gait evaluation in the horse.
Collapse
Affiliation(s)
- L T Johns
- University of Florida Department of Animal Sciences, 2250 Shealy Dr, Gainesville, FL, 32608
| | - M P Smythe
- University of Florida Department of Animal Sciences, 2250 Shealy Dr, Gainesville, FL, 32608
| | - L S Dewberry
- University of Florida Department of Biomedical Sciences, 1275 Center Dr, Gainesville, FL, 32611
| | - E A Staiger
- Kingsville Department of Animal Science and Veterinary Technology, Texas A&M University, 1150 W. Engineering Ave, Kingsville, TX, 78363
| | - K Allen
- University of Florida Department of Biomedical Sciences, 1275 Center Dr, Gainesville, FL, 32611
| | - S A Brooks
- University of Florida Department of Animal Sciences, 2250 Shealy Dr, Gainesville, FL, 32608; UF Genetics Institute/ University of Florida Department of Animal Sciences, 2033 Mowry Rd, Gainesville, FL, 32610.
| |
Collapse
|
6
|
Geng N, Fan M, Kuang B, Zhang F, Xian M, Deng L, Chen C, Pan Y, Chen J, Feng N, Liang L, Ye Y, Liu K, Li X, Du Y, Guo F. 10-hydroxy-2-decenoic acid prevents osteoarthritis by targeting aspartyl β hydroxylase and inhibiting chondrocyte senescence in male mice preclinically. Nat Commun 2024; 15:7712. [PMID: 39231947 PMCID: PMC11375154 DOI: 10.1038/s41467-024-51746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl β-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3β/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl β-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.
Collapse
Affiliation(s)
- Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Li Liang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Zhu X, Cao M, Li K, Chan YT, Chan HF, Mak YW, Yao H, Sun J, Ong MTY, Ho KKW, Lee CW, Lee OKS, Yung PSH, Jiang Y. Intra-articular sustained-release of pirfenidone as a disease-modifying treatment for early osteoarthritis. Bioact Mater 2024; 39:255-272. [PMID: 38832304 PMCID: PMC11145079 DOI: 10.1016/j.bioactmat.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Osteoarthritis (OA) is a major clinical challenge, and effective disease-modifying drugs for OA are still lacking due to the complicated pathology and scattered treatment targets. Effective early treatments are urgently needed to prevent OA progression. The excessive amount of transforming growth factor β (TGFβ) is one of the major causes of synovial fibrosis and subchondral bone sclerosis, and such pathogenic changes in early OA precede cartilage damage. Herein we report a novel strategy of intra-articular sustained-release of pirfenidone (PFD), a clinically-approved TGFβ inhibitor, to achieve disease-modifying effects on early OA joints. We found that PFD effectively restored the mineralization in the presence of excessive amount of TGFβ1 (as those levels found in patients' synovial fluid). A monthly injection strategy was then designed of using poly lactic-co-glycolic acid (PLGA) microparticles and hyaluronic acid (HA) solution to enable a sustained release of PFD (the "PLGA-PFD + HA" strategy). This strategy effectively regulated OA progression in destabilization of the medial meniscus (DMM)- induced OA mice model, including preventing subchondral bone loss in early OA and subchondral bone sclerosis in late OA, and reduced synovitis and pain with cartilage preservation effects. This finding suggests the promising clinical application of PFD as a novel disease-modifying OA drug.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Mingde Cao
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Kejia Li
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Yau-Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Hon-Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Yi-Wah Mak
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Hao Yao
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jing Sun
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Michael Tim-Yun Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Kevin Ki-Wai Ho
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
| | - Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Oscar Kuang-Sheng Lee
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
8
|
Yamashiro K, Ikegaya Y, Matsumoto N. Automatic detection of foot-strike onsets in a rhythmic forelimb movement. Neurosci Res 2024; 206:41-50. [PMID: 38642677 DOI: 10.1016/j.neures.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Rhythmic movement is the fundamental motion dynamics characterized by repetitive patterns. Precisely defining onsets in rhythmic movement is essential for a comprehensive analysis of motor functions. Our study introduces an automated method for detecting rat's forelimb foot-strike onsets using deep learning tools. This method demonstrates high accuracy of onset detection by combining two techniques using joint coordinates and behavioral confidence scale. The analysis extends to neural oscillatory responses in the rat's somatosensory cortex, validating the effectiveness of our combined approach. Our technique streamlines experimentation, demanding only a camera and GPU-accelerated computer. This approach is applicable across various contexts and promotes our understanding of brain functions during rhythmic movements.
Collapse
Affiliation(s)
- Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Lee FS, Cruz CJ, Allen KD, Wachs RA. Gait assessment in a female rat Sprague Dawley model of disc-associated low back pain. Connect Tissue Res 2024; 65:407-420. [PMID: 39287332 PMCID: PMC11533987 DOI: 10.1080/03008207.2024.2395287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Gait disturbances are common in human low back pain (LBP) patients, suggesting potential applicability to rodent LBP models. This study aims to assess the influence of disc-associated LBP on gait in female Sprague Dawley rats and explore the utility of the open-source Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) suite as a potential alternative tool for spontaneous pain assessment in a previously established LBP model. MATERIALS AND METHODS Disc degeneration was surgically induced using a one-level disc scrape injury method, and microcomputed tomography was used to assess disc volume loss. After disc injury, axial hypersensitivity was evaluated using the grip strength assay, and an open field test was used to detect spontaneous pain-like behavior. RESULTS Results demonstrated that injured animals exhibit a significant loss in disc volume and reduced grip strength. Open field test did not detect significant differences in distance traveled between sham and injured animals. Concurrently, animals with injured discs did not display significant gait abnormalities in stance time imbalance, temporal symmetry, spatial symmetry, step width, stride length, and duty factor compared to sham. However, comparisons with reference values of normal gait reported in prior literature reveal that injured animals exhibit mild deviations in forelimb and hindlimb stance time imbalance, forelimb temporal symmetry, and hindlimb spatial symmetry at some time points. CONCLUSIONS This study concludes that the disc injury may have very mild effects on gait in female rats within 9 weeks post-injury and recommends future in depth dynamic gait analysis and longer studies beyond 9 weeks to potentially detect gait.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Carlos J Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Rebecca A Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|
10
|
Gan D, Tao C, Jin X, Wu X, Yan Q, Zhong Y, Jia Q, Wu L, Huo S, Qin L, Xiao G. Piezo1 activation accelerates osteoarthritis progression and the targeted therapy effect of artemisinin. J Adv Res 2024; 62:105-117. [PMID: 37758057 PMCID: PMC11331168 DOI: 10.1016/j.jare.2023.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a devastating whole-joint disease affecting a large population worldwide with no cure; its mechanism remains poorly defined. Abnormal mechanical stress is the main pathological factor of OA. OBJECTIVES To investigate the effects of Piezo1 activation on OA development and progression and to explore Piezo1-targeting OA treatment. METHODS The expression levels of Piezo1 were determined in human OA cartilage and experimental OA mice. Mice with genetic Piezo1 deletion in chondrocytes or intra-articular injection of the Piezo1 activator Yoda1 were utilized to determine the effects on DMM-induced OA progression. Effects of artemisinin (ART), a potent antimalarial drug, on Piezo1 activation, chondrocyte metabolism and OA lesions were determined. RESULTS Piezo1 expression was elevated in articular chondrocytes in human OA and DMM-induced mouse OA cartilage. Piezo1 deletion in chondrocytes largely attenuates DMM-induced OA-like phenotypes. In contrast, intra-articular injection of Yoda1 aggravates the knee joint OA lesions in mice. PIEZO1 activation increases, while PIEZO1 siRNA knockdown decreases, expression of RUNX2 and catabolic enzymes MMP13 and ADAMTS5 in primary human articular chondrocytes in a PI3K-AKT dependent manner. We have provided strong evidence supporting that ART is a novel and potent inhibitor of Piezo1 activation in primary OA-HACs and all cell lines examined, including human endothelial HUVEC cells, ATDC5 chondrocyte-like cells and MLO-Y4 osteocytes-like cells. Results from in vitro experiments confirmed that ART decreases the Yoda1-induced increases in the levels of OA-related genes and p-PI3K and p-AKT proteins in OA-HACs and alleviates DMM-induced OA lesions in mice. CONCLUSIONS We establish a critical role of Piezo1 in promoting OA development and progression and define ART as a potential OA treatment.
Collapse
Affiliation(s)
- Donghao Gan
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Qinnan Yan
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Qingyun Jia
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| | - Lisheng Wu
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| | - Shaochuan Huo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Xu L, Kazezian Z, Pitsillides AA, Bull AMJ. A synoptic literature review of animal models for investigating the biomechanics of knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1408015. [PMID: 39132255 PMCID: PMC11311206 DOI: 10.3389/fbioe.2024.1408015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease largely driven by mechanical factors, causing significant health and economic burdens worldwide. Early detection is challenging, making animal models a key tool for studying its onset and mechanically-relevant pathogenesis. This review evaluate current use of preclinical in vivo models and progressive measurement techniques for analysing biomechanical factors in the specific context of the clinical OA phenotypes. It categorizes preclinical in vivo models into naturally occurring, genetically modified, chemically-induced, surgically-induced, and non-invasive types, linking each to clinical phenotypes like chronic pain, inflammation, and mechanical overload. Specifically, we discriminate between mechanical and biological factors, give a new explanation of the mechanical overload OA phenotype and propose that it should be further subcategorized into two subtypes, post-traumatic and chronic overloading OA. This review then summarises the representative models and tools in biomechanical studies of OA. We highlight and identify how to develop a mechanical model without inflammatory sequelae and how to induce OA without significant experimental trauma and so enable the detection of changes indicative of early-stage OA in the absence of such sequelae. We propose that the most popular post-traumatic OA biomechanical models are not representative of all types of mechanical overloading OA and, in particular, identify a deficiency of current rodent models to represent the chronic overloading OA phenotype without requiring intraarticular surgery. We therefore pinpoint well standardized and reproducible chronic overloading models that are being developed to enable the study of early OA changes in non-trauma related, slowly-progressive OA. In particular, non-invasive models (repetitive small compression loading model and exercise model) and an extra-articular surgical model (osteotomy) are attractive ways to present the chronic natural course of primary OA. Use of these models and quantitative mechanical behaviour tools such as gait analysis and non-invasive imaging techniques show great promise in understanding the mechanical aspects of the onset and progression of OA in the context of chronic knee joint overloading. Further development of these models and the advanced characterisation tools will enable better replication of the human chronic overloading OA phenotype and thus facilitate mechanically-driven clinical questions to be answered.
Collapse
Affiliation(s)
- Luyang Xu
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Zepur Kazezian
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Ramot Y, Kronfeld N, Steiner M, Lee ED, Goldberg R, Jahn S, Nyska A. Biocompatible Solutions: Evaluating the Safety of Repeated Intra-Articular Injections of pMPCylated Liposomes for Knee Osteoarthritis Therapy in Rat Models. Toxicol Pathol 2024; 52:266-283. [PMID: 39193778 DOI: 10.1177/01926233241271400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Knee osteoarthritis (OA) poses a significant health care burden globally, necessitating innovative therapeutic approaches. CCoat, a novel poly(2-[methacryloyloxy]ethyl phosphorylcholine) (pMPC)ylated liposome device, protects the cartilage surface of the joint from mechanical wear through an entropy-favored process. Two preclinical studies were performed to explore the safety of CCoat following repeated intra-articular (IA) injections into the knee joint (i.e., femorotibial joint) in Sprague-Dawley rats. The studies involved 2 or 3 IA injections, at an interval of 2 or 3 weeks, and an observation period of 1 or 13 weeks after the last injection. Assessments included clinical, histopathological, and immunofluorescent evaluations. In study 1, no mortality or abnormal clinical signs occurred. At 1 week post last injection, histopathology revealed minimal vacuolated macrophages beneath the synovial membrane, predominantly M2-like, indicating a nonadverse response. Immunofluorescent staining supported M2-like macrophage predominance. Study 2 confirmed these findings with no systemic effects over 13 weeks. Statistical analyses indicated no significant differences in body weight, clinical pathology, or organ weights compared with controls. Results affirming the safety of pMPCylated liposomes following repeated IA injections in rat. This novel lubricant coating approach shows promise in OA therapy, with this safety assessment supporting its potential clinical application.
