1
|
Li P, Gao Y, Zhou R, Che X, Wang H, Cong L, Jiang P, Liang D, Li P, Wang C, Li W, Sang S, Duan Q, Wei X. Intra-articular injection of miRNA-1 agomir, a novel chemically modified miRNA agonists alleviates osteoarthritis (OA) progression by downregulating Indian hedgehog in rats. Sci Rep 2024; 14:8101. [PMID: 38582868 PMCID: PMC10998901 DOI: 10.1038/s41598-024-56200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/04/2024] [Indexed: 04/08/2024] Open
Abstract
Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1β for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1β-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.
Collapse
Affiliation(s)
- Pengcui Li
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yangyang Gao
- Department of Orthopaedic Surgery, Jincheng People's Hospital, Jincheng, 048000, Shanxi, China
| | - Raorao Zhou
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xianda Che
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hang Wang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingling Cong
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Pinpin Jiang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dan Liang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Penghua Li
- Shanxi Province Fenyang Hospital, Fenyang, 032200, Shanxi, China
| | - Chunfang Wang
- Department of Experimental Animal Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenjin Li
- Department of Stomatology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shengbo Sang
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education and College of Information and Computer, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Qianqian Duan
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education and College of Information and Computer, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Xiaochun Wei
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
2
|
Zhu K, Zhang Y, Li D, Xie M, Jiang H, Zhang K, Lei Y, Chen G. MiR-29a-3p mediates phosphatase and tensin homolog and inhibits osteoarthritis progression. Funct Integr Genomics 2024; 24:54. [PMID: 38467932 DOI: 10.1007/s10142-024-01327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Despite substantial progress in clinical trials of osteoarthritis (OA) gene therapy, the prevalence of OA is still on the rise. MiRNAs have a potential biomarker and therapeutic target for OA. OA cartilage and chondrosarcoma cells were studied to determine the role of miR-29a-3p and PTEN. OA cartilage and human chondrosarcoma cells (SW1353) were obtained. miR-29a-3p and PTEN signature expression was determined by RT-qPCR. The binding relationship between miR-29a-3p and PTEN was investigated by dual-luciferase reporter gene and western blot assay. TUNEL, immunohistochemistry, CCK-8, and flow cytometry were utilized to determine the proliferation and apoptosis of SW1353 cells. This study indicated downregulation of miR-29a-3p expression and upregulation of PTEN expression in human OA primary chondrocytes or OA tissue samples, compared with the normal cartilage cells or tissues. PTEN expression was negatively correlated with miR-29a-3p expression, and miR-29a-3p targeted PTEN mechanistically. miR-29a-3p reduced SW1353 cell activity and proliferation and promoted cell apoptosis. However, the aforementioned effects could be reversed by downregulating PTEN. miR-29a-3p can stimulate chondrocyte proliferation and inhibit apoptosis by inhibiting PTEN expression.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - Yan Zhang
- Department of Orthopedics, Chinese Medicine Hospital of Anyue County, Ziyang City, 642350, Sichuan Province, China
| | - DongDong Li
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - MingZhong Xie
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - HuaCai Jiang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - KaiQuan Zhang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - Yang Lei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - GuangYou Chen
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
3
|
Bartels YL, van Lent PLEM, van der Kraan PM, Blom AB, Bonger KM, van den Bosch MHJ. Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis. Rheumatology (Oxford) 2024; 63:608-618. [PMID: 37788083 PMCID: PMC10907820 DOI: 10.1093/rheumatology/kead493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.
Collapse
Affiliation(s)
- Yvonne L Bartels
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
4
|
Antunes J, Salcedo-Jiménez R, Lively S, Potla P, Coté N, Dubois MS, Koenig J, Kapoor M, LaMarre J, Koch TG. microRNAs are differentially expressed in equine plasma of horses with osteoarthritis and osteochondritis dissecans versus control horses. PLoS One 2024; 19:e0297303. [PMID: 38394252 PMCID: PMC10890772 DOI: 10.1371/journal.pone.0297303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of lameness in horses with no effective disease-modifying treatment and challenging early diagnosis. OA is considered a disease of the joint involving the articular cartilage, subchondral bone, synovial membrane, and ligaments. Osteochondritis dissecans (OCD) is a joint disease consisting of focal defects in the osteochondral unit which may progress to OA later in life. MicroRNAs (miRNAs) have been recognized as small non-coding RNAs that regulate a variety of biological processes and have been detected in biological fluids. MiRNAs are currently investigated for their utility as biomarkers and druggable targets for a variety of diseases. The current study hypothesizes that miRNA profiles can be used to actively monitor joint health and differences in miRNA profiles will be found in healthy vs diseased joints and that differences will be detectable in blood plasma of tested horses. Five horses with OA, OCD, and 4 controls (C) had blood plasma and synovial fluid collected. Total RNA, including miRNA was isolated before generating miRNA libraries from the plasma of the horses. Libraries were sequenced at the Schroeder Arthritis Institute (Toronto). Differential expression analysis was done using DESeq2 and validated using ddPCR. KEGG pathway analysis was done using mirPath v.3 (Diana Tools). 57 differentially expressed miRNAs were identified in OA vs C plasma, 45 differentially expressed miRNAs in OC vs C plasma, and 21 differentially expressed miRNAs in OA vs OCD plasma. Notably, miR-140-5p expression was observed to be elevated in OA synovial fluid suggesting that miR-140-5p may serve as a protective marker early on to attenuate OA progression. KEGG pathway analysis of differentially expressed plasma miRNAs showed relationships with glycan degradation, glycosaminoglycan degradation, and hippo signaling pathway. Interestingly, ddPCR was unable to validate the NGS data suggesting that isomiRs may play an integral role in miRNA expression when assessed using NGS technologies.
Collapse
Affiliation(s)
- Joshua Antunes
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ramés Salcedo-Jiménez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Pratibha Potla
- Osteoarthritis Research Program, Division of Orthopedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Nathalie Coté
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Marie-Soleil Dubois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Judith Koenig
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Thomas Gadegaard Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
6
|
Tramś E, Kamiński R. Molecular Biology of Meniscal Healing: A Narrative Review. Int J Mol Sci 2024; 25:768. [PMID: 38255841 PMCID: PMC10815262 DOI: 10.3390/ijms25020768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
This review provides insights at the molecular level into the current and old methods for treating meniscal injuries. Meniscal injuries have been found to have a substantial impact on the progression of osteoarthritis. In line with the "save the meniscus" approach, meniscectomy is considered a last-resort treatment. Nevertheless, it is important to note that mechanical repair alone may not achieve the complete restoration of the meniscus. A deep understanding of the healing pathways could lead to future improvements in meniscal healing. The inclusion of cytokines and chemokines has the potential to facilitate the process of tear repair or impede the inflammatory catabolic cascade. MicroRNA (miRNA) could serve as a potential biomarker for meniscal degeneration, and RNA injections might promote collagen and growth factor production. The critical aspect of the healing process is angiogenesis within the inner zone of the meniscus. The use of collagen scaffolds and the implantation of autologous meniscus fragments have been successfully integrated into clinical settings. These findings are encouraging and underscore the need for well-designed clinical trials to explore the most effective factors that can enhance the process of meniscal repair.
Collapse
Affiliation(s)
| | - Rafał Kamiński
- Centre of Postgraduate Medical Education, Department of Musculoskeletal Trauma and Orthopaedics, Gruca Orthopaedic and Trauma Teaching Hospital, Konarskiego 13, 05-400 Otwock, Poland;
| |
Collapse
|
7
|
Zhang K, Yu J, Li J, Fu W. The Combined Intraosseous Administration of Orthobiologics Outperformed Isolated Intra-articular Injections in Alleviating Pain and Cartilage Degeneration in a Rat Model of MIA-Induced Knee Osteoarthritis. Am J Sports Med 2024; 52:140-154. [PMID: 38164685 DOI: 10.1177/03635465231212668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Intra-articular (IA) platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) injections have shown efficacy and safety in treating osteoarthritis (OA). However, the effectiveness and mechanisms of combined intraosseous (IO) administration of these orthobiologics have yet to be explored. PURPOSE/HYPOTHESIS The purpose of this study was to evaluate the effect on pain, cartilage, synovium/infrapatellar fat pad (IFP), and subchondral bone in rat knee OA, comparing isolated IA with combined IA and IO (IA+IO) injections of PRP or BMAC. It was hypothesized that combined injections would be superior to sole IA injections. STUDY DESIGN Controlled laboratory study. METHODS A total of 48 rats were divided into 6 groups: sham (only joint puncture during OA induction with IA+IO saline injection treatment) and 5 groups with OA induction, control (IA+IO saline injection), PRP (IA PRP+IO saline injection), BMAC IA (IA BMAC+IO saline injection), PRP IA+IO (IA+IO PRP injection), and BMAC IA+IO (IA+IO BMAC injection). OA was induced by IA injection of monosodium iodoacetate (MIA). Rats were administered different orthobiologics according to their grouping 3 weeks after the MIA injection. Pain changes were evaluated using the weightbearing ratio assay at weeks 3, 4, 5, 7, and 9 after OA induction. Rats were euthanized at week 9 for gross, radiological, histological, immunohistochemical, and immunofluorescence assessments of cartilage, synovium, and subchondral bone. RESULTS Compared with the control group, all orthobiologics injection groups had reduced joint pain. Compared with IA injection, IA+IO injections provided superior pain relief by suppressing calcitonin gene-related peptide and substance P in both the synovium/IFP and subchondral bone. IA+IO injections slowed the progression of subchondral bone lesions by inhibiting CD31hiEmcnhi vessel formation and excessive osteoclast and osteoblast turnover while preserving subchondral bone microarchitecture, slowing cartilage degeneration. However, IA+IO injections did not outperform isolated IA injections in reducing synovitis and synovium/IFP fibrosis. Compared with PRP, BMAC exhibited superior inhibition of pain-related mediators, but no significant differences were observed in synovitis suppression, infrapatellar fat pad fibrosis, and subchondral bone protection. CONCLUSION IA+IO injections of orthobiologics were more effective in relieving pain, slowing cartilage degeneration, and inhibiting abnormal vascularization and remodeling compared with isolated IA injections. BMAC showed superior pain relief in the synovium/IFP and subchondral bone compared with PRP. Further research is needed to optimize PRP and BMAC components for enhanced efficacy in OA management. CLINICAL RELEVANCE Our findings contribute to advancing the understanding of pain relief mechanisms and support the endorsement of IO injection of orthobiologics for the treatment of OA and joint pain.