Collapse
Affiliation(s)
- Yuval Ramot
- The Hebrew University of Jerusalem, Jerusalem, Israel
- Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
13
|
Shi YQ, Sun ZH, Wang ZZ, Su CY, Zhang W, Yu LY, Xu Y, Gao YL, Wang HB, Tian JW, Li CM. A novel role for microtubule affinity-regulating kinases in neuropathic pain. Br J Pharmacol 2024; 181:2012-2032. [PMID: 38112022 DOI: 10.1111/bph.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain affects millions of patients, but there are currently few viable therapeutic options available. Microtubule affinity-regulating kinases (MARKs) regulate the dynamics of microtubules and participate in synaptic remodelling. It is unclear whether these changes are involved in the central sensitization of neuropathic pain. This study examined the role of MARK1 or MARK2 in regulating neurosynaptic plasticity induced by neuropathic pain. EXPERIMENTAL APPROACH A rat spinal nerve ligation (SNL) model was established to induce neuropathic pain. The role of MARKs in nociceptive regulation was assessed by genetically knocking down MARK1 or MARK2 in amygdala and systemic administration of PCC0105003, a novel small molecule MARK inhibitor. Cognitive function, anxiety-like behaviours and motor coordination capability were also examined in SNL rats. Synaptic remodelling-associated signalling changes were detected with electrophysiological recording, Golgi-Cox staining, western blotting and qRT-PCR. KEY RESULTS MARK1 and MARK2 expression levels in amygdala and spinal dorsal horn were elevated in SNL rats. MARK1 or MARK2 knockdown in amygdala and PCC0105003 treatment partially attenuated pain-like behaviours along with improving cognitive deficit, anxiogenic-like behaviours and motor coordination in SNL rats. Inhibition of MARKs signalling reversed synaptic plasticity at the functional and structural levels by suppressing NR2B/GluR1 and EB3/Drebrin signalling pathways both in amygdala and spinal dorsal horn. CONCLUSION AND IMPLICATIONS These results suggest that MARKs-mediated synaptic remodelling plays a key role in the pathogenesis of neuropathic pain and that pharmacological inhibitors of MARKs such as PCC0105003 could represent a novel therapeutic strategy for the management of neuropathic pain.
Collapse
Affiliation(s)
- Yao-Qin Shi
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Zhi-Hong Sun
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Zhe-Zhe Wang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Chun-Yu Su
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Wei Zhang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Lin-Yao Yu
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Yang Xu
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Yong-Lin Gao
- College of Life Sciences, Yantai University, Yantai, China
| | - Hong-Bo Wang
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Jing-Wei Tian
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| | - Chun-Mei Li
- From the school of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
14
|
Kaiser JM, Bernard FC, Pucha K, Raval SK, Eng T, Fulton T, Anderson SE, Allen KD, Dixon JB, Willett NJ. Mild exercise expedites joint clearance and slows joint degradation in a joint instability model of osteoarthritis in male rats. Osteoarthritis Cartilage 2024; 32:912-921. [PMID: 38642879 DOI: 10.1016/j.joca.2024.03.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE Exercise remains a hallmark treatment for post-traumatic osteoarthritis (PTOA) and may maintain joint homeostasis in part by clearing inflammatory cytokines, cells, and particles. It remains largely unknown whether exercise-induced joint clearance can provide therapeutic relief of PTOA. In this study, we hypothesized that exercise could slow the progression of preclinical PTOA in part by enhancing knee joint clearance. DESIGN Surgical medial meniscal transection was used to induce PTOA in 3-month-old male Lewis rats. A sham surgery was used as a control. Mild treadmill walking was introduced 3 weeks post-surgery and maintained to 6 weeks post-surgery. Gait and isometric muscle torque were measured at the study endpoint. Near-infrared imaging tracked how exercise altered lymphatic and venous knee joint clearance during discrete time points of PTOA progression. RESULTS Exercise mitigated joint degradation associated with PTOA by preserving glycosaminoglycan content and reducing osteophyte volume (effect size (95% Confidence Interval (CI)); 1.74 (0.71-2.26)). PTOA increased hind step widths (0.57 (0.18-0.95) cm), but exercise corrected this gait dysfunction (0.54 (0.16-0.93) cm), potentially indicating pain relief. Venous, but not lymphatic, clearance was quicker 1-, 3-, and 6-weeks post-surgery compared to baseline. The mild treadmill walking protocol expedited lymphatic clearance rate in moderate PTOA (3.39 (0.20-6.59) hrs), suggesting exercise may play a critical role in restoring joint homeostasis. CONCLUSIONS We conclude that mild exercise has the potential to slow disease progression in part by expediting joint clearance in moderate PTOA.
Collapse
Affiliation(s)
- Jarred M Kaiser
- Atlanta Veterans Affairs Hospital, Decatur, GA, USA; Emory University School of Medicine, Decatur, GA, USA.
| | - Fabrice C Bernard
- Emory University School of Medicine, Decatur, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA.
| | - Krishna Pucha
- Emory University School of Medicine, Decatur, GA, USA.
| | | | - Tracy Eng
- Atlanta Veterans Affairs Hospital, Decatur, GA, USA; Emory University School of Medicine, Decatur, GA, USA.
| | - Travis Fulton
- Atlanta Veterans Affairs Hospital, Decatur, GA, USA; Emory University School of Medicine, Decatur, GA, USA.
| | - Shannon E Anderson
- Emory University School of Medicine, Decatur, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA.
| | | | - J Brandon Dixon
- Emory University School of Medicine, Decatur, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA.
| | - Nick J Willett
- Atlanta Veterans Affairs Hospital, Decatur, GA, USA; Emory University School of Medicine, Decatur, GA, USA; Georgia Institute of Technology, Atlanta, GA, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
15
|
Cruz CJ, Yeater TD, Griffith JL, Allen KD. Vagotomy accelerates the onset of symptoms during early disease progression and worsens joint-level pathogenesis in a male rat model of chronic knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100467. [PMID: 38655014 PMCID: PMC11035058 DOI: 10.1016/j.ocarto.2024.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Low vagal tone is common in osteoarthritis (OA) comorbidities and results in greater peripheral inflammation. Characterizing vagal tone's role in OA pathogenesis may offer insights into OA's influences beyond the articular joint. We hypothesized that low vagal tone would accelerate onset of OA-related gait changes and worsen joint damage in a rat knee OA model. Methods Knee OA was induced in male Sprague Dawley rats by transecting the medial collateral ligament and medial meniscus. Then, left cervical vagus nerve transection (VGX, n = 9) or sham VGX (non-VGX, n = 6) was performed. Gait and tactile sensitivity were assessed at baseline and across 12 weeks, with histology and systemic inflammation evaluated at endpoint. Results At week 4, VGX animals showed limping gait characteristics through shifted stance times from their OA to non-OA limb (p = 0.055; stance time imbalance = 1.6 ± 1.6%) and shifted foot strike locations (p < 0.001; spatial symmetry = 48.4 ± 0.835%), while non-VGX animals walked with a balanced and symmetric gait. Also at week 4, while VGX animals had a mechanical sensitivity (50% withdrawal threshold) of 13.97 ± 7.70 compared to the non-VGX animal sensitivity of 29.74 ± 9.43, this difference was not statistically significant. Histologically, VGX animals showed thinner tibial cartilage and greater subchondral bone area than non-VGX animals (p = 0.076; VGX: 0.80 ± 0.036 mm2; non-VGX: 0.736 ± 0.066 mm2). No group differences in systemic inflammation were observed at endpoint. Conclusions VGX resulted in quicker onset of OA-related symptoms but remained unchanged at later timepoints. VGX also had thinner cartilage and abnormal bone remodeling than non-VGX. Overall, low vagal tone had mild effects on OA symptoms and joint remodeling, and not at the level seen in common OA comorbidities.
Collapse
Affiliation(s)
- Carlos J. Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Jacob L. Griffith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Hong JY, Yeo C, Kim H, Lee J, Jeon WJ, Lee YJ, Ha IH. Repeated epidural delivery of Shinbaro2: effects on neural recovery, inflammation, and pain modulation in a rat model of lumbar spinal stenosis. Front Pharmacol 2024; 15:1324251. [PMID: 38828447 PMCID: PMC11140021 DOI: 10.3389/fphar.2024.1324251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The choice of treatment for lumbar spinal stenosis (LSS) depends on symptom severity. When severe motor issues with urinary dysfunction are not present, conservative treatment is often considered to be the priority. One such conservative treatment is epidural injection, which is effective in alleviating inflammation and the pain caused by LSS-affected nerves. In this study, Shinbaro2 (Sh2), pharmacopuncture using natural herbal medicines for patients with disc diseases, is introduced as an epidural to treat LSS in a rat model. The treatment of primary sensory neurons from the rats' dorsal root ganglion (DRG) neurons with Sh2 at various concentrations (0.5, 1, and 2 mg/mL) was found to be safe and non-toxic. Furthermore, it remarkably stimulated axonal outgrowth even under H2O2-treated conditions, indicating its potential for stimulating nerve regeneration. When LSS rats received epidural injections of two different concentrations of Sh2 (1 and 2 mg/kg) once daily for 4 weeks, a significant reduction was seen in ED1+ macrophages surrounding the silicone block used for LSS induction. Moreover, epidural injection of Sh2 in the DRG led to a significant suppression of pain-related factors. Notably, Sh2 treatment resulted in improved locomotor recovery, as evaluated by the Basso, Beattie, and Bresnahan scale and the horizontal ladder test. Additionally, hind paw hypersensitivity, assessed using the Von Frey test, was reduced, and normal gait was restored. Our findings demonstrate that epidural Sh2 injection not only reduced inflammation but also improved locomotor function and pain in LSS model rats. Thus, Sh2 delivery via epidural injection has potential as an effective treatment option for LSS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| |
Collapse
|
17
|
de Souza DM, Malange KF, Nishijima CM, de Melo Lima BH, Capetini VC, de Oliveira ALR, Anhê GF, Tambeli CH, Parada CA. Intraarticular monomethyl fumarate as a perspective therapy for osteoarthritis by macrophage polarization. Inflammopharmacology 2024; 32:1239-1252. [PMID: 38472616 DOI: 10.1007/s10787-024-01443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic disease that may lead to joint structure degeneration, cartilage destruction, osteophyte formation, subchondral bone disruption, and pain. In this scenario, a higher proportion of the proinflammatory macrophage type 1 (M1) than the anti-inflammatory macrophage type 2 (M2) could be highlighted as a hallmark of OA progression. The balance between these two macrophage types emerges as a new therapeutic target in OA. This study aimed to evaluate the analgesia and macrophage profile in the treatment of experimental osteoarthritis (EOA) with systemic dimethyl fumarate (DMF) or local intra-articular monomethyl fumarate (MMF). RESULTS DMF via gavage or MMF via intra-articular in the right knee of EOA rats showed improvements in gait parameters and the nociceptive recovery of the mechanical threshold assessment by adapted electronic von Frey treatment on the twenty-first day (long-lasting phase). DMF treatment decreased proinflammatory TNF-α while increasing anti-inflammatory IL-10 cytokines from the macerated capsule on the fifth day (inflammatory phase). MMF treatment showed joint capsule mRNA extraction downregulating iNOS and TNF-α gene expression while upregulating IL-10 and MCP-1. However, CD206 was not significant but higher than untreated EOA rats' joints on the seventh day (inflammatory phase). CONCLUSIONS Our studies with EOA model induced by MIA suggest a new perspective for human treatment committed with OA based on macrophage polarization as a therapeutic target, switching the proinflammatory profile M1 to the anti-inflammatory profile M2 with DMF systematic or by MMF locally treatment according to the OA severity.
Collapse
Affiliation(s)
- Douglas Menezes de Souza
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Tessália Vieira de Camargo, 126Campinas, Sao Paulo, 13083-887, Brazil.
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Carl Von Linnaeus, Campinas, Sao Paulo, 13083-864, Brazil.
| | - Kauê Franco Malange
- Department of Anesthesiology, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Carl Von Linnaeus, Campinas, Sao Paulo, 13083-864, Brazil
| | - Bruno Henrique de Melo Lima
- Laboratory of Nerve Regeneration, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato, 255, Campinas, Sao Paulo, 13083-862, Brazil
| | - Vinicius Cooper Capetini
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Rua Tessália Vieira de Camargo, 126, Campinas, Sao Paulo, 13083-887, Brazil
| | - Alexandre L R de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato, 255, Campinas, Sao Paulo, 13083-862, Brazil
| | - Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Rua Tessália Vieira de Camargo, 126, Campinas, Sao Paulo, 13083-887, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Carl Von Linnaeus, Campinas, Sao Paulo, 13083-864, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Carl Von Linnaeus, Campinas, Sao Paulo, 13083-864, Brazil.
| |
Collapse
|
18
|
Yang J, Wang X, Zhang Y, He R, Fu Z, Wang R, Ma Y, Fu D, Meng S, Cai W, Zhou Y, Chen C, Chen G, Gong X. Intra-Articular Injection of Interleukin-8 Neutralizing Monoclonal Antibody Effectively Attenuates Osteoarthritis Progression in Rabbits. Cartilage 2024:19476035241240361. [PMID: 38525935 PMCID: PMC11569640 DOI: 10.1177/19476035241240361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/07/2024] [Accepted: 12/03/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVE Cytokines are implicated in the pathogenesis of osteoarthritis (OA), and this study aims to assess the therapeutic potential of an IL-8 neutralizing monoclonal antibody (mAb) for OA intervention. DESIGN The study employed a rabbit model of OA induced by anterior cruciate ligament transection (ACLT) surgery to investigate the effects of an interleukin (IL)-8 neutralizing mAb, with hyaluronic acid (HA) used as a positive control. Primary outcomes assessed in the rabbits included cartilage repair, synovitis, joint effusion, changes in footprints, and lower limb loading conditions. RESULTS Compared to HA, intra-articular injection of the IL-8 neutralizing mAb demonstrated a more pronounced attenuation of OA progression and enhancement of cartilage repair. We observed a reduction in synovitis and joint effusion, indications of bone marrow edema, as well as improvements in lower limb function. In knees treated with the neutralizing IL-8 mAb, there was a significant decrease in IL-8 levels within the synovial tissues. CONCLUSIONS The IL-8 neutralizing mAb exhibits promising therapeutic potential in the management of OA by attenuating inflammation and facilitating cartilage repair. However, further investigations are warranted to comprehensively elucidate the underlying mechanisms, optimize treatment protocols, and ensure the long-term safety and efficacy of this innovative therapeutic approach.
Collapse
Affiliation(s)
- Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Chongqing University, Ministry of Education, Chongqing, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | | | - Rui He
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rong Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanming Ma
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Dejie Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shuo Meng
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Wang Cai
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People’s Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Kim JE, Lee RP, Yazigi E, Atta L, Feghali J, Pant A, Jain A, Levitan I, Kim E, Patel K, Kannapadi N, Shah P, Bibic A, Hou Z, Caplan JM, Gonzalez LF, Huang J, Xu R, Fan J, Tyler B, Brem H, Boussiotis VA, Jantzie L, Robinson S, Koehler RC, Lim M, Tamargo RJ, Jackson CM. Soluble PD-L1 reprograms blood monocytes to prevent cerebral edema and facilitate recovery after ischemic stroke. Brain Behav Immun 2024; 116:160-174. [PMID: 38070624 PMCID: PMC11220828 DOI: 10.1016/j.bbi.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
Acute cerebral ischemia triggers a profound inflammatory response. While macrophages polarized to an M2-like phenotype clear debris and facilitate tissue repair, aberrant or prolonged macrophage activation is counterproductive to recovery. The inhibitory immune checkpoint Programmed Cell Death Protein 1 (PD-1) is upregulated on macrophage precursors (monocytes) in the blood after acute cerebrovascular injury. To investigate the therapeutic potential of PD-1 activation, we immunophenotyped circulating monocytes from patients and found that PD-1 expression was upregulated in the acute period after stroke. Murine studies using a temporary middle cerebral artery (MCA) occlusion (MCAO) model showed that intraperitoneal administration of soluble Programmed Death Ligand-1 (sPD-L1) significantly decreased brain edema and improved overall survival. Mice receiving sPD-L1 also had higher performance scores short-term, and more closely resembled sham animals on assessments of long-term functional recovery. These clinical and radiographic benefits were abrogated in global and myeloid-specific PD-1 knockout animals, confirming PD-1+ monocytes as the therapeutic target of sPD-L1. Single-cell RNA sequencing revealed that treatment skewed monocyte maturation to a non-classical Ly6Clo, CD43hi, PD-L1+ phenotype. These data support peripheral activation of PD-1 on inflammatory monocytes as a therapeutic strategy to treat neuroinflammation after acute ischemic stroke.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Ryan P Lee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Eli Yazigi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Lyla Atta
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, the United States of America; Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, the United States of America; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - James Feghali
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Ayush Pant
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Aanchal Jain
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Idan Levitan
- Department of Neurosurgery, Rabin Medical Center, Sackler Medical School, Petah Tikva, Israel
| | - Eileen Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Kisha Patel
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Nivedha Kannapadi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Pavan Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Adnan Bibic
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, the United States of America; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Zhipeng Hou
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, the United States of America
| | - Justin M Caplan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - L Fernando Gonzalez
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, the United States of America
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, the United States of America
| | - Lauren Jantzie
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America; Departments of Pediatrics, Johns Hopkins University School of Medicine, Maryland, the United States of America; Kennedy Krieger Institute, Maryland, the United States of America; Department of Neurology, Johns Hopkins University School of Medicine, Maryland, the United States of America
| | - Shenandoah Robinson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America; Departments of Pediatrics, Johns Hopkins University School of Medicine, Maryland, the United States of America; Kennedy Krieger Institute, Maryland, the United States of America; Department of Neurology, Johns Hopkins University School of Medicine, Maryland, the United States of America
| | - Raymond C Koehler
- Departments of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, the United States of America
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, the United States of America
| | - Rafael J Tamargo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, the United States of America.
| |
Collapse
|
20
|
Timkovich AE, Holling GA, Afzali MF, Kisiday J, Santangelo KS. TLR4 antagonism provides short-term but not long-term clinical benefit in a full-depth cartilage defect mouse model. Connect Tissue Res 2024; 65:26-40. [PMID: 37898909 PMCID: PMC11271750 DOI: 10.1080/03008207.2023.2269257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE/AIM Cartilage injury and subsequent osteoarthritis (OA) are debilitating conditions affecting millions worldwide. As there are no cures for these ailments, novel therapies are needed to suppress disease pathogenesis. Given that joint injuries are known to produce damage-associated molecular patterns (DAMPs), our central premise is that the Toll-like receptor 4 (TLR4) pathway is a principal driver in the early response to cartilage damage and subsequent pathology. We postulate that TLR4 activation is initiated/perpetuated by DAMPs released following joint damage. Thus, antagonism of the TLR4 pathway immediately after injury may suppress the development of joint surface defects. MATERIALS AND METHODS Two groups were utilized: (1) 8-week-old, male C57BL6 mice treated systemically with a known TLR4 antagonist and (2) mice injected with vehicle control. A full-depth cartilage lesion on the midline of the patellofemoral groove was created in the right knee of each mouse. The left knee was used as a sham surgery control. Gait changes were evaluated over 4 weeks using a quantitative gait analysis system. At harvest, knee joints were processed for pathologic assessment, Nanostring® transcript expression, and immunohistochemistry (IHC). RESULTS Short-term treatment with a TLR4 antagonist at 14-days significantly improved relevant gait parameters; improved cartilage metrics and modified Mankin scores were also seen. Additionally, mRNA expression and IHC showed reduced expression of inflammatory mediators in animals treated with the TLR4 antagonist. CONCLUSIONS Collectively, this work demonstrates that systemic treatment with a TLR4 antagonist is protective to further cartilage damage 14-days post-injury in a murine model of induced disease.
Collapse
Affiliation(s)
- Ariel E. Timkovich
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - G. Aaron Holling
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Kisiday
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Molina LA, Milla-Cruz JJ, Ghavasieh Z, Kim LH, Cheng N, Whelan PJ. High-throughput gait acquisition system for freely moving mice. J Neurophysiol 2023; 130:1081-1091. [PMID: 37728487 DOI: 10.1152/jn.00133.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Normal and pathological locomotion can be discriminated by analyzing an animal's gait on a linear walkway. This step is labor intensive and introduces experimental bias due to the handling involved while placing and removing the animal between trials. We designed a system consisting of a runway embedded within a larger arena, which can be traversed ad libitum by unsupervised, freely moving mice, triggering the recording of short clips of locomotor activity. Multiple body parts were tracked using DeepLabCut and fed to an analysis pipeline (GaitGrapher) to extract gait metrics. We compared the results from unsupervised against the standard experimenter-supervised approach and found that gait parameters analyzed via the new approach were similar to a previously validated approach (Visual Gait Lab). These data show the utility of incorporating an unsupervised, automated, approach for collecting kinematic data for gait analysis.NEW & NOTEWORTHY The acquisition and analysis of walkway data is a time-consuming task. Here, we provide an unmonitored approach for collecting gait metrics that reduces the handling and stress of mice and saves time. A detailed pipeline is outlined that provides for the collection and analysis of data using an integrated suite of tools.
Collapse
Affiliation(s)
- Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan J Milla-Cruz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zahra Ghavasieh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Linda H Kim
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Ritter J, Menger M, Herath SC, Histing T, Kolbenschlag J, Daigeler A, Heinzel JC, Prahm C. Translational evaluation of gait behavior in rodent models of arthritic disorders with the CatWalk device - a narrative review. Front Med (Lausanne) 2023; 10:1255215. [PMID: 37869169 PMCID: PMC10587608 DOI: 10.3389/fmed.2023.1255215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Arthritic disorders have become one of the main contributors to the global burden of disease. Today, they are one of the leading causes of chronic pain and disability worldwide. Current therapies are incapable of treating pain sufficiently and preventing disease progression. The lack of understanding basic mechanisms underlying the initiation, maintenance and progression of arthritic disorders and related symptoms represent the major obstacle in the search for adequate treatments. For a long time, histological evaluation of joint pathology was the predominant outcome parameter in preclinical arthritis models. Nevertheless, quantification of pain and functional limitations analogs to arthritis related symptoms in humans is essential to enable bench to bedside translation and to evaluate the effectiveness of new treatment strategies. As the experience of pain and functional deficits are often associated with altered gait behavior, in the last decades, automated gait analysis has become a well-established tool for the quantitative evaluation of the sequalae of arthritic disorders in animal models. The purpose of this review is to provide a detailed overview on the current literature on the use of the CatWalk gait analysis system in rodent models of arthritic disorders, e.g., Osteoarthritis, Monoarthritis and Rheumatoid Arthritis. Special focus is put on the assessment and monitoring of pain-related behavior during the course of the disease. The capability of evaluating the effect of distinct treatment strategies and the future potential for the application of the CatWalk in rodent models of arthritic disorders is also addressed in this review. Finally, we discuss important consideration and provide recommendations on the use of the CatWalk in preclinical models of arthritic diseases.