Collapse
Affiliation(s)
- Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Yu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Chen Y, Cheng RJ, Wu Y, Huang D, Li Y, Liu Y. Advances in Stem Cell-Based Therapies in the Treatment of Osteoarthritis. Int J Mol Sci 2023; 25:394. [PMID: 38203565 PMCID: PMC10779279 DOI: 10.3390/ijms25010394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is a chronic, degenerative joint disease presenting a significant global health threat. While current therapeutic approaches primarily target symptom relief, their efficacy in repairing joint damage remains limited. Recent research has highlighted mesenchymal stem cells (MSCs) as potential contributors to cartilage repair, anti-inflammatory modulation, and immune regulation in OA patients. Notably, MSCs from different sources and their derivatives exhibit variations in their effectiveness in treating OA. Moreover, pretreatment and gene editing techniques of MSCs can enhance their therapeutic outcomes in OA. Additionally, the combination of novel biomaterials with MSCs has shown promise in facilitating the repair of damaged cartilage. This review summarizes recent studies on the role of MSCs in the treatment of OA, delving into their advantages and exploring potential directions for development, with the aim of providing fresh insights for future research in this critical field.
Collapse
Affiliation(s)
- Ye Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Deying Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| |
Collapse
|
9
|
Zheng D, Yang K, Chen T, Lv S, Wang L, Gui J, Xu C. Inhibition of LncRNA SNHG14 protects chondrocyte from injury in osteoarthritis via sponging miR-137. Autoimmunity 2023; 56:2270185. [PMID: 37849308 DOI: 10.1080/08916934.2023.2270185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Long-chain noncoding small nucleolar RNA host gene 14 (LncRNA SNHG14) is highly expressed in various diseases and promotes diseases progression, but the role and mechanism of LncRNA SNHG14 on targeting miR-137 in promoting osteoarthritis (OA) chondrocyte injury remains unclear. To measure the expression of the LncRNAs SNHG14 and miR-137, cell survival, inflammatory response, chondrocyte apoptosis, and extracellular matrix (ECM) levels, we subjected human chondrocytes to a variety of lipopolysaccharide (LPS) concentrations. To measure the luciferase activity of SNHG14-WT and SNHG14-MUT transfected with miR-137 mimic or miR-NC mimic, luciferase reporter genes were utilized. The results showed that chondrocyte viability was significantly inhibited with LPS treatment and chondrocyte inflammatory response, apoptosis and extracellular matrix degradation were significantly increased. However, the above results were significantly reversed after LncRNA SNHG14 inhibition. The luciferase activity bound to miR-137 was decreased in SNHG14-WT group, but there was no change in SNHG14-mut group, which indicated that LncRNA SNHG14 inhibited miR-137 expression as a miRNA sponge. In conclusion, inhibition of LncRNA SNHG14 attenuates chondrocyte inflammatory response, apoptosis and extracellular matrix degradation by targeting miR-137 in LPS induced chondrocytes.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Kaiyuan Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Tong Chen
- Department of Orthopedics, The Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jianchao Gui
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Xu
- Department of Trauma Center, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| |
Collapse
|
10
|
Jiang P, Liang D, Wang H, Zhou R, Che X, Cong L, Li P, Wang C, Li W, Wei X, Li P. TMT quantitative proteomics reveals key proteins relevant to microRNA-1-mediated regulation in osteoarthritis. Proteome Sci 2023; 21:21. [PMID: 37993861 PMCID: PMC10664301 DOI: 10.1186/s12953-023-00223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Osteoarthritis (OA) is the second-commonest arthritis, but pathogenic and regulatory mechanisms underlying OA remain incompletely understood. Here, we aimed to identify the mechanisms associated with microRNA-1 (miR-1) treatment of OA in rodent OA models using a proteomic approach. First, N = 18 Sprague Dawley (SD) rats underwent sham surgery (n = 6) or ACL transection (n = 12), followed at an interval of one week by randomization of the ACL transection group to intra-articular administration of either 50 µL placebo (control group) or miR-1 agomir, a mimic of endogenous miR-1 (experimental group). After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and immunohistochemically stained for the presence of MMP-13. Second, N = 30 Col2a1-cre-ERT2 /GFPf1/fl -RFP-miR-1 transgenic mice were randomized to intra-articular administration of either placebo (control group, N = 15) or tamoxifen, an inducer of miR-1 expression (experimental group, N = 15), before undergoing surgical disruption of the medial meniscus (DMM) after an interval of five days. After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and underwent differential proteomic analysis. Specifically, tandem mass tagging (TMT) quantitative proteomic analysis was employed to identify inter-group differentially-expressed proteins (DEP), and selected DEPs were validated using real-time quantitative polymerase chain reaction (RT-qPCR) technology. Immunohistochemically-detected MMP-13 expression was significantly lower in the experimental rat group, and proteomic analyses of mouse tissue homogenate demonstrated that of 3526 identified proteins, 345 were differentially expressed (relative up- and down-regulation) in the experimental group. Proteins Fn1, P4ha1, P4ha2, Acan, F2, Col3a1, Fga, Rps29, Rpl34, and Fgg were the *top ten most-connected proteins, implying that miR-1 may regulate an expression network involving these proteins. Of these ten proteins, three were selected for further validation by RT-qPCR: the transcript of Fn1, known to be associated with OA, exhibited relative upregulation in the experimental group, whereas the transcripts of P4ha1 and Acan exhibited relative downregulation. These proteins may thus represent key miR-1 targets during OA-regulatory mechanisms, and may provide additional insights regarding therapeutic mechanisms of miR-1 in context of OA.
Collapse
Affiliation(s)
- Pinpin Jiang
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Dan Liang
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hang Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Raorao Zhou
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xianda Che
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Linlin Cong
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Penghua Li
- Department of Laboratory Medicine, Fenyang Hospital Affiliated to Shanxi Medical University, Fenyang, China
| | - Chunfang Wang
- Laboratory Animal Center of Shanxi Medical University, Taiyuan, China
| | - Wenjin Li
- Department of Stomatology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
11
|
Liu Z, Huang J, Wang X, Deng S, Zhou J, Gong Z, Li X, Wang Y, Yang J, Hu Y. Dapagliflozin suppress endoplasmic reticulum stress mediated apoptosis of chondrocytes by activating Sirt1. Chem Biol Interact 2023; 384:110724. [PMID: 37741535 DOI: 10.1016/j.cbi.2023.110724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a common joint disease characterized by inflammation and cartilage degeneration. Accumulating evidences support that endoplasmic reticulum (ER) stress induced OA chondrocytes apoptosis. The hypoglycemic and anti-inflammatory properties render Dapagliflozin (DAPA) effective in reducing ER stress on cells. However, its impact and potential mechanisms on the OA pathology are still obscure. The present study aimed to investigate whether DAPA attenuates ER stress in chondrocytes by activating sirt1 and delays the progression of OA. METHODS In vitro, we first investigated the effect of DAPA on chondrocytes viability with IL-1β or not for 24 or 48 h. Then, chondrocytes were treated with 10 ng/ml IL-1β and 10 μM dapagliflozin with10 μM thapsigargin, 5 μM SRT1460 or not. Chondrocytes apoptosis in each group were detected by Tunel staining and flow cytometric. Immunofluorescence staining was applied to quantify the expression levels of cleaved caspase-3, Sirt1 and CHOP in chondrocytes. Inhibition of ER stress in chondrocytes associated with sirt1 activation were verified by PCR and western blotting. In addition, the effects of DAPA on cartilage were validated by a series of experiments in OA rat model, such as micro-CT, histological and immunohistochemical assay. RESULTS The data demonstrated that DAPA alleviates IL-1β induced ER stress related chondrocytes apoptosis, and PCR and western blotting data confirmed that DAPA inhibits the PERK-eIF2α-CHOP pathway by activating Sirt1. Besides, immunohistochemical results showed that DAPA enhanced the expression of Sirt1 and Collagen II in OA rats, and inhibited the expression of CHOP and cleaved caspase-3. Meanwhile, histological staining and micro-CT photography also confirmed that DAPA alleviated inflammation and cartilage degeneration in OA rat. CONCLUSIONS The study demonstrated the relationship of ER stress and inflammation in the progression of OA, and verified that DAPA could inhibit PERK-eIF2α-CHOP axis of the ER stress response by activating Sirt1 in IL-1β treated rat chondrocytes and potentially prevent the OA development.
Collapse
Affiliation(s)
- Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Shuang Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Ziheng Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Yanjie Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| |
Collapse
|
12
|
Zhang K, Xu T, Xie H, Li J, Fu W. Donor-Matched Peripheral Blood-Derived Mesenchymal Stem Cells Combined With Platelet-Rich Plasma Synergistically Ameliorate Surgery-Induced Osteoarthritis in Rabbits: An In Vitro and In Vivo Study. Am J Sports Med 2023; 51:3008-3024. [PMID: 37528751 DOI: 10.1177/03635465231187042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common disease that causes joint pain and disability. Stem cell therapy is emerging as a promising treatment for OA. PURPOSE To evaluate the ability of peripheral blood-derived mesenchymal stem cells (PBMSCs) combined with donor-matched platelet-rich plasma (PRP) to treat OA in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS PBMSCs and donor-matched PRP were isolated and prepared from the same rabbit. PBMSCs were treated with serum-free medium, fetal bovine serum, and PRP; a series of PBMSC behaviors, including proliferation, migration, and adhesion, were compared among groups. The ability of PBMSCs or PRP alone and PBMSCs+PRP to protect chondrocytes against proinflammatory cytokine (interleukin 1β [IL-1β]) treatment was compared by analyzing reactive oxygen species (ROS)-scavenging ability and apoptosis. Real-time quantitative polymerase chain reaction and immunofluorescence were used to investigate the expression of extracellular matrix (ECM) metabolism genes and proteins, and Western blotting was used to explore the potential mechanism of the corresponding signaling pathway. In vivo, the effect of PBMSCs+PRP on cartilage and inflammation of the synovium was observed in a surgery-induced OA rabbit model via gross observation, histological and immunohistochemical staining, and enzyme-linked immunosorbent assay. RESULTS Proliferation, migration, and adhesion ability were enhanced in PBMSCs treated with PRP. Moreover, compared with either PBMSCs or PRP alone, PBMSCs+PRP enhanced ROS-scavenging ability and inhibited apoptosis in IL-1β-treated chondrocytes. PBMSCs+PRP also reversed the IL-1β-induced degradation of collagen type 2 and aggrecan and increased expression of matrix metalloproteinase 13, and this effect was related to increased expression of ECM synthesis and decreased expression of degradation and inflammatory genes and proteins. Mechanistically, PBMSCs+PRP reduced the phosphorylation of inhibitor of nuclear factor-κBα (IκBα), which further inhibited the phosphorylation of downstream nuclear factor-κB (NF-κB) in the NF-κB signaling pathway. In vivo, compared with PBMSCs or PRP alone, intra-articular (IA) injection of PBMSCs+PRP enhanced cartilage regeneration and attenuated synovial inflammation in OA-induced rabbits. CONCLUSION These results demonstrate that PRP could enhance biological activities, including viability, migration, and adhesion, in PBMSCs. PBMSCs+PRP could rescue ECM degeneration by inhibiting inflammatory signaling in IL-1β-treated OA chondrocytes. In addition, IA injection of PBMSCs+PRP effectively attenuated OA progression in a surgery-induced OA rabbit model. CLINICAL RELEVANCE PBMSCs+PRP may provide a promising treatment for knee OA, and this study can advance the related basic research.