Collapse
Affiliation(s)
- Jana Ritter
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Maximilian Menger
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Johannes C Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
23
|
Partain BD, Bracho-Sanchez E, Farhadi SA, Yarmola EG, Keselowsky BG, Hudalla GA, Allen KD. Intra-articular delivery of an indoleamine 2,3-dioxygenase galectin-3 fusion protein for osteoarthritis treatment in male Lewis rats. Arthritis Res Ther 2023; 25:173. [PMID: 37723593 PMCID: PMC10506271 DOI: 10.1186/s13075-023-03153-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is driven by low-grade inflammation, and controlling local inflammation may offer symptomatic relief. Here, we developed an indoleamine 2,3-dioxygenase and galectin-3 fusion protein (IDO-Gal3), where IDO increases the production of local anti-inflammatory metabolites and Gal3 binds carbohydrates to extend IDO's joint residence time. In this study, we evaluated IDO-Gal3's ability to alter OA-associated inflammation and pain-related behaviors in a rat model of established knee OA. METHODS Joint residence was first evaluated with an analog Gal3 fusion protein (NanoLuc™ and Gal3, NL-Gal3) that produces luminescence from furimazine. OA was induced in male Lewis rats via a medial collateral ligament and medial meniscus transection (MCLT + MMT). At 8 weeks, NL or NL-Gal3 were injected intra-articularly (n = 8 per group), and bioluminescence was tracked for 4 weeks. Next, IDO-Gal3s's ability to modulate OA pain and inflammation was assessed. Again, OA was induced via MCLT + MMT in male Lewis rats, with IDO-Gal3 or saline injected into OA-affected knees at 8 weeks post-surgery (n = 7 per group). Gait and tactile sensitivity were then assessed weekly. At 12 weeks, intra-articular levels of IL6, CCL2, and CTXII were assessed. RESULTS The Gal3 fusion increased joint residence in OA and contralateral knees (p < 0.0001). In OA-affected animals, both saline and IDO-Gal3 improved tactile sensitivity (p = 0.008), but IDO-Gal3 also increased walking velocities (p ≤ 0.033) and improved vertical ground reaction forces (p ≤ 0.04). Finally, IDO-Gal3 decreased intra-articular IL6 levels within the OA-affected joint (p = 0.0025). CONCLUSION Intra-articular IDO-Gal3 delivery provided long-term modulation of joint inflammation and pain-related behaviors in rats with established OA.
Collapse
Affiliation(s)
- Brittany D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Shaheen A Farhadi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Elena G Yarmola
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA.
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Soliman M, Shanan N, Eissa G, Mizaikoff B, El Gohary NA. In vivo application of magnetic molecularly imprinted polymer in rheumatoid arthritis rat model. J Drug Target 2023; 31:878-888. [PMID: 37566392 DOI: 10.1080/1061186x.2023.2247584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
A magnetic molecularly imprinted polymer (MMIP) was synthesised and tested for an in vivo rheumatoid arthritis (RA) rat model. Magnetite coated with mesoporous silica (Fe2O3@mSi) was used as core for surface imprinting, dopamine was used as monomer and methotrexate (MTX) was loaded directly during polymerisation. The amount of MTX loaded on MMIPs reached 201.165 ± 0.315 µmol/g. Characterisation of the polymers was done via SEM, TEM, and FTIR. The pharmacological effect of the selected MMIP was evaluated in a Complete Freund's Adjuvant (CFA) induced arthritis rat model where a 3D magnet bearing construct was designed for targeted delivery of MMIPs. The parameters evaluated were the change in paw edoema, paw diameter, gait score, and animal's weight. Results revealed a tendency of MMIP to significantly improve the measured parameters which was confirmed with histopathological findings. In conclusion, the improvement in the arthritic signs associated with MMIP treatment compared to free MTX, indicated successful targeting of MMIPs to the site of inflammation.
Collapse
Affiliation(s)
- Mariam Soliman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Department of Chemistry, Faculty of Biotechnology, The German International University in Cairo, Cairo, Egypt
| | - Nagwan Shanan
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Gamal Eissa
- Materials Engineering Department, Faculty of Engineering and Materials Science, German University in Cairo, Cairo, Egypt
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
- Hahn-Schickard, Ulm, Germany
| | - Nesrine A El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
25
|
Chan KM, Griffith JL, Pacheco YC, Allen KD. Wheel Running Exacerbates Joint Damage after Meniscal Injury in Mice, but Does Not Alter Gait or Physical Activity Levels. Med Sci Sports Exerc 2023; 55:1564-1576. [PMID: 37144624 PMCID: PMC10524358 DOI: 10.1249/mss.0000000000003198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE Exercise and physical activity are recommended to reduce pain and improve joint function in patients with knee osteoarthritis (OA). However, exercise has dose effects, with excessive exercise accelerating OA development and sedentary behaviors also promoting OA development. Prior work evaluating exercise in preclinical models has typically used prescribed exercise regimens; however, in-cage voluntary wheel running creates opportunities to evaluate how OA progression affects self-selected physical activity levels. This study aimed to evaluate how voluntary wheel running after a surgically induced meniscal injury affects gait characteristics and joint remodeling in C57Bl/6 mice. We hypothesize that injured mice will reduce physical activity levels as OA develops after meniscal injury and will engage in wheel running to a lesser extent than the uninjured animals. METHODS Seventy-two C57Bl/6 mice were divided into experimental groups based on sex, lifestyle (physically active vs sedentary), and surgery (meniscal injury or sham control). Voluntary wheel running data were continuously collected throughout the study, and gait data were collected at 3, 7, 11, and 15 wk after surgery. At end point, joints were processed for histology to assess cartilage damage. RESULTS After meniscal injury, physically active mice showed more severe joint damage relative to sedentary mice. Nevertheless, injured mice engaged in voluntary wheel running at the same rates and distances as mice with sham surgery. In addition, physically active mice and sedentary mice both developed a limp as meniscal injury progressed, yet exercise did not further exacerbate gait changes in the physically active mice, despite worsened joint damage. CONCLUSIONS Taken together, these data indicate a discordance between structural joint damage and joint function. Although wheel running after meniscal injury did worsen OA-related joint damage, physical activity did not necessarily inhibit or worsen OA-related joint dysfunction or pain in mice.
Collapse
Affiliation(s)
- Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Kinesiology, Indiana University, Bloomington, IN
| | - Jacob L. Griffith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Yan Carlos Pacheco
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
26
|
Dewberry LS, Porche K, Koenig T, Allen KD, Otto KJ. High frequency alternating current neurostimulation decreases nocifensive behavior in a disc herniation model of lumbar radiculopathy. Bioelectron Med 2023; 9:15. [PMID: 37434246 DOI: 10.1186/s42234-023-00119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate if kilohertz frequency alternating current (KHFAC) stimulation of peripheral nerve could serve as a treatment for lumbar radiculopathy. Prior work shows that KHFAC stimulation can treat sciatica resulting from chronic sciatic nerve constriction. Here, we evaluate if KHFAC stimulation is also beneficial in a more physiologic model of low back pain which mimics nucleus pulposus (NP) impingement of a lumbar dorsal root ganglion (DRG). METHODS To mimic a lumbar radiculopathy, autologous tail NP was harvested and placed upon the right L5 nerve root and DRG. During the same surgery, a cuff electrode was implanted around the sciatic nerve with wires routed to a headcap for delivery of KHFAC stimulation. Male Lewis rats (3 mo., n = 18) were separated into 3 groups: NP injury + KHFAC stimulation (n = 7), NP injury + sham cuff (n = 6), and sham injury + sham cuff (n = 5). Prior to surgery and for 2 weeks following surgery, animal tactile sensitivity, gait, and static weight bearing were evaluated. RESULTS KHFAC stimulation of the sciatic nerve decreased behavioral evidence of pain and disability. Without KHFAC stimulation, injured animals had heightened tactile sensitivity compared to baseline (p < 0.05), with tactile allodynia reversed during KHFAC stimulation (p < 0.01). Midfoot flexion during locomotion was decreased after injury but improved with KHFAC stimulation (p < 0.05). Animals also placed more weight on their injured limb when KHFAC stimulation was applied (p < 0.05). Electrophysiology measurements at end point showed decreased, but not blocked, compound nerve action potentials with KHFAC stimulation (p < 0.05). CONCLUSIONS KHFAC stimulation decreases hypersensitivity but does not cause additional gait compensations. This supports the idea that KHFAC stimulation applied to a peripheral nerve may be able to treat chronic pain resulting from sciatic nerve root inflammation.
Collapse
Affiliation(s)
- Lauren Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Ken Porche
- Lillian S Wells Department of Neurosurgery at the University of Florida, College of Medicine, 1505 SW Archer Road Gainesville, FL, 32608, Gainesville, USA
| | - Travis Koenig
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
- Pain Research & Intervention Center of Excellence, University of Florida, CTSI 2004 Mowry Road, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA.
- Department of Neuroscience, University of Florida, 1149 Newell Dr. L1-100, P.O. Box 100244, Gainesville, FL, USA.
- Department of Electrical and Computer Engineering, University of Florida, 968 Center Dr, Gainesville, FL, 32611, USA.
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, P.O. Box 116005, Gainesville, FL, 32611, USA.
- Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Dr, P.O. Box 116400, Gainesville, FL, 32611, USA.
- Department of Neurology, 1149 Newell Dr, P.O. Box 100236, Gainesville, FL, L3-10032610, USA.
- Nanoscience Institute for Medical and Engineering Technology (NIMET), University of Florida, 1041 Center Drive, Gainesville, FL, 32611, USA.
| |
Collapse
|
27
|
von der Ahe C, Marahrens H, Schwarze M, Angrisani N, Reifenrath J. Pressure sensing mat as an objective and sensitive tool for the evaluation of lameness in rabbits. PLoS One 2023; 18:e0286918. [PMID: 37418422 PMCID: PMC10328299 DOI: 10.1371/journal.pone.0286918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/25/2023] [Indexed: 07/09/2023] Open
Abstract
In orthopaedic research, the analysis of the gait pattern is an often-used evaluation method. It allows an assessment of changes in motion sequence and pain level during postoperative follow up periods. Visual assessments are highly subjective and dependent on the circumstances. Particular challenge in rabbits is their hopping gait pattern. The aim of the present study was to establish a more objective and sensitive lameness evaluation using a pressure sensing mat. Twelve NZW rabbits were implemented in the study. They got an artificial anterior cruciate ligament transection of the right knee in connection with an experimental study, which investigated PTOA treatment. Rabbits were examined by a visual lameness score. Additionally, load of the hindlimbs was measured by the use of a pressure sensing mat and a video was recorded. Peak pressure and time force integral, defined as cumulated integral of all sensors associated to a hind paw, were evaluated. Preoperative data were collected on three independent days. As postoperative measurement time points, week 1 and week 12 after surgery were chosen. The subjective visual scoring was compared to the objective data of the pressure sensing mat. Following the visual score, lameness in week one was mild to moderate. In week twelve, rabbits were evaluated as lame free bar one. Contrary, following the values of the sensor mat, lameness in week one appeared to be more pronounced and almost all rabbits still showed low-grade lameness in week twelve. Consequently, the pressure sensing mat is more sensitive than the visual score and captures the grade of lameness much more accurately. For specific orthopaedic issues, where subtle differences in lameness are important to detect, the used system is a good supplementary evaluation method.
Collapse
Affiliation(s)
- Christin von der Ahe
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Hannah Marahrens
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
- Clinic for Small Cloven-hoofed Animals and Forensic Medicine and Ambulatory Clinic, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Michael Schwarze
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Nina Angrisani
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Janin Reifenrath
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Lower Saxony, Germany
| |
Collapse
|
28
|
Cohen S, Ho C. Review of Rat ( Rattus norvegicus), Mouse ( Mus musculus), Guinea pig ( Cavia porcellus), and Rabbit ( Oryctolagus cuniculus) Indicators for Welfare Assessment. Animals (Basel) 2023; 13:2167. [PMID: 37443965 DOI: 10.3390/ani13132167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The monitoring and assessment of animals is important for their health and welfare. The appropriate selection of multiple, validated, and feasible welfare assessment indicators is required to effectively identify compromises or improvements to animal welfare. Animal welfare indicators can be animal or resource based. Indicators can be collated to form assessment tools (e.g., grimace scales) or animal welfare assessment models (e.g., 5 Domains) and frameworks (e.g., 5 Freedoms). The literature contains a wide variety of indicators, with both types needed for effective animal welfare assessment; however, there is yet to be an ideal constellation of indicators for animal-based welfare assessment in small mammals such as guinea pigs (Cavia Porcellus), mice (Mus musculus), rabbits (Oryctolagus cuniculus), and rats (Rattus norvegicus). A systematic review of grey and peer-reviewed literature was performed to determine the types of animal-based welfare indicators available to identify and assess animal health and welfare in these small mammals maintained across a wide variety of conditions. The available indicators were categorised and scored against a selection of criteria, including potential ease of use and costs. This review and analysis aim to provide the basis for further research into animal welfare indicators for these species. Future applications of this work may include improvements to animal welfare assessments or schemes, guiding better management, and implementing future strategies to enable better animal welfare.
Collapse
Affiliation(s)
- Shari Cohen
- Melbourne Veterinary School, Animal Welfare Science Centre, University of Melbourne, Parkville 3010, Australia
- School of Life and Environmental Sciences, University of Sydney, Camden 2570, Australia
| | - Cindy Ho
- Melbourne Veterinary School, Animal Welfare Science Centre, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
29
|
Yang K, Xie Q, Liang J, Shen Y, Li Z, Zhao N, Wu Y, Liu L, Zhang P, Hu C, Chen L, Wang Y. Identification of Andrographolide as a novel FABP4 inhibitor for osteoarthritis treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154939. [PMID: 37354697 DOI: 10.1016/j.phymed.2023.154939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND PURPOSE Fatty acid binding protein 4 (FABP4) has been identified as a contributor to cartilage degradation in osteoarthritis (OA) patients, and inhibiting FABP4 using small molecules has emerged as a promising approach for developing OA drugs. Our previous research showed that Andrographis paniculata, a medicinal plant, strongly inhibits FABP4 activity. This led us to hypothesize that Andrographis paniculata ingredients might have protective effects on OA cartilage through FABP4 inhibition. METHODS We analyzed scRNA-seq data from joint tissue of OA patients (GSE152805; GSE145286) using Scanpy 1.9.1 and Single Cell Portal. We conducted docking analysis of FABP4 inhibitors using Autodock Vina v.1.0.2. We evaluated the anti-FABP4 activity using a fluorescence displacement assay and measured the fatty acid oxidation (FAO) activity using the FAOBlue assay. We used H2DCF-DA to measure reactive oxygen species (ROS) levels. We studied signaling pathways using bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. We evaluated anti-OA activity in monosodium iodoacetate (MIA)-induced rats. RESULTS We identified Andrographolide (AP) as a novel FABP4 inhibitor. Bulk RNA-sequencing analysis revealed that FABP4 upregulated FAO and ROS in chondrocytes, which was inhibited by AP. ROS generation activated the NF-κB pathway, leading to overexpression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which is a responsible factor for cartilage degradation in OA patients. AP inhibited FABP4, thereby reducing the overexpression of ADAMTS4 by inhibiting the NF-κB pathway. In MIA rats, AP treatment reduced the overexpression of ADAMTS4, repaired cartilage and subchondral bone, and promoted cartilage regeneration. CONCLUSION Our results indicate that the inhibition of FABP4 activity by AP explains the anti-OA properties of Andrographis paniculata by protecting against cartilage degradation in OA patients. Additionally, our findings suggest that AP may be a promising therapeutic agent for OA treatment due to its ability to alleviate cartilage damage and bone erosion.
Collapse
Affiliation(s)
- Kuangyang Yang
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Qian Xie
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China; Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jianhui Liang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Yanni Shen
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziqi Li
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Na Zhao
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Yuanyan Wu
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Lichu Liu
- Foshan Hospital of Traditional Chinese Medicine, Institute of Orthopedics and Traumatology, Foshan 528000, China
| | - Peng Zhang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China.
| |
Collapse
|
30
|
Du K, Zhou Q, Wang Z, Mo C, Dong W, Wei N, Zhong W, You Y, Wang Y, Wang Z. Polydatin ameliorates inflammation and oxidative stress associated with MSU-induced gouty arthritis in mice by regulating PPAR-γ and ferritin activation. Life Sci 2023:121766. [PMID: 37209866 DOI: 10.1016/j.lfs.2023.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
AIMS Polygonum cuspidatum Sieb. et Zucc is one of the commonly used herbs for the treatment of gouty arthritis, and polydatin is one of its main effective components. This study evaluated the therapeutic potential of polydatin for the treatment of gout. MAIN METHODS The ankle joint of C57BL/6 mice were injected with MSU suspensions to simulate human gouty arthritis, and oral treatment with polydatin (25, 50, and 100 mg/kg body weight) was performed at 1 h after MSU crystal injection. The effect of polydatin on model mice was evaluated by measuring ankle swelling, gait, histopathological analysis, proinflammatory cytokine expression, as well as the contents of NO, MDA and GSH. The targets of polydatin were explored by Real-Time PCR and IHC. KEY FINDINGS Treatment with polydatin inhibited ankle swelling, improved abnormal gait, and reduced ankle lesions dose-dependently. Moreover, polydatin decreased pro-inflammatory cytokine expression, and promoted expression of anti-inflammatory cytokine. In addition, polydatin inhibited MSU-induced oxidative stress by decreasing oxidative product (NO, MDA) generation and promote the antioxidant (GSH). Further, we found that polydatin reduced inflammation by decreasing the expression of NLRP3 inflammasome component via activating PPAR-γ. Moreover, polydatin can protect against iron overload and attenuate oxidative stress by promoting the activation of ferritin. SIGNIFICANCE Our findings indicates that polydatin ameliorates MSU-induced inflammation and oxidative stress by regulating PPAR-γ and ferritin activation in gouty arthritis model mice, and this research result suggests that polydatin has therapeutic potential for the treatment of gout in humans through multiple targets.
Collapse
Affiliation(s)
- Kang Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Guangzhou Baiyunshan Ming Xing Pharmaceutical Co., Ltd., Guangzhou, China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwen Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; GuangZhou (Jinan)Biomedical Research and Development Center Co., Ltd., Guangzhou, China
| | - Chou Mo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; GuangZhou (Jinan)Biomedical Research and Development Center Co., Ltd., Guangzhou, China
| | - Wanwen Dong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; GuangZhou (Jinan)Biomedical Research and Development Center Co., Ltd., Guangzhou, China
| | - Ning Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; GuangZhou (Jinan)Biomedical Research and Development Center Co., Ltd., Guangzhou, China
| | - Wenshen Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; GuangZhou (Jinan)Biomedical Research and Development Center Co., Ltd., Guangzhou, China
| | - Yuejiao You
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China; GuangZhou (Jinan)Biomedical Research and Development Center Co., Ltd., Guangzhou, China.
| | - Zhiping Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; GuangZhou (Jinan)Biomedical Research and Development Center Co., Ltd., Guangzhou, China.
| |
Collapse
|
31
|
Thurlow NA, Chan KM, Yeater TD, Allen KD. Effects of Repeat Test Exposure on Gait Parameters in Naïve Lewis Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537488. [PMID: 37131645 PMCID: PMC10153156 DOI: 10.1101/2023.04.19.537488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rodent gait analysis has emerged as a powerful, quantitative behavioral assay to characterize the pain and disability associated with movement-related disorders. In other behavioral assays, the importance of acclimation and the effect of repeated testing have been evaluated. However, for rodent gait analysis, the effects of repeated gait testing and other environmental factors have not been thoroughly characterized. In this study, fifty-two naïve male Lewis rats ages 8 to 42 weeks completed gait testing at semi-random intervals for 31 weeks. Gait videos and force plate data were collected and processed using a custom MATLAB suite to calculate velocity, stride length, step width, percentage stance time (duty factor), and peak vertical force data. Exposure was quantified as the number of gait testing sessions. Linear mixed effects models were used to evaluate the effects of velocity, exposure, age, and weight on animal gait patterns. Relative to age and weight, repeated exposure was the dominant parameter affecting gait variables with significant effects on walking velocity, stride length, fore and hind limb step width, fore limb duty factor, and peak vertical force. From exposure 1 to 7, average velocity increased by approximately 15 cm/s. Together, these data indicate arena exposure had large effects on gait parameters and should be considered in acclimation protocols, experimental design, and subsequent data analysis of rodent gait data.
Collapse
Affiliation(s)
- Nat A. Thurlow
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Kinesiology, Indiana University, Bloomington, IN, USA
| | - Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Jahanbekam S, Mozafari N, Bagheri-Alamooti A, Mohammadi-Samani S, Daneshamooz S, Heidari R, Azarpira N, Ashrafi H, Azadi A. Ultrasound-responsive hyaluronic acid hydrogel of hydrocortisone to treat osteoarthritis. Int J Biol Macromol 2023; 240:124449. [PMID: 37072059 DOI: 10.1016/j.ijbiomac.2023.124449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
One of the practical ways to manage the disease flares of arthritis is using an intra-articular depot formulation of glucocorticoids. Hydrogels, as controllable drug delivery systems, are hydrophilic polymers with distinctive properties, such as remarkable water capacity and biocompatibility. This study aimed to design an injectable thermo-ultrasound-triggered drug carrier based on Pluronic® F-127, hyaluronic acid, and gelatin. The in situ hydrogel loaded by hydrocortison was developed and D-optimal design was used to formulate the process. The optimized hydrogel was combined with four different surfactants to better regulate the release rate. In situ gels composed of the hydrocortisone-loaded hydrogel and hydrocortisone-loaded mixed-micelle hydrogel were characterized. The hydrocortisone-loaded hydrogel and selected hydrocortisone-loaded mixed-micelle hydrogel showed a spherical shape and were nano-sized with a unique thermo-responsive nature able to prolong drug release. The ultrasound-triggered release study showed that drug release was time-dependent. By inducing osteoarthritis in a rat model, behavioral tests and histopathological analyses were carried out on the hydrocortisone-loaded hydrogel and a particular hydrocortisone-loaded mixed-micelle hydrogel. In vivo results showed that the selected hydrocortisone-loaded mixed-micelle hydrogel improved the status of the disease. Results highlighted the potential of ultrasound-responsive in situ-forming hydrogels as hopeful formulas for efficient treatment of arthritis.
Collapse
Affiliation(s)
- Sheida Jahanbekam
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Bagheri-Alamooti
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamooz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Chan KM, Bowe MT, Allen KD. Recommendations for the analysis of rodent gait data to evaluate osteoarthritis treatments. Osteoarthritis Cartilage 2023; 31:425-434. [PMID: 36435413 PMCID: PMC11474404 DOI: 10.1016/j.joca.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
Abstract
Behavioral assays of animal pain and disability can increase the clinical relevance of a preclinical study. However, pain and symptoms are difficult to measure in preclinical models. Because animals often alter their movement patterns to reduce or avoid joint pain, gait analysis can be an important tool for quantifying OA-related symptoms in rodents. Technologies to measure rodent gait continue to advance and have been the focus of prior reviews. Regardless of the techniques used, the analysis of rodent gait data can be complex due to multiple confounding variables. The goal of this review is to discuss recent advances in the understanding of OA-related gait changes and provide recommendations on the analysis of gait data. Recent studies suggest OA-affected animals reduce vertical loading through their injured limb while walking, indicating dynamic ground reaction forces are important data to collect when possible. Moreover, gait data analysis depends on accurately measuring and accounting for the confounding effects of velocity and other covariates (such as animal size) when interpreting shifts in various gait parameters. Herein, we discuss different statistical techniques to account for covariates and interpret gait shifts. In particular, this review will discuss residualization and linear mixed effects models, including how both techniques can account for inter- and intra-animal variability and the effects of velocity. Furthermore, this review discusses future considerations for using rodent gait analysis, while highlighting the intricacies of gait analysis as a tool to measure joint function and behavioral outcomes.