Collapse
Affiliation(s)
- Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiqi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Xu C, Mi Z, Dong Z, Chen X, Ji G, Kang H, Li K, Zhao B, Wang F. Platelet-Derived Exosomes Alleviate Knee Osteoarthritis by Attenuating Cartilage Degeneration and Subchondral Bone Loss. Am J Sports Med 2023; 51:2975-2985. [PMID: 37551685 DOI: 10.1177/03635465231188122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. However, current treatments for OA are limited to alleviating symptoms, with no therapies that prevent and regenerate cartilage deterioration. PURPOSE To assess the effects of platelet-derived exosomes (Plt-exos) on OA and then to explore the potential molecular mechanism. STUDY DESIGN Controlled laboratory study. METHODS Exosomes derived from human apheresis platelets were isolated and identified. The effects of Plt-exos in protecting chondrocytes under interleukin 1β stimulation were evaluated by analyzing the proliferation and migration in human primary chondrocytes. RNA sequencing was later performed in vitro for primary chondrocytes to reveal the underlying mechanisms of Plt-exo treatment. Anterior cruciate ligament transection was used to construct an OA mice model, and intra-articular injection of Plt-exos was given once a week for 6 weeks. Mice were sacrificed 4 weeks after the last injection. Histologic and immunohistochemistry staining and micro-computed tomography analysis were performed to assess alterations of articular cartilage and subchondral bone. RESULTS Plt-exos significantly promoted proliferation and migration of chondrocytes within a dose-dependent manner, as well as dramatically promoted cartilage regeneration and attenuated abnormal tibial subchondral bone remodeling, thus slowing the progression of OA. After being treated with Plt-exos, 1797 genes were differentially expressed in chondrocytes (923 upregulated and 874 downregulated genes). Functional enrichment results and hub genes were mainly involved in anti-inflammatory effects, mediating cell adhesion, stimulating cartilage repair, promoting anabolism, and inhibiting catabolism. CONCLUSION Our results demonstrated that Plt-exos promoted chondrocyte proliferation and migration in vitro, as well as attenuated cartilage degeneration, improved the microarchitecture of subchondral bone, and retarded OA progression in vivo. CLINICAL RELEVANCE Our study illustrated that the administered Plt-exos could alleviate knee OA by attenuating cartilage degeneration and subchondral bone loss, possibly serving as a novel promising treatment for OA in the future.
Collapse
Affiliation(s)
- Chenyue Xu
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Ziyue Mi
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Zhenyue Dong
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Xiaobo Chen
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Gang Ji
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Huijun Kang
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Kehan Li
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bo Zhao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Wang
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
14
|
Yang K, Ni M, Xu C, Wang L, Han L, Lv S, Wu W, Zheng D. Microfluidic one-step synthesis of a metal-organic framework for osteoarthritis therapeutic microRNAs delivery. Front Bioeng Biotechnol 2023; 11:1239364. [PMID: 37576986 PMCID: PMC10415039 DOI: 10.3389/fbioe.2023.1239364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
As a class of short non-coding ribonucleic acids (RNAs), microRNAs (miRNA) regulate gene expression in human cells and are expected to be nucleic acid drugs to regulate and treat a variety of biological processes and diseases. However, the issues with potential materials toxicity, quantity production, poor cellular uptake, and endosomal entrapment limit their further applications in clinical practice. Herein, ZIF-8, a metal-organic framework with noncytotoxic zinc (II) as the metal coordination center, was selected as miRNA delivery vector was used to prepare miR-200c-3p@ZIF-8 in one step by Y-shape microfluidic chip to achieve intracellular release with low toxicity, batch size, and efficient cellular uptake. The obtained miR-200c-3p@ZIF-8 was identified by TEM, particle size analysis, XRD, XPS, and zeta potential. Compared with the traditional hydrothermal method, the encapsulation efficiency of miR-200c-3p@ZIF-8 prepared by the microfluidic method is higher, and the particle size is more uniform and controllable. The experimental results in cellular level verified that the ZIF-8 vectors with low cytotoxicity and high miRNAs loading efficiency could significantly improve cellular uptake and endosomal escape of miRNAs, providing a robust and general strategy for nucleic acid drug delivery. As a model, the prepared miR-200c-3p@ZIF-8 is confirmed to be effective in osteoarthritis treatment.
Collapse
Affiliation(s)
- Kaiyuan Yang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Min Ni
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Chao Xu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Long Han
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
| | - Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
15
|
Kiełbowski K, Herian M, Bakinowska E, Banach B, Sroczyński T, Pawlik A. The Role of Genetics and Epigenetic Regulation in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2023; 24:11655. [PMID: 37511413 PMCID: PMC10381003 DOI: 10.3390/ijms241411655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is progressive disease characterised by cartilage degradation, subchondral bone remodelling and inflammation of the synovium. The disease is associated with obesity, mechanical load and age. However, multiple pro-inflammatory immune mediators regulate the expression of metalloproteinases, which take part in cartilage degradation. Furthermore, genetic factors also contribute to OA susceptibility. Recent studies have highlighted that epigenetic mechanisms may regulate the expression of OA-associated genes. This review aims to present the mechanisms of OA pathogenesis and summarise current evidence regarding the role of genetics and epigenetics in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.H.); (E.B.); (B.B.); (T.S.)
| |
Collapse
|
16
|
Wang J, Li X, Wang S, Cui J, Ren X, Su J. Bone-Targeted Exosomes: Strategies and Applications. Adv Healthc Mater 2023; 12:e2203361. [PMID: 36881547 DOI: 10.1002/adhm.202203361] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 03/08/2023]
Abstract
As the global population ages, bone-related diseases have increasingly become a major social problem threatening human health. Exosomes, as natural cell products, have been used to treat bone-related diseases due to their superior biocompatibility, biological barrier penetration, and therapeutic effects. Moreover, the modified exosomes exhibit strong bone-targeting capabilities that may improve efficacy and avoid systemic side effects, demonstrating promising translational potential. However, a review of bone-targeted exosomes is still lacking. Thus, the recently developed exosomes for bone-targeting applications in this review are focused. The biogenesis and bone-targeting regulatory functions of exosomes, the constructive strategies of modified exosomes to improve bone-targeting, and their therapeutic effects for bone-related diseases are introduced. By summarizing developments and challenges in bone-targeted exosomes, It is striven to shed light on the selection of exosome constructive strategies for different bone diseases and highlight their translational potential for future clinical orthopedics.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaoqun Li
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jin Cui
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Chen Y, Liao G, Ma T, Li L, Yang J, Shen B, Lu Y, Si H. YY1/miR-140-5p/Jagged1/Notch axis mediates cartilage progenitor/stem cells fate reprogramming in knee osteoarthritis. Int Immunopharmacol 2023; 121:110438. [PMID: 37295026 DOI: 10.1016/j.intimp.2023.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/11/2023]
Abstract
Osteoarthritis is a multifactorial disease characterized by cartilage degeneration, while cartilage progenitor/stem cells (CPCs) are responsible for endogenous cartilage repair. However, the relevant regulatory mechanisms of CPCs fate reprogramming in OA are rarely reported. Recently, we observed fate disorders in OA CPCs and found that microRNA-140-5p (miR-140-5p) protects CPCs from fate changes in OA. This study further mechanistically investigated the upstream regulator and downstream effectors of miR-140-5p in OA CPCs fate reprogramming. As a result, luciferase reporter assay and validation assays revealed that miR-140-5p targets Jagged1 and inhibits Notch signaling in human CPCs, and the loss-/gain-of-function experiments and rescue assays discovered that miR-140-5p improves OA CPCs fate, but this effect can be counteracted by Jagged1. Moreover, increased transcription factor Ying Yang 1 (YY1) was associated with OA progression, and YY1 could disturb CPCs fate via transcriptionally repressing miR-140-5p and enhancing the Jagged1/Notch signaling. Finally, the relevant changes and mechanisms of YY1, miR-140-5p, and Jagged1/Notch signaling in OA CPCs fate reprogramming were validated in rats. Conclusively, this study identified a novel YY1/miR-140-5p/Jagged1/Notch signaling axis that mediates OA CPCs fate reprogramming, wherein YY1 and Jagged1/Notch signaling exhibits an OA-stimulative role, and miR-140-5p plays an OA-protective effect, providing attractive targets for OA therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Ma
- Department of Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Li
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Yang
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Shen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haibo Si
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Xiang W, Wang C, Zhu Z, Wang D, Qiu Z, Wang W. Inhibition of SMAD3 effectively reduces ADAMTS-5 expression in the early stages of osteoarthritis. BMC Musculoskelet Disord 2023; 24:130. [PMID: 36803799 PMCID: PMC9936734 DOI: 10.1186/s12891-022-05949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/04/2022] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE As one of the most important protein-degrading enzymes, ADAMTS-5 plays an important role in the regulation of cartilage homeostasis, while miRNA-140 is specifically expressed in cartilage, which can inhibit the expression of ADAMTS-5 and delay the progression of OA (osteoarthritis). SMAD3 is a key protein in the TGF-β signaling pathway, inhibiting the expression of miRNA-140 at the transcriptional and post-transcriptional levels, and studies have confirmed the high expression of SMAD3 in knee cartilage degeneration, but whether SMAD3 can mediate the expression of miRNA-140 to regulate ADAMTS-5 remains unknown. METHODS Sprague-Dawley (SD) rat chondrocytes were extracted in vitro and treated with a SMAD3 inhibitor (SIS3) and miRNA-140 mimics after IL-1 induction. The expression of ADAMTS-5 was detected at the protein and gene levels at 24 h, 48 h, and 72 h after treatment. The OA model of SD rats was created using the traditional Hulth method in vivo, with SIS3 and lentivirus packaged miRNA-140 mimics injected intra-articularly at 2 weeks, 6 weeks and 12 weeks after surgery. The expression of miRNA-140 and ADAMTS-5 in the knee cartilage tissue was observed at the protein and gene levels. Concurrently, knee joint specimens were fixed, decalcified, and embedded in paraffin prior to immunohistochemical, Safranin O/Fast Green staining, and HE staining analyses for ADAMTS-5 and SMAD3. RESULTS In vitro, the expression of ADAMTS-5 protein and mRNA in the SIS3 group decreased to different degrees at each time point. Meanwhile, the expression of miRNA-140 in the SIS3 group was significantly increased, and the expression of ADAMTS-5 in the miRNA-140 mimics group was also significantly downregulated (P < 0.05). In vivo, it was found that ADAMTS-5 protein and gene were downregulated to varying degrees in the SIS3 and miRNA-140 mimic groups at three time points, with the most significant decrease at the early stage (2 weeks) (P < 0.05), and the expression of miRNA-140 in the SIS3 group was significantly upregulated, similar to the changes detected in vitro. Immunohistochemical results showed that the expression of ADAMTS-5 protein in the SIS3 and miRNA-140 groups was significantly downregulated compared to that in the blank group. The results of hematoxylin and eosin staining showed that in the early stage, there was no obvious change in cartilage structure in the SIS3 and miRNA-140 mock groups. The same was observed in the results of Safranin O/Fast Green staining; the number of chondrocytes was not significantly reduced, and the tide line was complete. CONCLUSION The results of in vitro and in vivo experiments preliminarily showed that the inhibition of SMAD3 significantly reduced the expression of ADAMTS-5 in early OA cartilage, and this regulation might be accomplished indirectly through miRNA-140.