Collapse
Affiliation(s)
- Kiara M Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Markia T Bowe
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Chan KM, Thurlow NA, Maden M, Allen KD. African Spiny Mice ( Acomys) Exhibit Mild Osteoarthritis Following Meniscal Injury. Cartilage 2023; 14:94-105. [PMID: 36802989 PMCID: PMC10076895 DOI: 10.1177/19476035221149146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVE Hyaline cartilage has limited innate healing abilities and hyaline cartilage loss is a hallmark of osteoarthritis (OA). Animal models can provide important insights into cartilage regeneration potential. One such animal model, the African spiny mouse (Acomys), is capable of regenerating skin, skeletal muscle, and elastic cartilage. This study aims to evaluate whether these regenerative abilities protect Acomys with meniscal injury from OA-related joint damage and behaviors indicative of joint pain and dysfunction. DESIGN Acomys received destabilization of the medial meniscus (DMM) surgery (n = 11) or a skin incision (n = 10). Gait testing occurred at 4, 6, 8, 10, and 12 weeks after surgery. At endpoint, joints were processed for histology to assess cartilage damage. RESULTS Following joint injury, Acomys with DMM surgery altered their walking patterns by increasing the percent stance time on the contralateral limb relative to the operated limb, thereby reducing the amount of time the injured limb must bear weight on its own throughout the gait cycle. Histological grading indicated evidence of OA-related joint damage in Acomys with DMM surgery; these changes were primarily driven by loss of structural integrity in the hyaline cartilage. CONCLUSIONS Acomys developed gait compensations, and the hyaline cartilage in Acomys is not fully protected from OA-related joint damage following meniscal injury, although this damage was less severe than that historically found in C57BL/6 mice with an identical injury. Thus, Acomys do not appear to be completely protected from OA-related changes, despite the ability to regenerate other wounded tissues.
Collapse
Affiliation(s)
- Kiara M. Chan
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nat A. Thurlow
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- Department of Biology & UF Genetics
Institute, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of
Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopedics and Sports
Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Ni C, Lin Y, Lu L, Wang J, Liu W, Kuo S, Pan M. Tracking motion kinematics and tremor with intrinsic oscillatory property of instrumental mechanics. Bioeng Transl Med 2023; 8:e10432. [PMID: 36925695 PMCID: PMC10013767 DOI: 10.1002/btm2.10432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Tracking kinematic details of motor behaviors is a foundation to study the neuronal mechanism and biology of motor control. However, most of the physiological motor behaviors and movement disorders, such as gait, balance, tremor, dystonia, and myoclonus, are highly dependent on the overall momentum of the whole-body movements. Therefore, tracking the targeted movement and overall momentum simultaneously is critical for motor control research, but it remains an unmet need. Here, we introduce the intrinsic oscillatory property (IOP), a fundamental mechanical principle of physics, as a method for motion tracking in a force plate. The overall kinetic energy of animal motions can be transformed into the oscillatory amplitudes at the designed IOP frequency of the force plate, while the target movement has its own frequency features and can be tracked simultaneously. Using action tremor as an example, we reported that force plate-based IOP approach has superior performance and reliability in detecting both tremor severity and tremor frequency, showing a lower level of coefficient of variation (CV) compared with video- and accelerometer-based motion tracking methods and their combination. Under the locomotor suppression effect of medications, therapeutic effects on tremor severity can still be quantified by dynamically adjusting the overall locomotor activity detected by IOP. We further validated IOP method in optogenetic-induced movements and natural movements, confirming that IOP can represent the intensity of general rhythmic and nonrhythmic movements, thus it can be generalized as a common approach to study kinematics.
Collapse
Affiliation(s)
- Chun‐Lun Ni
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
- The Initiative for Columbia Ataxia and TremorNew YorkNew YorkUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yi‐Ting Lin
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Department of PsychologyNational Taiwan UniversityTaipei CityTaiwan
| | - Liang‐Yin Lu
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei CityTaiwan
| | - Jia‐Huei Wang
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei CityTaiwan
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipei CityTaiwan
| | - Wen‐Chuan Liu
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei CityTaiwan
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipei CityTaiwan
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
- The Initiative for Columbia Ataxia and TremorNew YorkNew YorkUSA
| | - Ming‐Kai Pan
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei CityTaiwan
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipei CityTaiwan
- Department of Medical ResearchNational Taiwan University HospitalTaipei CityTaiwan
- Cerebellar Research CenterNational Taiwan University Hospital, Yun‐Lin BranchYun‐LinTaiwan
| |
Collapse
|
36
|
Pan YN, Jia C, Yu JP, Wu ZW, Xu GC, Huang YX. Fibroblast growth factor 9 reduces TBHP-induced oxidative stress in chondrocytes and diminishes mouse osteoarthritis by activating ERK/Nrf2 signaling pathway. Int Immunopharmacol 2023; 114:109606. [PMID: 36700776 DOI: 10.1016/j.intimp.2022.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) is a degenerative and progressive disease that affects joints. Pathologically, it is characterized by oxidative stress-mediated excessive chondrocyte apoptosis and mitochondrial dysfunction. Fibroblast growth factor 9 (FGF9) has been shown to exert antioxidant effects and prevent degenerative diseases by activating ERK-related signaling pathways. However, the mechanism of FGF9 in the pathogenesis of OA and its relationship with anti-oxidative stress and related pathways are unclear. In this study, mice with medial meniscus instability (DMM) were used as the in vivo model whereas TBHP-induced chondrocytes served as the in vitro model to explore the mechanism underlying the effects of FGF9 in OA and its association with anti-oxidative stress. Results showed that FGF9 reduced oxidative stress, apoptosis, and mitochondrial dysfunction in TBHP-treated chondrocytes and promoted the nuclear translocation of Nrf2 to activate the Nrf2/HO1 signaling pathway. Interestingly, silencing the Nrf2 gene or blocking the ERK signaling pathway abolished the antioxidant effects of FGF9. FGF9 treatment reduced joint space narrowing, cartilage ossification, and synovial thickening in the DMM model mice. In conclusion, the present findings demonstrate that FGF9 can inhibit TBHP-induced oxidative stress in chondrocytes through the ERK and Nrf2-HO1 signaling pathways and prevent the progression of OA in vivo.
Collapse
Affiliation(s)
- Yi-Nan Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chao Jia
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jia-Pei Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhou-Wei Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guo-Chao Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi-Xing Huang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
37
|
Kenney HM, Wood RW, Ramirez G, Bell RD, Chen KL, Schnur L, Rahimi H, Korman BD, Xing L, Ritchlin CT, Schwarz EM, Cole CL. Implementation of automated behavior metrics to evaluate voluntary wheel running effects on inflammatory-erosive arthritis and interstitial lung disease in TNF-Tg mice. Arthritis Res Ther 2023; 25:17. [PMID: 36732826 PMCID: PMC9893562 DOI: 10.1186/s13075-022-02985-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although treatment options and algorithms for rheumatoid arthritis (RA) have improved remarkably in recent decades, there continues to be no definitive cure or pharmacologic intervention with reliable long-term efficacy. For this reason, the combination of medications and healthy lifestyle modifications are essential for controlling joint disease, and extra-articular manifestations of RA, such as interstitial lung disease (ILD) and other lung pathologies, which greatly impact morbidity and mortality. Generally, exercise has been deemed beneficial in RA patients, and both patients and clinicians are motivated to incorporate effective non-pharmacologic interventions. However, there are limited evidence-based and specific exercise regimens available to support engagement in such activities for RA patients. Here, we provided the continuous opportunity for exercise to mice and implemented automated recording and quantification of wheel running behavior. This allowed us to describe the associated effects on the progression of inflammatory-erosive arthritis and ILD in the tumor necrosis factor transgenic (TNF-Tg) mouse model of RA. METHODS Wild-type (WT; males, n=9; females, n=9) and TNF-Tg (males, n=12; females, n=14) mice were singly housed with free access to a running wheel starting at 2 months until 5 to 5.5 months of age. Measures of running included distance, rate, length, and number of run bouts, which were derived from continuously recorded data streams collected automatically and in real-time. In vivo lung, ankle, and knee micro-computed tomography (micro-CT), along with terminal micro-CT and histology were performed to examine the association of running behaviors and disease progression relative to sedentary controls. RESULTS TNF-Tg males and females exhibited significantly reduced running distance, rate, length, and number of run bouts compared to WT counterparts by 5 months of age (p<0.0001). Compared to sedentary controls, running males and females showed increased aerated lung volumes (p<0.05) that were positively correlated with running distance and rate in female mice (WT: Distance, ρ=0.705/rate, ρ=0.693 (p<0.01); TNF-Tg: ρ=0.380 (p=0.06)/ρ=0.403 (p<0.05)). Talus bone volumes were significantly reduced in running versus sedentary males and negatively correlated with running distance and rate in TNF-Tg mice (male: ρ=-903/ρ=-0.865; female: ρ=-0.614/ρ=-0.594 (p<0.001)). Histopathology validated the lung and ankle micro-CT findings. CONCLUSIONS Implementation of automated wheel running behavior metrics allows for evaluation of longitudinal activity modifications hands-off and in real-time to relate with biomarkers of disease severity. Through such analysis, we determined that wheel running activity increases aerated lung volumes, but exacerbates inflammatory-erosive arthritis in TNF-Tg mice. To the end of a clinically relevant model, additional functional assessment of these outcomes and studies of pain behavior are warranted.
Collapse
Affiliation(s)
- H. Mark Kenney
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ronald W. Wood
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Neuroscience, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Urology, University of Rochester Medical Center, Rochester, NY USA
| | - Gabriel Ramirez
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Richard D. Bell
- grid.239915.50000 0001 2285 8823Department of Research, Hospital for Special Surgery, New York, NY USA
| | - Kiana L. Chen
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Lindsay Schnur
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Homaira Rahimi
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pediatrics, Pediatric Rheumatology, University of Rochester Medical Center, Rochester, NY USA
| | - Benjamin D. Korman
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY USA
| | - Lianping Xing
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Christopher T. Ritchlin
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY USA
| | - Edward M. Schwarz
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Urology, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Calvin L. Cole
- grid.412750.50000 0004 1936 9166Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Surgery, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
38
|
Chan KM, Yeater TD, Allen KD. Age alters gait compensations following meniscal injury in male rats. J Orthop Res 2022; 40:2780-2791. [PMID: 35285977 PMCID: PMC9470788 DOI: 10.1002/jor.25306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
With age, susceptibility to osteoarthritis (OA) and OA-related pain and disability increases. Like in OA patients, gait patterns in rodent OA models shift to protect the injured limb during loading. However, unlike in OA patients, it is unknown how age affects gait changes in rodent OA models. In this study, gait compensations following meniscal injury in 3-, 6-, and 9-month-old rats were evaluated to examine age-effects of OA-related joint dysfunction. Rats 3, 6, and 9 months received medial collateral ligament transection plus medial meniscus transection (MCLT + MMT) surgery (n = 8/age group) or a skin incision (n = 8/age group). Postsurgery, rats underwent gait testing at 2, 4, 6, and 8 weeks. Postmortem, joints were processed for histology to assess cartilage damage. MCLT + MMT rats walked with reduced vertical loading in their injured limbs immediately after injury and throughout OA progression. Compared to sham-operated limbs, 6- and 9-month MCLT + MMT animals reduced loading in their injured limbs while 3-month MCLT + MMT animals did not. MCLT + MMT rats also increased stance time on the injured limb compared to the contralateral limb. Additionally, for the MCLT + MMT animals, 6- and 9-month animals had significantly worse cartilage damage compared to 3-month animals. These data indicated age at injury onset affects how animals load the OA-affected joint, with older animals developing gait compensations that more markedly reduce weight on the injured limb during walking.