Collapse
Affiliation(s)
- Wei Xiang
- Renmin Hospital of Zhijiang, Yichang, Hubei, China
| | - Chao Wang
- Department of Orthopedics Center, The First Affiliated Hospital, Shihezi University School of Medicine, 107 North Second Road, Shihezi, Xinjiang, 832000, People's Republic of China.,Shihezi University School of Medicine, Xinjiang, China
| | - Zhoujun Zhu
- Department of Joint Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Dui Wang
- Shihezi University School of Medicine, Xinjiang, China
| | - Zhenyu Qiu
- Shihezi University School of Medicine, Xinjiang, China
| | - Weishan Wang
- Department of Orthopedics Center, The First Affiliated Hospital, Shihezi University School of Medicine, 107 North Second Road, Shihezi, Xinjiang, 832000, People's Republic of China. .,Shihezi University School of Medicine, Xinjiang, China.
| |
Collapse
|
19
|
RNA-Seq Reveals the mRNAs, miRNAs, and lncRNAs Expression Profile of Knee Joint Synovial Tissue in Osteoarthritis Patients. J Clin Med 2023; 12:jcm12041449. [PMID: 36835984 PMCID: PMC9968173 DOI: 10.3390/jcm12041449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoarthritis (OA) is a chronic disease common in the elderly population and imposes significant health and economic burden. Total joint replacement is the only currently available treatment but does not prevent cartilage degeneration. The molecular mechanism of OA, especially the role of inflammation in disease progression, is incompletely understood. We collected knee joint synovial tissue samples of eight OA patients and two patients with popliteal cysts (controls), measured the expression levels of lncRNAs, miRNAs, and mRNAs in these tissues by RNA-seq, and identified differentially expressed genes (DEGs) and key pathways. In the OA group, 343 mRNAs, 270 lncRNAs, and 247 miRNAs were significantly upregulated, and 232 mRNAs, 109 lncRNAs, and 157 miRNAs were significantly downregulated. mRNAs potentially targeted by lncRNAs were predicted. Nineteen overlapped miRNAs were screened based on our sample data and GSE 143514 data. Pathway enrichment and functional annotation analyses showed that the inflammation-related transcripts CHST11, ALDH1A2, TREM1, IL-1β, IL-8, CCL5, LIF, miR-146a-5p, miR-335-5p, lncRNA GAS5, LINC02288, and LOC101928134 were differentially expressed. In this study, inflammation-related DEGs and non-coding RNAs were identified in synovial samples, suggesting that competing endogenous RNAs have a role in OA. TREM1, LIF, miR146-5a, and GAS5 were identified to be OA-related genes and potential regulatory pathways. This research helps elucidate the pathogenesis of OA and identify novel therapeutic targets for this disorder.
Collapse
|
20
|
Huang L, Jin M, Gu R, Xiao K, Lu M, Huo X, Sun M, Yang Z, Wang Z, Zhang W, Zhi L, Meng Z, Ma J, Ma J, Zhang R. miR-199a-5p Reduces Chondrocyte Hypertrophy and Attenuates Osteoarthritis Progression via the Indian Hedgehog Signal Pathway. J Clin Med 2023; 12:jcm12041313. [PMID: 36835852 PMCID: PMC9959662 DOI: 10.3390/jcm12041313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Osteoarthritis (OA), the most common type of arthritis, is an age-associated disease, characterized by the progressive degradation of articular cartilage, synovial inflammation, and degeneration of subchondral bone. Chondrocyte proliferation is regulated by the Indian hedgehog (IHH in humans, Ihh in animals) signaling molecule, which regulates hypertrophy and endochondral ossification in the development of the skeletal system. microRNAs (miRNAs, miRs) are a family of about 22-nucleotide endogenous non-coding RNAs, which negatively regulate gene expression. In this study, the expression level of IHH was upregulated in the damaged articular cartilage tissues among OA patients and OA cell cultures, while that of miR-199a-5p was the opposite. Further investigations demonstrated that miR-199a-5p could directly regulate IHH expression and reduce chondrocyte hypertrophy and matrix degradation via the IHH signal pathway in the primary human chondrocytes. The intra-articular injection of synthetic miR-199a-5p agomir attenuated OA symptoms in rats, including the alleviation of articular cartilage destruction, subchondral bone degradation, and synovial inflammation. The miR-199a-5p agomir could also inhibit the Ihh signaling pathway in vivo. This study might help in understanding the role of miR-199a-5p in the pathophysiology and molecular mechanisms of OA and indicate a potential novel therapeutic strategy for OA patients.
Collapse
Affiliation(s)
- Lei Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Meng Jin
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ruiying Gu
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Kunlin Xiao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Mengnan Lu
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Xinyu Huo
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Mengyao Sun
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhiyuan Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Weijie Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ziang Meng
- Department of Mathematics and Computing Science, Simon Fraser University, Vancouver, BC V6B 5K3, Canada
| | - Jie Ma
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (J.M.); (R.Z.)
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (J.M.); (R.Z.)
| |
Collapse
|
21
|
Migliorini F, Vecchio G, Giorgino R, Eschweiler J, Hildebrand F, Maffulli N. Micro RNA in meniscal ailments: current concepts. Br Med Bull 2023; 145:141-150. [PMID: 36721952 DOI: 10.1093/bmb/ldac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/01/2022] [Accepted: 12/13/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Micro RNAs (miRNAs) are short non-coding RNAs that act primarily in posttranscriptional gene silencing, and are attracting increasing interest in musculoskeletal conditions. SOURCE OF DATA Current scientific literature published in PubMed, Google Scholar, Embase and Web of Science databases. AREAS OF AGREEMENT Recently, the potential of miRNAs as biomarkers for diagnosis and treatment of meniscal injuries has been postulated. AREAS OF CONTROVERSY Evaluation of the role of miRNAs in patients with meniscal tears is still controversial. GROWING POINTS A systematic review was conducted to investigate the potential of miRNA in the diagnosis and management of meniscal damage. AREAS TIMELY FOR DEVELOPING RESEARCH Intra-articular injection of microRNA-210 in vivo may represent a potential innovative methodology for the management of meniscal injuries. Characterization of the miRNAs expression in the synovial fluid could lead to the development of better early diagnosis and management strategies for meniscal tears.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Gianluca Vecchio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi 84081, Italy
| | - Riccardo Giorgino
- Department of Orthopedics, IRCCS Orthopaedic Institute Galeazzi, Milano 20161, Italy
| | - Jörg Eschweiler
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Nicola Maffulli
- Department of Orthopedics, IRCCS Orthopaedic Institute Galeazzi, Milano 20161, Italy.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
| |
Collapse
|
22
|
Núñez-Carro C, Blanco-Blanco M, Villagrán-Andrade KM, Blanco FJ, de Andrés MC. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:156. [PMID: 37259307 PMCID: PMC9964205 DOI: 10.3390/ph16020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a heterogenous, complex disease affecting the integrity of diarthrodial joints that, despite its high prevalence worldwide, lacks effective treatment. In recent years it has been discovered that epigenetics may play an important role in OA. Our objective is to review the current knowledge of the three classical epigenetic mechanisms-DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) modifications, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-in relation to the pathogenesis of OA and focusing on articular cartilage. The search for updated literature was carried out in the PubMed database. Evidence shows that dysregulation of numerous essential cartilage molecules is caused by aberrant epigenetic regulatory mechanisms, and it contributes to the development and progression of OA. This offers the opportunity to consider new candidates as therapeutic targets with the potential to attenuate OA or to be used as novel biomarkers of the disease.
Collapse
Affiliation(s)
- Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Margarita Blanco-Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C. de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
23
|
Liu X, Xiao H, Peng X, Chai Y, Wang S, Wen G. Identification and comprehensive analysis of circRNA-miRNA-mRNA regulatory networks in osteoarthritis. Front Immunol 2023; 13:1050743. [PMID: 36700234 PMCID: PMC9869167 DOI: 10.3389/fimmu.2022.1050743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Osteoarthritis (OA) is a common orthopedic degenerative disease, leading to high disability in activities of daily living. There remains an urgent need to identify the underlying mechanisms and identify new therapeutic targets in OA diagnosis and treatment. Circular RNAs (circRNAs) play a role in the development of multiple diseases. Many studies have reported that circRNAs regulate microRNAs (miRNAs) through an endogenous competitive mechanism. However, it remains unclear if an interplay between circRNAs, miRNAs, and target genes plays a deeper regulatory role in OA. Four datasets were downloaded from the GEO database, and differentially expressed circRNAs (DECs), differentially expressed miRNAs (DEMs), and differentially expressed genes (DEGs) were identified. Functional annotation and pathway enrichment analysis of DEGs and DECs were carried out to determine the main associated mechanism in OA. A protein-protein network (PPI) was constructed to analyze the function of, and to screen out, hub DEGs in OA. Based on the artificial intelligence prediction of protein crystal structures of two hub DEGs, TOP2A and PLK1, digitoxin and oxytetracycline were found to have the strongest affinity, respectively, with molecular docking. Subsequently, overlapping DEMs and miRNAs targeted by DECs obtained target DEMs (DETMs). Intersection of DEGs and genes targeted by DEMs obtained target DEGs (DETGs). Thus, a circRNA-miRNA-mRNA regulatory network was constructed from 16 circRNAs, 32 miRNAs, and 97 mRNAs. Three hub DECs have the largest number of regulated miRNAs and were verified through in vitro experiments. In addition, the expression level of 16 DECs was validated by RT-PCR. In conclusion, we constructed a circRNA-miRNA-mRNA regulatory network in OA and three new hub DECs, hsa_circ_0027914, hsa_circ_0101125, and hsa_circ_0102564, were identified as novel biomarkers for OA.
Collapse
Affiliation(s)
- Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Xiao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaotong Peng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Gen Wen, ; Shuo Wang,
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Gen Wen, ; Shuo Wang,
| |
Collapse
|
24
|
Chen Y, Huang H, Zhong W, Li L, Lu Y, Si HB. miR-140-5p protects cartilage progenitor/stem cells from fate changes in knee osteoarthritis. Int Immunopharmacol 2023; 114:109576. [PMID: 36527878 DOI: 10.1016/j.intimp.2022.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022]
Abstract
Cartilage progenitor/stem cells (CPCs) are promising seed cells for cartilage regeneration, but their fate changes and regulatory mechanisms in osteoarthritis (OA) pathogenesis remain unclear. This study aimed to investigate the role and potential mechanism of the microRNA-140-5p (miR-140-5p), whose protective role in knee OA has been confirmed by our previous studies, in OA CPCs fate reprogramming. Firstly, the normal and OA CPCs were isolated, and the fate indicators, miR-140-5p, Jagged1, and Notch signals were detected and analyzed. Then, the effect of miR-140-5p and the Notch pathway on CPCs fate reprogramming and miR-140-5p on Jagged1/Notch signaling was investigated in IL-1β-induced chondrocytes in vitro. Finally, the effect of miR-140-5p on OA CPCs fate reprogramming and the potential mechanisms were validated in OA rats. As a result, CPCs percentage was increased in the mild OA cartilage-derived total chondrocytes while decreased in the advanced OA group. Significant fate changes (including reduced cell viability, migration, chondrogenesis, and increased apoptosis), increased Jagged1 and Notch signals, and reduced miR-140-5p were observed in OA CPCs and associated with OA progression. IL-1β induced OA-like changes in CPCs fate, which could be exacerbated by miR-140-5p inhibitor while alleviated by DAPT (a specific Notch inhibitor) and miR-140-5p mimic. Finally, the in vitro phenomenal and mechanistic findings were validated in OA rats. Overall, miR-140-5p protects CPCs from fate changes via inhibiting Jagged1/Notch signaling in knee OA, providing attractive targets for OA therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hua Huang
- Department of Orthopedics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Wen Zhong
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Li
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanrong Lu
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hai-Bo Si
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
25
|
Bell-Hensley A, Zheng H, McAlinden A. Modulation of MicroRNA Expression During In Vitro Chondrogenesis. Methods Mol Biol 2023; 2598:197-215. [PMID: 36355294 PMCID: PMC10069062 DOI: 10.1007/978-1-0716-2839-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since their discovery in 1993, microRNAs (miRNAs) are now recognized as important epigenetic regulators of many mammalian cellular processes including proliferation, apoptosis, metabolism, and differentiation. These small non-coding RNAs function by interacting with specific regions in the 3'-untranslated region of mRNAs, thereby resulting in mRNA degradation or suppression of translation. Since miRNAs have the ability to target many mRNAs within a given cell type, a number of cellular pathways and networks may be regulated as a result. To study the function of miRNAs, a number of methods can be used to modulate their activity in cells such as synthetic mimics or antagomirs for short-term assays or viral-based approaches for longer-term experiments such as cell differentiation assays. In this chapter, we provide our methodology to constitutively overexpress a desired miRNA during in vitro chondrogenesis of human cartilage progenitor cells (CPCs). Specifically, we describe how we obtain CPCs from human articular cartilage specimens, how we generate and titrate lentivirus engineered to overexpress a precursor miRNA, how we transduce CPCs with lentivirus and differentiate them toward the chondrocyte lineage, and how we extract RNA and measure expression levels of the miRNA of interest during in vitro chondrogenesis. We also provide some data from our laboratory demonstrating that we can achieve and maintain miRNA overexpression for up to 14 days in cartilage pellet cultures. We predict that these lentiviral-based approaches will also be useful to study how miRNA modulation of progenitor cells affects cell differentiation and extracellular matrix production within three-dimensional biomaterial scaffolds.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA.
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Shriners Hospitals for Children - St Louis, St Louis, MO, USA.
| |
Collapse
|
26
|
Gu J, Rao W, Huo S, Fan T, Qiu M, Zhu H, Chen D, Sheng X. MicroRNAs and long non-coding RNAs in cartilage homeostasis and osteoarthritis. Front Cell Dev Biol 2022; 10:1092776. [PMID: 36582467 PMCID: PMC9793335 DOI: 10.3389/fcell.2022.1092776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
During the last decade, osteoarthritis (OA) has become one of the most prevalent musculoskeletal diseases worldwide. OA is characterized by progressive loss of articular cartilage, abnormal remodeling of subchondral bone, hyperplasia of synovial cells, and growth of osteophytes, which lead to chronic pain and disability. The pathological mechanisms underlying OA initiation and progression are still poorly understood. Non-coding RNAs (ncRNAs) constitute a large portion of the transcriptome that do not encode proteins but function in numerous biological processes. Cumulating evidence has revealed a strong association between the changes in expression levels of ncRNA and the disease progression of OA. Moreover, loss- and gain-of-function studies utilizing transgenic animal models have demonstrated that ncRNAs exert vital functions in regulating cartilage homeostasis, degeneration, and regeneration, and changes in ncRNA expression can promote or decelerate the progression of OA through distinct molecular mechanisms. Recent studies highlighted the potential of ncRNAs to serve as diagnostic biomarkers, prognostic indicators, and therapeutic targets for OA. MiRNAs and lncRNAs are two major classes of ncRNAs that have been the most widely studied in cartilage tissues. In this review, we focused on miRNAs and lncRNAs and provided a comprehensive understanding of their functional roles as well as molecular mechanisms in cartilage homeostasis and OA pathogenesis.
Collapse
Affiliation(s)
- Jingliang Gu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tianyou Fan
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minlei Qiu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haixia Zhu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deta Chen
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoping Sheng
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Shao M, Lv D, Zhou K, Sun H, Wang Z. Senkyunolide A inhibits the progression of osteoarthritis by inhibiting the NLRP3 signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:535-542. [PMID: 35225151 PMCID: PMC8890578 DOI: 10.1080/13880209.2022.2042327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Osteoarthritis (OA) is a degenerative disease. Senkyunolide A (SenA) is an important phthalide from Ligusticum chuanxiong Hort (Umbelliferae) with anti-spasmodic and neuroprotective effects. OBJECTIVE We explored the effect of SenA on IL-1β-stimulated chondrocytes and OA mice. MATERIALS AND METHODS Chondrocytes were stimulated by IL-1β (10 ng/mL) to establish an OA model in vitro. Cells were treated with SenA (20, 40, 80 and 160 μg/mL) for 48 h. The in vivo OA model was established by cutting off the medial meniscus tibial ligament (MMTL) at right knee incision of male C57BL/6 mice. One week after surgery, mice were injected with SenA (intraperitoneally one week) and divided into four groups (n = 6 per group): Sham, OA, OA + SenA 20 mg/kg and OA + SenA 40 mg/kg. The OA progression was examined by haematoxylin and eosin (H&E) staining. RESULTS SenA treatment increased cell viability (33%), proliferation (71%), inhibited apoptosis (21%), decreased levels of catabolic marker proteins (MMP13, 23%; ADAMTS4, 31%; ADAMTS5, 19%), increased levels of anabolic marker proteins (IGF-1, 57%; aggrecan, 75%; Col2a1, 48%), reduced levels of inflammation cytokines (TNF-α, 31%; IL-6, 19%; IL-18, 20%) and decreased levels of NLRP3 (21%), ASC (20%) and caspase-1 (29%) of chondrocytes. However, NLRP3 agonist nigericin increased levels of MMP13 (55%), ADAMTS4 (70%), ADAMTS5 (53%), decreased levels of IGF-1 (36%), aggrecan (26%), Col2a1 (25%), inhibited proliferation (61%) and promoted apoptosis (76%). DISCUSSION AND CONCLUSIONS SenA alleviates OA progression by inhibiting NLRP3 signalling pathways. These findings provide an experimental basis for the clinical application of drugs in the treatment of OA.
Collapse
Affiliation(s)
- Minglei Shao
- Department of Orthopedics, Dongying People’s Hospital, Dongying, PR China
| | - Dongwei Lv
- Department of Joint Surgery, Dongying People’s Hospital, Dongying, PR China
| | - Kai Zhou
- Department of Orthopedics, Dongying District People’s Hospital, Dongying, PR China
| | - Haijun Sun
- Department of Orthopedics, Dongying People’s Hospital, Dongying, PR China
| | - Zhitao Wang
- Department of Orthopedics, Dongying People’s Hospital, Dongying, PR China
- CONTACT Zhitao Wang Department of Orthopedics, Dongying People’s Hospital, No. 317, Dongcheng South 1st Road, Dongying, Shandong257091, PR China
| |
Collapse
|
28
|
miR-140-5p and miR-140-3p: Key Actors in Aging-Related Diseases? Int J Mol Sci 2022; 23:ijms231911439. [PMID: 36232738 PMCID: PMC9570089 DOI: 10.3390/ijms231911439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
microRNAs (miRNAs) are small single strand non-coding RNAs and powerful gene expression regulators. They mainly bind to the 3′UTR sequence of targeted mRNA, leading to their degradation or translation inhibition. miR-140 gene encodes the pre-miR-140 that generates the two mature miRNAs miR-140-5p and miR-140-3p. miR-140-5p/-3p have been associated with the development and progression of cancers, but also non-neoplastic diseases. In aging-related diseases, miR-140-5p and miR-140-3p expressions are modulated. The seric levels of these two miRNAs are used as circulating biomarkers and may represent predictive tools. They are also considered key actors in the pathophysiology of aging-related diseases. miR-140-5p/-3p repress targets regulating cell proliferation, apoptosis, senescence, and inflammation. This work focuses on the roles of miR-140-3p and miR-140-5p in aging-related diseases, details their regulation (i.e., by long non-coding RNA), and reviews the molecular targets of theses miRNAs involved in aging pathophysiology.