Collapse
Affiliation(s)
- Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Chidomere CI, Wahid M, Kemble S, Chadwick C, Thomas R, Hardy RS, McGettrick HM, Naylor AJ. Bench to Bedside: Modelling Inflammatory Arthritis. DISCOVERY IMMUNOLOGY 2022; 2:kyac010. [PMID: 38567064 PMCID: PMC10917191 DOI: 10.1093/discim/kyac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 04/04/2024]
Abstract
Inflammatory arthritides such as rheumatoid arthritis are a major cause of disability. Pre-clinical murine models of inflammatory arthritis continue to be invaluable tools with which to identify and validate therapeutic targets and compounds. The models used are well-characterised and, whilst none truly recapitulates the human disease, they are crucial to researchers seeking to identify novel therapeutic targets and to test efficacy during preclinical trials of novel drug candidates. The arthritis parameters recorded during clinical trials and routine clinical patient care have been carefully standardised, allowing comparison between centres, trials, and treatments. Similar standardisation of scoring across in vivo models has not occurred, which makes interpretation of published results, and comparison between arthritis models, challenging. Here, we include a detailed and readily implementable arthritis scoring system, that increases the breadth of arthritis characteristics captured during experimental arthritis and supports responsive and adaptive monitoring of disease progression in murine models of inflammatory arthritis. In addition, we reference the wider ethical and experimental factors researchers should consider during the experimental design phase, with emphasis on the continued importance of replacement, reduction, and refinement of animal usage in arthritis research.
Collapse
Affiliation(s)
- Chiamaka I Chidomere
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mussarat Wahid
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Caroline Chadwick
- Biomedical Services Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Thomas
- Biomedical Services Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rowan S Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
40
|
Development of a cyclic-inverso AHSG/Fetuin A-based peptide for inhibition of calcification in osteoarthritis. Osteoarthritis Cartilage 2022; 31:727-740. [PMID: 36414226 DOI: 10.1016/j.joca.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Ectopic calcification is an important contributor to chronic diseases, such as osteoarthritis. Currently, no effective therapies exist to counteract calcification. We developed peptides derived from the calcium binding domain of human Alpha-2-HS-Glycoprotein (AHSG/Fetuin A) to counteract calcification. METHODS A library of seven 30 amino acid (AA) long peptides, spanning the 118 AA Cystatin 1 domain of AHSG, were synthesized and evaluated in an in vitro calcium phosphate precipitation assay. The best performing peptide was modified (cyclic, retro-inverso and combinations thereof) and evaluated in cellular calcification models and the rat Medial Collateral Ligament Transection + Medial Meniscal Tear (MCLT + MMT) osteoarthritis model. RESULTS A cyclic peptide spanning AA 1-30 of mature AHSG showed clear inhibition of calcium phosphate precipitation in the nM-pM range that far exceeded the biological activity of the linear peptide variant or bovine Fetuin. Biochemical and electron microscopy analyses of calcium phosphate particles revealed a similar, but distinct, mode of action in comparison with bFetuin. A cyclic-inverso variant of the AHSG 1-30 peptide inhibited calcification of human articular chondrocytes, vascular smooth muscle cells and during osteogenic differentiation of bone marrow derived stromal cells. Lastly, we evaluated the effect of intra-articular injection of the cyclic-inverso AHSG 1-30 peptide in a rat osteoarthritis model. A significant improvement was found in histopathological osteoarthritis score and animal mobility. Serum levels of IFNγ were found to be lower in AHSG 1-30 peptide treated animals. CONCLUSIONS The cyclic-inverso AHSG 1-30 peptide directly inhibits the calcification process and holds the potential for future application in osteoarthritis.
Collapse
|
41
|
Comprehensive dynamic and kinematic analysis of the rodent hindlimb during over ground walking. Sci Rep 2022; 12:19725. [PMID: 36385108 PMCID: PMC9668918 DOI: 10.1038/s41598-022-20288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The rat hindlimb is a frequently utilized pre-clinical model system to evaluate injuries and pathologies impacting the hindlimbs. These studies have demonstrated the translational potential of this model but have typically focused on the force generating capacity of target muscles as the primary evaluative outcome. Historically, human studies investigating extremity injuries and pathologies have utilized biomechanical analysis to better understand the impact of injury and extent of recovery. In this study, we expand that full biomechanical workup to a rat model in order to characterize the spatiotemporal parameters, ground reaction forces, 3-D joint kinematics, 3-D joint kinetics, and energetics of gait in healthy rats. We report data on each of these metrics that meets or exceeds the standards set by the current literature and are the first to report on all these metrics in a single set of animals. The methodology and findings presented in this study have significant implications for the development and clinical application of the improved regenerative therapeutics and rehabilitative therapies required for durable and complete functional recovery from extremity traumas, as well as other musculoskeletal pathologies.
Collapse
|
42
|
Li H, Hu S, Zhao R, Zhang Y, Huang L, Shi J, Li P, Wei X. Gait Analysis of Bilateral Knee Osteoarthritis and Its Correlation with Western Ontario and McMaster University Osteoarthritis Index Assessment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101419. [PMID: 36295577 PMCID: PMC9610794 DOI: 10.3390/medicina58101419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Background and objectives: Objective, accurate, and intuitive evaluation of knee joint function in patients with knee osteoarthritis (KOA) is important. This study aimed to clarify the gait characteristics of patients with bilateral KOA and their correlation with Western Ontario and McMaster University Osteoarthritis Index (WOMAC). Materials and Methods: 20 patients with bilateral KOA and 20 conditionally matched healthy individuals were enrolled in the experimental and control groups, respectively. Footscan and CODA motion gait analysis systems were used to analyse the gait parameters. Gait spatiotemporal parameters and knee joint motion parameters were collected. Weight-bearing balance and walking stability were assessed using discrete trends of relevant gait indicators. Patients in the experimental group were evaluated using WOMAC. Pearson’s correlation analysis was performed on the gait data and WOMAC score data of the experimental group. Results: Velocity, cadence, step length, and stride length of the experimental group were significantly lower than those of the control group (p < 0.01). Step time and gait cycle were significantly greater in the experimental group than in the control group (p < 0.01). Total stance and double-stance times of the experimental group were significantly greater than those of the control group (p < 0.01), whereas the single-stance time was shorter than that of the control group (p < 0.01). The range of motion and maximum flexion angle in the experimental group were significantly lower than those in the control group (p < 0.01), and the minimum angle of knee extension was greater than that in the control group (p < 0.01). The discrete trend of weight-bearing balance and walking stability gait index in the experimental group was greater than that in the control group. The WOMAC score and gait analysis were significantly correlated (p < 0.05). Conclusions: The gait function of patients with KOA is significantly worse than that of normal people. The WOMAC scale and gait analysis can be used to assess KOA severity from different perspectives with good consistency.
Collapse
Affiliation(s)
- Haoqian Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Shuai Hu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Ruipeng Zhao
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Yixuan Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Lingan Huang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
- Department of Pain Medicine, Sanya Central Hospital of Hainan Medical College, 1154 Jiefang Road, Sanya 572000, China
| | - Junjun Shi
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
43
|
Functional Gait Assessment Using Manual, Semi-Automated and Deep Learning Approaches Following Standardized Models of Peripheral Nerve Injury in Mice. Biomolecules 2022; 12:biom12101355. [PMID: 36291564 PMCID: PMC9599622 DOI: 10.3390/biom12101355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: To develop a standardized model of stretch−crush sciatic nerve injury in mice, and to compare outcomes of crush and novel stretch−crush injuries using standard manual gait and sensory assays, and compare them to both semi-automated as well as deep-learning gait analysis methods. Methods: Initial studies in C57/Bl6 mice were used to develop crush and stretch−crush injury models followed by histologic analysis. In total, 12 eight-week-old 129S6/SvEvTac mice were used in a six-week behavioural study. Behavioral assessments using the von Frey monofilament test and gait analysis recorded on a DigiGait platform and analyzed through both Visual Gait Lab (VGL) deep learning and standardized sciatic functional index (SFI) measurements were evaluated weekly. At the termination of the study, neurophysiological nerve conduction velocities were recorded, calf muscle weight ratios measured and histological analyses performed. Results: Histological evidence confirmed more severe histomorphological injury in the stretch−crush injured group compared to the crush-only injured group at one week post-injury. Von Frey monofilament paw withdrawal was significant for both groups at week one compared to baseline (p < 0.05), but not between groups with return to baseline at week five. SFI showed hindered gait at week one and two for both groups, compared to baseline (p < 0.0001), with return to baseline at week five. Hind stance width (HSW) showed similar trends as von Frey monofilament test as well as SFI measurements, yet hind paw angle (HPA) peaked at week two. Nerve conduction velocity (NCV), measured six weeks post-injury, at the termination of the study, did not show any significant difference between the two groups; yet, calf muscle weight measurements were significantly different between the two, with the stretch−crush group demonstrating a lower (poorer) weight ratio relative to uninjured contralateral legs (p < 0.05). Conclusion: Stretch−crush injury achieved a more reproducible and constant injury compared to crush-only injuries, with at least a Sunderland grade 3 injury (perineurial interruption) in histological samples one week post-injury in the former. However, serial behavioral outcomes were comparable between the two crush groups, with similar kinetics of recovery by von Frey testing, SFI and certain VGL parameters, the latter reported for the first time in rodent peripheral nerve injury. Semi-automated and deep learning-based approaches for gait analysis are promising, but require further validation for evaluation in murine hind-limb nerve injuries.
Collapse
|
44
|
Qiao H, Mei J, Yuan K, Zhang K, Zhou F, Tang T, Zhao J. Immune-regulating strategy against rheumatoid arthritis by inducing tolerogenic dendritic cells with modified zinc peroxide nanoparticles. J Nanobiotechnology 2022; 20:323. [PMID: 35836178 PMCID: PMC9281050 DOI: 10.1186/s12951-022-01536-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
In hypoxic dendritic cells (DCs), a low level of Zn2+ can induce the activation of immunogenic DCs (igDCs), thereby triggering an active T-cell response to propel the immune progression of rheumatoid arthritis (RA). This finding indicates the crucial roles of zinc and oxygen homeostasis in DCs during the pathogenesis of RA. However, very few studies have focused on the modulation of zinc and oxygen homeostasis in DCs during RA treatment. Proposed herein is a DC-targeting immune-regulating strategy to induce igDCs into tolerogenic DCs (tDCs) and inhibit subsequent T-cell activation, referred to as ZnO2/Catalase@liposome-Mannose nanoparticles (ZnCM NPs). ZnCM NPs displayed targeted intracellular delivery of Zn2+ and O2 towards igDCs in a pH-responsive manner. After inactivating OTUB1 deubiquitination, the ZnCM NPs promoted CCL5 degradation via NF-κB signalling, thereby inducing the igDC-tDC transition to further inhibit CD4+ T-cell homeostasis. In collagen-induced arthritis (CIA) mice, this nanoimmunoplatform showed significant accumulation in the spleen, where immature DCs (imDCs) differentiated into igDCs. Splenic tDCs were induced to alleviate ankle swelling, improve walking posture and safely inhibit ankle/spleen inflammation. Our work pioneers the combination of DC-targeting nanoplatforms with RA treatments and highlights the significance of zinc and oxygen homeostasis for the immunoregulation of RA by inducing tDCs with modified ZnO2 NPs, which provides novel insight into ion homeostasis regulation for the treatment of immune diseases with a larger variety of distinct metal or nonmetal ions. The DC-targeting immune-regulating nanostrategy was firstly employed to treat RA. The complex immune regulating effects was realized through a portable, convenient and green nanomaterial. Highlighting the significance of zinc and oxygen homeostasis for the immunoregulation of RA by inducing tDCs with modified ZnO2 NPs. Expanding the notion of ion homeostasis regulation with a larger variety of distinct metal or nonmetal ions.