Collapse
|
29
|
miR-3960 from Mesenchymal Stem Cell-Derived Extracellular Vesicles Inactivates SDC1/Wnt/β-Catenin Axis to Relieve Chondrocyte Injury in Osteoarthritis by Targeting PHLDA2. Stem Cells Int 2022; 2022:9455152. [PMID: 36061148 PMCID: PMC9438433 DOI: 10.1155/2022/9455152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
Osteoarthritis (OA) is a serious disease of the articular cartilage characterized by excessive inflammation. Lately, mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) have been proposed as a novel strategy for the treatment of OA. We aimed to investigate the effects of EV-encapsulated miR-3960 derived from MSCs on chondrocyte injury in OA. The cartilage tissues from OA patients were collected to experimentally determine expression patterns of miR-3960, PHLDA2, SDC1, and β-catenin. Next, luciferase assay was implemented to testify the binding affinity among miR-3960 and PHLDA2. EVs were isolated from MSCs and cocultured with IL-1β-induced OA chondrocytes. Afterwards, cellular biological behaviors and levels of extracellular matrix- (ECM-) related protein anabolic markers (collagen II and aggrecan), catabolic markers (MMP13 and ADAMTS5), and inflammatory factors (IL-6 and TNF-α) in chondrocytes were assayed upon miR-3960 and/or PHLDA2 gain- or loss-of-function. Finally, the effects of miR-3960 contained in MSC-derived EVs in OA mouse models were also explored. MSCs-EVs could reduce IL-1β-induced inflammatory response and extracellular matrix (ECM) degradation in chondrocytes. miR-3960 expression was downregulated in cartilage tissues of OA patients but enriched in MSC-derived EVs. miR-3960 could target and inhibit PHLDA2, which was positively correlated with SDC1 and Wnt/β-catenin pathway activation. miR-3960 shuttled by MSC-derived EVs protected against apoptosis and ECM degradation in chondrocytes. In vivo experiment also confirmed that miR-3960 alleviated chondrocyte injury in OA. Collectively, MSC-derived EV-loaded miR-3960 downregulated PHLDA2 to inhibit chondrocyte injury via SDC1/Wnt/β-catenin.
Collapse
|
30
|
He X, Deng L. miR-204-5p inhibits inflammation of synovial fibroblasts in osteoarthritis by suppressing FOXC1. J Orthop Sci 2022; 27:921-928. [PMID: 34045139 DOI: 10.1016/j.jos.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND The paper is aimed at uncovering the mechanism of miR-204-5p in regulating inflammatory responses of human osteoarthritic synovial fibroblasts (SFs). METHODS IL-1β-induced osteoarthritic SFs were established as an osteoarthritis (OA) cell model. The osteoarthritic SFs were accordingly transfected with mimics-miR-204-5p, inhibitors-miR-204-5 or FOXC1 siRNA. MTT tested the vitality of osteoarthritic SFs by analyzing the cell optical density. The expressions of miR-204-5p, FOXC1, TNF-α, IL-6, PGE2, MMP-1, MMP-13 and COX-2 in osteoarthritic SFs were measured by qRT-PCR, Western blotting and/or ELISA. The binding of miR-204-5p to FOXC1 was verified through luciferase reporter assay. The regulatory effect of miR-204-5p on FOXC1 was also tested in normal SFs. RESULTS miR-204-5p was under-expressed and FOXC1 was over-expressed in osteoarthritic SFs. The expressions of FOXC1, TNF-α, IL-6, PGE2, MMP-1, MMP-13 and COX-2 were up-regulated in IL-1β-treated SFs. Up-regulation of miR-204-5p or down-regulation of FOXC1 suppressed the inflammatory responses of osteoarthritic SFs. miR-204-5p negatively regulated FOXC1 by being a sponge in osteoarthritic SFs as well as in normal SFs. CONCLUSION miR-204-5p down-regulates FOXC1 to ameliorate inflammation of SFs in OA.
Collapse
Affiliation(s)
- Xiao He
- The Joint Surgical Center, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan, 423000, PR China.
| | - Lili Deng
- Pediatric Intensive Care Unit, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan, 423000, PR China
| |
Collapse
|
31
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
32
|
Ball HC, Alejo AL, Samson TK, Alejo AM, Safadi FF. Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis. Life (Basel) 2022; 12:582. [PMID: 35455072 PMCID: PMC9030470 DOI: 10.3390/life12040582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical and proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these epigenetic modifications with known functions in the onset and progression of the disease. We also review current therapeutics targeting aberrant epigenetic regulation as potential options for preventive or therapeutic treatment.
Collapse
Affiliation(s)
- Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Trinity K. Samson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- GPN Therapeutics, Inc., REDI Zone, Rootstown, OH 44272, USA
| | - Amanda M. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Department of Orthopaedic Surgery, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
33
|
Li Z, Shi H, Li Y, Wang W, Li Z, Chen B, Nie D. Isorhynchophylline ameliorates the progression of osteoarthritis by inhibiting the NF-κB pathway. Eur J Pharmacol 2022; 924:174971. [DOI: 10.1016/j.ejphar.2022.174971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
34
|
Chaudhry N, Muhammad H, Seidl C, Downes D, Young DA, Hao Y, Zhu L, Vincent TL. Highly efficient CRISPR-Cas9-mediated editing identifies novel mechanosensitive microRNA-140 targets in primary human articular chondrocytes. Osteoarthritis Cartilage 2022; 30:596-604. [PMID: 35074547 PMCID: PMC8987936 DOI: 10.1016/j.joca.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE MicroRNA 140 (miR-140) is a chondrocyte-specific endogenous gene regulator implicated in osteoarthritis (OA). As mechanical injury is a primary aetiological factor in OA, we investigated miR-140-dependent mechanosensitive gene regulation using a novel CRISPR-Cas9 methodology in primary human chondrocytes. METHOD Primary (passage 1/2) human OA chondrocytes were isolated from arthroplasty samples (six donors) and transfected with ribonuclear protein complexes or plasmids using single guide RNAs (sgRNAs) targeting miR-140, in combination with Cas9 endonuclease. Combinations of sgRNAs and single/double transfections were tested. Gene editing was measured by T7 endonuclease 1 (T7E1) assay. miRNA levels were confirmed by qPCR in chondrocytes and in wild type murine femoral head cartilage after acute injury. Predicted close match off-targets were examined. Mechanosensitive miR-140 target validation was assessed in 42 injury-associated genes using TaqMan Microfluidic cards in targeted and donor-matched control chondrocytes. Identified targets were examined in RNAseq data from costal chondrocytes from miR-140-/- mice. RESULTS High efficiency gene editing of miR-140 (90-98%) was obtained when two sgRNAs were combined with double RNP-mediated CRISPR-Cas9 transfection. miR-140 levels fell rapidly after femoral cartilage injury. Of the top eight miR-140 gene targets identified (P < 0.01), we validated three previously identified ones (septin 2, bone morphogenetic protein 2 and fibroblast growth factor 2). Novel targets included Agrin, a newly recognised pro-regenerative cartilage agent, and proteins associated with retinoic acid signalling and the primary cilium. CONCLUSION We describe a highly efficient CRISPR-Cas9-mediated strategy for gene editing in primary human chondrocytes and identify several novel mechanosensitive miR-140 targets of disease relevance.
Collapse
Affiliation(s)
- N Chaudhry
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom
| | - H Muhammad
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom
| | - C Seidl
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom
| | - D Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, United Kingdom
| | - D A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, United Kingdom
| | - Y Hao
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, United Kingdom
| | - L Zhu
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom
| | - T L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
35
|
Wang B, Zhong JL, Jiang N, Shang J, Wu B, Chen YF, Lu HD. Exploring the Mystery of Osteoarthritis using Bioinformatics Analysis of Cartilage Tissue. Comb Chem High Throughput Screen 2022; 25:53-63. [PMID: 33292128 DOI: 10.2174/1386207323666201207100905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a kind of chronic disease relating to joints, which seriously affectsthe daily life activities of the elderly and can also lead to disability. However, the pathogenesis of OA is still unclear, which leads to limited treatment and the therapeutic effect far from people's expectations. This study aims to filter out key genes in the pathogenesis of OA and explore their potential role in the occurrence and development of OA. METHODS The dataset of GSE117999 was obtained and analyzed in order to identify the differentially expressed genes (DEGs), hub genes and key genes. We also identified potential miRNAs which may play a major role in the pathogenesis of OA, and verified their difference in OA by real-time quantitative PCR (RT-qPCR). DGldb was found to serve as an indicator to identify drugs with potential therapeutic effects on key genes and Receiver Operating Characteristic (ROC) analysis was used for identifying underlying biomarkers of OA. RESULTS We identified ten key genes, including MDM2, RB1, EGFR, ESR1, UBE2E3, WWP1, BCL2, OAS2, TYMS and MSH2. Then, we identified hsa-mir-3613-3p, hsa-mir-548e-5p and hsamir- 5692a to be potentially related to key genes. In addition, RT-qPCR confirmed the differential expression of identified genes in mouse cartilage with or without OA. We then identified Etoposide and Everolimus, which were potentially specific to the most key genes. Finally, we speculated that ESR1 might be a potential biomarker of OA. CONCLUSION In this study, potential key genes related to OA and their biological functions were identified, and their potential application value in the diagnosis and treatment of OA has been demonstrated, which will help us to improve the therapeutic effect of OA.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Jun-Long Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Yu-Feng Chen
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| |
Collapse
|
36
|
Liu Y, Zeng Y, Si HB, Tang L, Xie HQ, Shen B. Exosomes Derived From Human Urine-Derived Stem Cells Overexpressing miR-140-5p Alleviate Knee Osteoarthritis Through Downregulation of VEGFA in a Rat Model. Am J Sports Med 2022; 50:1088-1105. [PMID: 35179989 DOI: 10.1177/03635465221073991] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is one of the most common chronic musculoskeletal disorders worldwide, for which exosomes derived from stem cells may provide an effective treatment. PURPOSE To assess the effect of exosomes derived from human urine-derived stem cells (hUSCs) overexpressing miR-140-5p (miR means microRNA) on KOA in an in vitro interleukin 1β (IL-1β)-induced osteoarthritis (OA) model and an in vivo rat KOA model. STUDY DESIGN Controlled laboratory study. METHODS Exosomes derived from hUSCs (hUSC-Exos) were isolated and validated. The hUSCs were transfected with miR-140s using lentivirus, and exosomes secreted from such cells (hUSC-140-Exos) were collected. The roles of hUSC-Exos and hUSC-140-Exos in protecting chondrocytes against IL-1β treatment were compared by analyzing the proliferation, migration, apoptosis, and secretion of extracellular matrix (ECM) in chondrocytes. After vascular endothelial growth factor A (VEGFA) was identified as a target of miR-140, the mechanism by which VEGFA can mediate the beneficial effect of miR-140 on OA was investigated using small interfering RNA transfection or chemical drugs. The expression of VEGFA in cartilage and synovial fluid from patients with KOA was measured and compared with that of healthy controls. Surgery for anterior cruciate ligament transection and destabilization of the medial meniscus were performed on the knee joints of Sprague-Dawley rats to establish an animal model of OA, and intra-articular (IA) injection of hUSC-Exos or hUSC-140-Exos was conducted at 4 to 8 weeks after the surgery. Cartilage regeneration and subchondral bone remodeling were evaluated through histological staining and micro-computed tomography analysis. RESULTS Proliferation and migration ability were enhanced and apoptosis was inhibited in chondrocytes treated with IL-1β via hUSC-Exos, with the side effect of decreased ECM secretion. hUSC-140-Exos not only retained the advantages of hUSC-Exos but also increased the secretion of ECM by targeting VEGFA, including collagen II and aggrecan. Increased expression of VEGFA during the progression of KOA was also confirmed in cartilage and synovial fluid samples obtained from patients with OA. In the rat OA model, IA injection of hUSC-140-Exos enhanced cartilage regeneration and subchondral bone remodeling. CONCLUSION Our results demonstrated the superiority of hUSC-Exos overexpressing miR-140-5p for treating OA compared with the hUSC-Exos. The effect of hUSC-140-Exos for suppressing the progression of KOA is in part mediated by VEGFA. CLINICAL RELEVANCE Exosomes derived from stem cells may provide a promising treatment for KOA, and our study can advance the related basic research.