Collapse
Affiliation(s)
- Han Qiao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jingtian Mei
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Yuan
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Zhang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Tingting Tang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jie Zhao
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
45
|
A musculoskeletal finite element model of rat knee joint for evaluating cartilage biomechanics during gait. PLoS Comput Biol 2022; 18:e1009398. [PMID: 35657996 PMCID: PMC9166403 DOI: 10.1371/journal.pcbi.1009398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Abnormal loading of the knee due to injuries or obesity is thought to contribute to the development of osteoarthritis (OA). Small animal models have been used for studying OA progression mechanisms. However, numerical models to study cartilage responses under dynamic loading in preclinical animal models have not been developed. Here we present a musculoskeletal finite element model of a rat knee joint to evaluate cartilage biomechanical responses during a gait cycle. The rat knee joint geometries were obtained from a 3-D MRI dataset and the boundary conditions regarding loading in the joint were extracted from a musculoskeletal model of the rat hindlimb. The fibril-reinforced poroelastic (FRPE) properties of the rat cartilage were derived from data of mechanical indentation tests. Our numerical results showed the relevance of simulating anatomical and locomotion characteristics in the rat knee joint for estimating tissue responses such as contact pressures, stresses, strains, and fluid pressures. We found that the contact pressure and maximum principal strain were virtually constant in the medial compartment whereas they showed the highest values at the beginning of the gait cycle in the lateral compartment. Furthermore, we found that the maximum principal stress increased during the stance phase of gait, with the greatest values at midstance. We anticipate that our approach serves as a first step towards investigating the effects of gait abnormalities on the adaptation and degeneration of rat knee joint tissues and could be used to evaluate biomechanically-driven mechanisms of the progression of OA as a consequence of joint injury or obesity. Osteoarthritis is a disease of the musculoskeletal system which is characterized by the degradation of articular cartilage. Changes in the knee loading after injuries or obesity contribute to the development of cartilage degeneration. Since injured cartilage cannot be reversed back to intact conditions, small animal models have been widely used for investigating osteoarthritis progression mechanisms. Moreover, experimental studies have been complemented with numerical models to overcome inherent limitations such as cost, difficulties to obtain accurate measures and replicate degenerative situations in the knee joint. However, computational models to study articular cartilage responses under dynamic loading in small animal models have not been developed. Thus, here we present a musculoskeletal finite element model (MSFE) of a rat knee joint to evaluate cartilage biomechanical responses during gait. Our computational model considers both the anatomical and locomotion characteristics of the rat knee joint for estimating mechanical responses in the articular cartilage. We suggest that our approach can be used to investigate tissue adaptations based on the mechanobiological responses of the cartilage to prevent the progression of osteoarthritis.
Collapse
|
46
|
Li Z, Liu L, Yang Y, Zheng H, Cai Y, Ma Y, Gu R, Xu K, Zhang R, Xu P. Metformin Ameliorates Senescence of Adipose-Derived Mesenchymal Stem Cells and Attenuates Osteoarthritis Progression via the AMPK-Dependent Autophagy Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4620254. [PMID: 35693701 PMCID: PMC9187432 DOI: 10.1155/2022/4620254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
Osteoarthritis (OA) is one of the most serious age-related diseases worldwide that drastically affects the quality of life of patients. Despite advancements in the treatment of arthritis, especially with adipose-derived mesenchymal stem cells (ADSCs), senescence-induced alterations in ADSCs negatively affect the treatment outcomes. This study was aimed at mechanistically exploring whether metformin could ameliorate the senescence of ADSCs and at exploring the effect of metformin-preconditioned ADSCs in an experimental OA mouse model. In this study, an H2O2-induced mouse ADSC senescent model was established. Cell proliferation, senescence, and autophagy were investigated in vitro. Moreover, the effects of intra-articular injection of metformin-preconditioned ADSCs were investigated in vivo. Metformin could promote autophagy and activate the AMPK/mTOR pathway in ADSCs. The metformin-enhanced autophagy could improve the survival and reduce the senescence of ADSCs. The protective effects of metformin against senescence were partially blocked by 3-methyladenine and compound C. Injection of metformin-preconditioned ADSCs slowed OA progression and reduced OA pain in mice. The results suggest that metformin activates the AMPK/mTOR-dependent autophagy pathway in ADSCs against H2O2-induced senescence, while metformin-preconditioned ADSCs can potentially inhibit OA progression.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lin Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yanni Yang
- Department of Clinical Medicine of Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Haishi Zheng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yongsong Cai
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yao Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ruiying Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
47
|
Ding YS, Wang J, Kumar V, Ciaccio J, Dakhel S, Tan C, Kim J, Lee S, Katz-Lichtenstein H, Gironda Z, Mishkit O, Mroz J, Jackson R, Yoon G, Gamallo-Lana B, Klores M, Mar A. Evidence For Cannabidiol Modulation of Serotonergic Transmission in a Model of Osteoarthritis via in vivo PET Imaging and Behavioral Assessment. INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN MEDICAL SCIENCE 2022; 7:254-271. [PMID: 37841504 PMCID: PMC10576525 DOI: 10.23958/ijirms/vol07-i06/1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Background Preclinical studies indicate that cannabidiol (CBD), the primary nonaddictive component of cannabis, has a wide range of reported pharmacological effects such as analgesic and anxiolytic actions; however, the exact mechanisms of action for these effects have not been examined in chronic osteoarthritis (OA). Similar to other chronic pain syndromes, OA pain can have a significant affective component characterized by mood changes. Serotonin (5-HT) is a neurotransmitter implicated in pain, depression, and anxiety. Pain is often in comorbidity with mood and anxiety disorders in patients with OA. Since primary actions of CBD are analgesic and anxiolytic, in this first in vivo positron emission tomography (PET) imaging study, we investigate the interaction of CBD with serotonin 5-HT1A receptor via a combination of in vivo neuroimaging and behavioral studies in a well-validated OA animal model. Methods The first aim of this study was to evaluate the target involvement, including the evaluation of modulation by acute administration of CBD, or a specific target antagonist/agonist intervention, in control animals. The brain 5-HT1A activity/availability was assessed via in vivo dynamic PET imaging (up to 60 min) using a selective 5-HT1A radioligand ([18F]MeFWAY). Tracer bindings of 17 ROIs were evaluated based on averaged SUVR values over the last 10 min using CB as the reference region. We subsequently examined the neurochemical and behavioral alterations in OA animals (induction with monosodium iodoacetate (MIA) injection), as compared to control animals, via neuroimaging and behavioral assessment. Further, we examined the effects of repeated low-dose CBD treatment on mechanical allodynia (von Frey tests) and anxiety-like (light/dark box tests, L/D), depressive-like (forced swim tests, FST) behaviors in OA animals, as compared to after vehicle treatment. Results The tracer binding was significantly reduced in control animals after an acute dose of CBD administered intravenously (1.0 mg/kg, i.v.), as compared to that for baseline. This binding specificity to 5-HT1A was further confirmed by a similar reduction of tracer binding when a specific 5-HT1A antagonist WAY1006235 was used (0.3 mg/kg, i.v.). Mice subjected to the MIA-induced OA for 13-20 days showed a decreased 5-HT1A tracer binding (25% to 41%), consistent with the notion that 5-HT1A plays a role in the modulation of pain in OA. Repeated treatment with CBD administered subcutaneously (5 mg/kg/day, s.c., for 16 days after OA induction) increased 5-HT1A tracer binding, while no significant improvement was observed after vehicle. A trend of increased anxiety or depressive-like behavior in the light/dark box or forced swim tests after OA induction, and a decrease in those behaviors after repeated low-dose CBD treatment, are consistent with the anxiolytic action of CBD through 5HT1A receptor activation. There appeared to be a sex difference: females seem to be less responsive at the baseline towards pain stimuli, while being more sensitive to CBD treatment. Conclusion This first in vivo PET imaging study in an OA animal model has provided evidence for the interaction of CBD with the serotonin 5-HT1A receptor. Behavioral studies with more pharmacological interventions to support the target involvement are needed to further confirm these critical findings.
Collapse
Affiliation(s)
- Yu-Shin Ding
- Radiology, New York University School of Medicine, New
York, NY, USA
- Psychiatry, New York University School of Medicine, New
York, NY, USA
| | - Jiacheng Wang
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Vinay Kumar
- Radiology, New York University School of Medicine, New
York, NY, USA
| | | | - Sami Dakhel
- Chemistry, New York University, New York, NY, USA
| | - Cathy Tan
- Chemistry, New York University, New York, NY, USA
| | - Jonathan Kim
- Chemistry, New York University, New York, NY, USA
| | - Sabrina Lee
- Radiology, New York University School of Medicine, New
York, NY, USA
| | | | - Zakia Gironda
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Orin Mishkit
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Jakub Mroz
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Raul Jackson
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Grace Yoon
- Radiology, New York University School of Medicine, New
York, NY, USA
| | - Begona Gamallo-Lana
- Rodent Behavioral Core, New York University School of
Medicine, New York, NY, USA
| | - Molly Klores
- Rodent Behavioral Core, New York University School of
Medicine, New York, NY, USA
| | - Adam Mar
- Rodent Behavioral Core, New York University School of
Medicine, New York, NY, USA
| |
Collapse
|
48
|
Macchi C, Bonalume V, Greco MF, Mozzo M, Melfi V, Sirtori CR, Magnaghi V, Corsini A, Ruscica M. Impact of Atorvastatin on Skeletal Muscle Mitochondrial Activity, Locomotion and Axonal Excitability-Evidence from ApoE-/- Mice. Int J Mol Sci 2022; 23:ijms23105415. [PMID: 35628225 PMCID: PMC9141374 DOI: 10.3390/ijms23105415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiovascular benefit of statins is well established. However, only 20% of high-risk patients remain adequately adherent after 5 years of treatment. Among reasons for discontinuation, statin associated-muscle pain symptoms are the most prevalent. Aim of the present study was to evaluate the impact of high dose atorvastatin on skeletal muscle mitochondrial activity, aerobic and anaerobic exercise, and axonal excitability in a murine model of atherosclerosis. ApoE-/- mice were fed 12 weeks a high-fat high-cholesterol diet alone or containing atorvastatin (40 mg/Kg/day). Outcomes were the evaluation of muscle mitochondrial functionality, locomotion, grip test, and axonal excitability (compound action potential recording analysis of Aα motor propioceptive, Aβ mechanoceptive and C nociceptive fibres). Atorvastatin led to a reduction in muscle mitochondrial biogenesis and mitochondrial ATP production. It did not affect muscular strength but led to a time-dependent motor impairment. Atorvastatin altered the responsiveness of mechanoceptive and nociceptive fibres, respectively, the Aβ and C fibres. These findings point out to a mild sensitization on mechanical, tactile and pain sensitivity. In conclusion, although the prevalence of muscular side effects from statins may be overestimated, understanding of the underlying mechanisms can help improve the therapeutic approach and reassure adherence in patients needing-to-be-treated.
Collapse
|
49
|
Ding X, Gao J, Yu X, Shi J, Chen J, Yu L, Chen S, Ding J. 3D-Printed Porous Scaffolds of Hydrogels Modified with TGF-β1 Binding Peptides to Promote In Vivo Cartilage Regeneration and Animal Gait Restoration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15982-15995. [PMID: 35363484 DOI: 10.1021/acsami.2c00761] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The treatment of cartilage injury and osteoarthritis has been a classic problem for many years. The idea of in situ tissue regeneration paves a way for osteochondral repair in vivo. Herein, a hydrogel scaffold linked with bioactive peptides that can selectively adsorb transforming growth factor β1 (TGF-β1) was hypothesized to not only afford cell ingrowth space but also induce the endogenous TGF-β1 recruitment for chondrogenesis promotion. In this study, bilayered porous scaffolds with gelatin methacryloyl (GelMA) hydrogels as a matrix were constructed via three-dimensional (3D) printing, of which the upper layer was covalently bound with bioactive peptides that can adsorb TGF-β1 for cartilage repair and the lower layer was blended with hydroxyapatite for subchondral regeneration. The scaffolds showed promising therapeutic efficacy proved by cartilage and osteogenic induction in vitro and osteochondral repair of rats in vivo. In particular, the animal gait behavior was recovered after the in situ tissue regeneration, and the corresponding gait analysis demonstrated the promotion of tissue regeneration induced by the porous hydrogels with the binding peptides.
Collapse
Affiliation(s)
- Xiaoquan Ding
- Department of Sports Medicine, Huashan Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200040, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200040, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200040, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
50
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|