Collapse
Affiliation(s)
- Yuan Liu
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Stem Cell and Tissue Engineering, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zeng
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Bo Si
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Tang
- Laboratory of Stem Cell and Tissue Engineering, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Stem Cell and Tissue Engineering, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shen
- Orthopedics Research Institute, Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Yang D, Zhang Y. Effect of Berberine on Animal Arthritis-One Effective Pharmacological Agent Against the Mia Induced Osteoarthritis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.53.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Deng J, Zong Z, Su Z, Chen H, Huang J, Niu Y, Zhong H, Wei B. Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect. Front Pharmacol 2021; 12:772678. [PMID: 34887766 PMCID: PMC8649959 DOI: 10.3389/fphar.2021.772678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.
Collapse
Affiliation(s)
- Jinxia Deng
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhixian Zong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Su
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haicong Chen
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- College of Dentistry, Yonsei University, Seoul, South Korea.,Department of Stomatology, Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Huan Zhong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
39
|
He K, Huang X, Shan R, Yang X, Song R, Xie F, Huang G. Intra-articular Injection of Lornoxicam and MicroRNA-140 Co-loaded Cationic Liposomes Enhanced the Therapeutic Treatment of Experimental Osteoarthritis. AAPS PharmSciTech 2021; 23:9. [PMID: 34859319 DOI: 10.1208/s12249-021-02149-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis is a chronic joint disease characterized by chronic inflammation, progressive destruction of articular cartilage, and subchondral bone sclerosis. When compared to individual treatment, the combined administration of genes and small-molecule drugs for osteoarthritis may not only provide superior inflammation control and pain relief, but may also repair cartilage damage. Here, cationic liposomes (CL) were used to deliver small hydrophobic drugs and microRNA into chondrocytes to treat osteoarthritis. Lornoxicam cationic liposomes (Lnxc-CL) were prepared by film dispersion, and loaded with microRNA-140 (miR-140) by electrostatic interaction to obtain cationic liposomes co-loaded with lornoxicam and miR-140 (Lnxc-CL/miR-140). The prepared Lnxc-CL/miR-140 had a particle size of 286.6 ± 7.3 nm, polydispersity index (PDI) of 0.261 ± 0.029 and zeta potential of 26.5 ± 0.5 mV and protected miR-140 from RNase degradation for 24 h. Lnxc-CL/miR-140 was evaluated for its ability to regulate gene expression in chondrocytes in vitro and to provide in vivo therapeutic effects for knee osteoarthritis in rats. The results of in vitro uptake experiments and polymerase chain reaction (PCR) analysis showed that Lnxc-CL/miR-140 efficiently delivered miR-140 into chondrocytes and up-regulated the expression of miR-140 and COL2A1 mRNA. Pharmacodynamics studies demonstrated that Lnxc-CL/miR-140 effectively treated osteoarthritis by eliminating joint inflammation and repairing damaged cartilage cells, with superior therapeutic effects compared to Lnxc or miR-140 alone. Overall, the findings of this study support the co-delivery of Lnxc and miR-140 with cationic liposomes as a potential new therapeutic strategy for the treatment of osteoarthritis.
Collapse
|
40
|
Zhang H, Zheng W, Li D, Zheng J. miR-146a-5p Promotes Chondrocyte Apoptosis and Inhibits Autophagy of Osteoarthritis by Targeting NUMB. Cartilage 2021; 13:1467S-1477S. [PMID: 34315248 PMCID: PMC8804840 DOI: 10.1177/19476035211023550] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. METHODS QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. RESULTS miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. CONCLUSION Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Orthopedics, School of
Clinical Medicine, Henan Provincial People’s Hospital, People’s Hospital of
Zhengzhou University, Henan University, Zhengzhou, Henan Province, China
| | - Wendi Zheng
- Department of Orthopedics, School of
Clinical Medicine, Henan Provincial People’s Hospital, People’s Hospital of
Zhengzhou University, Henan University, Zhengzhou, Henan Province, China
| | - Du Li
- Department of Orthopedics, School of
Clinical Medicine, Henan Provincial People’s Hospital, People’s Hospital of
Zhengzhou University, Henan University, Zhengzhou, Henan Province, China
| | - Jia Zheng
- Department of Orthopedics, School of
Clinical Medicine, Henan Provincial People’s Hospital, People’s Hospital of
Zhengzhou University, Henan University, Zhengzhou, Henan Province, China
| |
Collapse
|
41
|
Castanheira CIGD, Anderson JR, Fang Y, Milner PI, Goljanek-Whysall K, House L, Clegg PD, Peffers MJ. Mouse microRNA signatures in joint ageing and post-traumatic osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100186. [PMID: 34977596 PMCID: PMC8683752 DOI: 10.1016/j.ocarto.2021.100186] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This study investigated mice serum and joint microRNA expression profiles in ageing and osteoarthritis to elucidate the role of microRNAs in the development and progression of disease, and provide biomarkers for ageing and osteoarthritis. DESIGN Whole joints and serum samples were collected from C57BL6/J male mice and subjected to small RNA sequencing. Groups used included; surgically-induced post-traumatic osteoarthritis, (DMM; 24 months-old); sham surgery (24 months-old); old mice (18 months-old); and young mice (8 months-old). Differentially expressed microRNAs between the four groups were identified and validated using real-time quantitative PCR. MicroRNA differential expression data was used for target prediction and pathway analysis. RESULTS In joint tissues, miR-140-5p, miR-205-5p, miR-682, miR-208b-3p, miR-499-5p, miR-455-3p and miR-6238 were differentially expressed between young and old groups; miR-146a-5p, miR-3474, miR-615-3p and miR-151-5p were differentially expressed between DMM and Sham groups; and miR-652-3p, miR-23b-3p, miR-708-5p, miR-5099, miR-23a-3p, miR-214-3p, miR-6238 and miR-148-3p between the old and DMM groups. The number of differentially expressed microRNAs in serum was higher, some in common with joint tissues including miR-140-5p and miR-455-3p between young and old groups; and miR-23b-3p, miR-5099 and miR-6238 between old and DMM groups.We confirmed miR-140-5p, miR-499-5p and miR-455-3p expression to be decreased in old mouse joints compared to young, suggesting their potential use as biomarkers of joint ageing in mice. CONCLUSIONS MiR-140-5p, miR-499-5p and miR-455-3p could be used as joint ageing biomarkers in mice. Further research into these specific molecules in human tissues is now warranted to check their potential suitability as human biomarkers of ageing.
Collapse
Affiliation(s)
- Catarina I G D Castanheira
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - James R Anderson
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Peter I Milner
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Louise House
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Peter D Clegg
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Mandy J Peffers
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| |
Collapse
|
42
|
Jones TL, Esa MS, Li KHC, Krishnan SRG, Elgallab GM, Pearce MS, Young DA, Birrell FN. Osteoporosis, fracture, osteoarthritis & sarcopenia: A systematic review of circulating microRNA association. Bone 2021; 152:116068. [PMID: 34166859 DOI: 10.1016/j.bone.2021.116068] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Circulating microRNAs (c-miRs) show promise as biomarkers. This systematic review explores their potential association with age-related fracture/osteoporosis (OP), osteoarthritis (OA) and sarcopenia (SP), as well as cross-disease association. Most overlap occurred between OA and OP, suggesting potentially shared microRNA activity. There was little agreement in results across studies. Few reported receiver operating characteristic analysis (ROC) and many identified significant dysregulation in disease, but direction of effect was commonly conflicting. c-miRs with most evidence for consistency in dysregulation included miR-146a, miR-155 and miR-98 for OA (upregulated). Area under the curve (AUC) for miR-146a biomarker performance was AUC 0.92, p = 0.028. miR-125b (AUC 0.76-0.89), miR-100, miR-148a and miR-24 were consistently upregulated in OP. Insufficient evidence exists for c-miRs in SP. Study quality was typically rated intermediate/high risk of bias. Wide study heterogeneity meant meta-analysis was not possible. We provide detailed critique and recommendations for future approaches in c-miR analyses based on this review.
Collapse
Affiliation(s)
- Tania L Jones
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - Mohammed S Esa
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - K H Christien Li
- Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - S R Gokul Krishnan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | - George M Elgallab
- Faculty of Health Sciences and Wellbeing, Sciences Complex, City Campus, Chester Road, University of Sunderland, Sunderland SR1 3SD, United Kingdom
| | - Mark S Pearce
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - David A Young
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | - Fraser N Birrell
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom; Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
43
|
Wang X, Wang D, Xia P, Cheng K, Wang Q, Wang X, Lin Q, Song J, Chen A, Li X. Ultrasound-targeted simvastatin-loaded microbubble destruction promotes OA cartilage repair by modulating the cholesterol efflux pathway mediated by PPARγ in rabbits. Bone Joint Res 2021; 10:693-703. [PMID: 34666502 PMCID: PMC8559971 DOI: 10.1302/2046-3758.1010.bjr-2021-0162.r3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aims To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ). Methods In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMDSV, and UTMDSV. The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV, and UTMDSV every seven days for four weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II, and PPARγ expression levels were analyzed by Western blotting (WB). Results In vitro, UTMDSV significantly increased the cholesterol efflux rate and aggrecan, collagen II, and PPARγ levels in OA chondrocytes; these effects were blocked by the PPARγ inhibitor. In vivo, UTMDSV significantly increased aggrecan, collagen II, PPARγ, and HDL-C levels, while TC levels and Mankin scores were decreased compared with the UTMD, SV, OA, and control groups. Conclusion UTMDSV promotes cartilage extracellular matrix synthesis by modulating the PPARγ-mediated cholesterol efflux pathway in OA rabbits. Cite this article: Bone Joint Res 2021;10(10):693–703.
Collapse
Affiliation(s)
- Xinwei Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Danbi Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiulong Song
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Anliang Chen
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Lu KH, Lu PWA, Lu EWH, Tang CH, Su SC, Lin CW, Yang SF. The potential remedy of melatonin on osteoarthritis. J Pineal Res 2021; 71:e12762. [PMID: 34435392 DOI: 10.1111/jpi.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common arthritis worldwide, is a degenerative joint disease characterized by progressive cartilage breakdown, subchondral remodeling, and synovial inflammation. Although conventional pharmaceutical therapies aimed to prevent further cartilage loss and joint dysfunction, there are no ideal strategies that target the pathogenesis of OA. Melatonin exhibits a variety of regulatory properties by binding to specific receptors and downstream molecules and exerts a myriad of receptor-independent actions via intracellular targets as a chondrocyte protector, an anti-inflammation modulator, and a free radical scavenger. Melatonin also modulates cartilage regeneration and degradation by directly/indirectly regulating the expression of main circadian clock genes, such as transcriptional activators [brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal) and circadian locomotor output cycles kaput (Clock)], transcriptional repressors [period circadian regulator (Per)1/2, cryptochrome (Cry)1/2, and Dec2], and nuclear hormone receptors [Rev-Erbs and retinoid acid-related orphan receptors (Rors)]. Owing to its effects on cartilage homeostasis, we propose a potential role for melatonin in the prevention and therapy of OA via the modulation of circadian clock genes, mitigation of chondrocyte apoptosis, anti-inflammatory activity, and scavenging of free radicals.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
45
|
Wu W, Liang D. Expression and related mechanisms of miR-330-3p and S100B in an animal model of cartilage injury. J Int Med Res 2021; 49:3000605211039471. [PMID: 34590918 PMCID: PMC8489778 DOI: 10.1177/03000605211039471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the roles of and relationship between microRNA (miR)-330-3p and S100 calcium-binding protein B (S100B) in an animal model of cartilage injury. Methods This study included 30 New Zealand male rabbits randomly divided into three groups: an intervention group, a model group and a sham surgery control group. Modelling was performed in the intervention and model groups, but in the sham surgery group, only the skin was cut. After modelling, the intervention and model groups were injected with the miR-330-3p overexpression vector GV268-miR-330-3p or the control GV268-N-ODN vector, respectively, twice a week for 7 weeks. Results Levels of interleukin-1β and tumour necrosis factor-α in the synovial fluid were significantly higher in the model group than in the intervention and control groups. The level of miR-330-3p in the cartilage tissue was significantly higher in the control group than in the model group but it was significantly lower compared with the intervention group. Levels of S100B, fibroblast growth factor receptor 1 and fibroblast growth factor-2 in the cartilage tissue of rabbits in the model group were significantly higher compared with the control and intervention groups. Conclusion These findings demonstrate that the upregulation of miR-330-3p can inhibit the expression of S100B.
Collapse
Affiliation(s)
- Wenming Wu
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Dongming Liang
- Lirimax (Tianjin) Medical Technical Co., Ltd, Tianjin, China
| |
Collapse
|
46
|
Li H, Liu Z, Guo X, Zhang M. Circ_0128846/miR-140-3p/JAK2 Network in Osteoarthritis Development. Immunol Invest 2021; 51:1529-1547. [PMID: 34544313 DOI: 10.1080/08820139.2021.1981930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circular RNAs (circRNAs) titrate the function of microRNAs (miRNAs), regulate transcription, and interfere with splicing. This study attempted to confirm the role of a novel circRNA circ_0128846 during osteoarthritis (OA) progression. Tissues and chondrocytes were isolated from OA patients. Overexpression and knockdown of target genes were generated using cell transfection and siRNA interference. Expression levels of genes were measured by qRT-PCR, Western blot, and immunohistochemistry, respectively. The interactions among circ_0128846, miR-140-3p, and JAK2 were verified by bioinformatics prediction, a dual-luciferase reporter assay, and RNA immunoprecipitation assay. The role of circ_0128846 in vivo was confirmed by the construction of experimental OA rats. Pathological changes were evaluated by hematoxylin and eosin and Safranin O staining. In OA patients, the level of circ_0128846 and JAK2 were up-regulated with down-regulated level of miR-140-3p. Circ_0128846 was principally located in the cytoplasm. Circ_0128846 silence enhanced cells viability, but reduced apoptosis rate and inflammatory response, which was obviously reversed by miR-140-3p knockdown. The overexpression of JAK2 reversed the effects of miR-140-3p on cell phenotypes. Circ_0128846 silence suppressed the level of MMP-13 and promoted the expression of collagen II by up-regulating miR-140-3p and down-regulating JAK2 in OA cells. Results of animal experiments demonstrated that circ_0128846 silence promoted collagen II expression and attenuated the OA progression by regulating the miR-140-3p/JAK2 axis. Circ_0128846 contributes to OA development through acting as a sponge RNA for miR-140-3p and thereby increasing JAK2 expression. Results indicated that targeting circ_0128846 may have the potential to alleviate OA progression.Abbreviations:circRNAs: Circular RNAs; miRNAs: microRNAs; OA: osteoarthritis; RIP: RNA immunoprecipitation; H&E: hematoxylin and eosin; ncRNAs: noncoding RNAs; ceRNA: competitive endogenous RNA; DMEM: Dulbecco's modified Eagle's medium; PBS: phosphate buffered saline; OE-circ_0128846: overexpression vector for circ_0128846; pcDNA3.1-JAK2: pcDNA3.1 overexpression vector for Janus kinase 2; NC: negative control; CCK-8: Cell Counting Kit-8; PI: propidium iodide; WT: Wild-type; mutants (MUT); SD rats: Sprague Dawley rats; DMM: destabilization of medial meniscus; IHC: immunohistochemistry; DAB: diaminobenzene; pre-Mrna: precursor mRNA.
Collapse
Affiliation(s)
- Hongjun Li
- Department of Rheumatology and Immunology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhongyu Liu
- Department of Knee Joint, Tianjin Hospital, Tianjin, China
| | - Xiaoyun Guo
- Department of Rheumatology and Immunology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University Genenral Hospital, Tianjin, China
| |
Collapse
|
47
|
MicroRNA-338-3p as a novel therapeutic target for intervertebral disc degeneration. Exp Mol Med 2021; 53:1356-1365. [PMID: 34531509 PMCID: PMC8492655 DOI: 10.1038/s12276-021-00662-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/29/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023] Open
Abstract
Recent studies have demonstrated the pivotal role played by microRNAs (miRNAs) in the etiopathogenesis of intervertebral disc degeneration (IDD). The study of miRNA intervention in IDD models may promote the advancement of miRNA-based therapeutic strategies. The aim of the current study was to investigate whether intradiscal delivery of miRNA can attenuate IDD development. Our results showed that miR-338-3p expression was significantly increased in the nucleus pulposus (NP) of patients with IDD. Moreover, there was a statistically significant positive correlation between the expression level of miR-338-3p and the severity of IDD. Our functional studies showed that miR-338-3p significantly influenced the expression of extracellular matrix synthesis genes, as well as the proliferation and apoptosis of NP cells. Mechanistically, miR-338-3p aggravated IDD progression by directly targeting SIRT6, a negative regulator of the MAPK/ERK pathway. Intradiscal injection of antagomir-338-3p significantly decelerated IDD development in mouse models. Our study is the first to identify miR-338-3p as a mediator of IDD and thus may be a promising target for rescuing IDD.
Collapse
|
48
|
Jiang L, Lin J, Zhao S, Wu J, Jin Y, Yu L, Wu N, Wu Z, Wang Y, Lin M. ADAMTS5 in Osteoarthritis: Biological Functions, Regulatory Network, and Potential Targeting Therapies. Front Mol Biosci 2021; 8:703110. [PMID: 34434966 PMCID: PMC8381022 DOI: 10.3389/fmolb.2021.703110] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 01/16/2023] Open
Abstract
ADAMTS5 is involved in the pathogenesis of OA. As the major aggrecanase-degrading articular cartilage matrix, ADAMTS5, has been regarded as a potential target for OA treatment. We here provide an updated insight on the regulation of ADAMTS5 and newly discovered therapeutic strategies for OA. Pathophysiological and molecular mechanisms underlying articular inflammation and mechanotransduction, as well as chondrocyte hypertrophy were discussed, and the role of ADAMTS5 in each biological process was reviewed, respectively. Senescence, inheritance, inflammation, and mechanical stress are involved in the overactivation of ADAMTS5, contributing to the pathogenesis of OA. Multiple molecular signaling pathways were observed to modulate ADAMTS5 expression, namely, Runx2, Fgf2, Notch, Wnt, NF-κB, YAP/TAZ, and the other inflammatory signaling pathways. Based on the fundamental understanding of ADAMTS5 in OA pathogenesis, monoclonal antibodies and small molecule inhibitors against ADAMTS5 were developed and proved to be beneficial pre-clinically both in vitro and in vivo. Recent novel RNA therapies demonstrated potentials in OA animal models. To sum up, ADAMTS5 inhibition and its signaling pathway–based modulations showed great potential in future therapeutic strategies for OA.
Collapse
Affiliation(s)
- Lejian Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiachen Lin
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqian Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongming Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yu
- Department of Operating Room, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2α expression and coordinately regulate cartilage homeostasis. Nat Commun 2021; 12:4148. [PMID: 34230481 PMCID: PMC8260725 DOI: 10.1038/s41467-021-24460-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA), the most common aging-related joint disease, is caused by an imbalance between extracellular matrix synthesis and degradation. Here, we discover that both strands of microRNA-455 (miR-455), -5p and -3p, are up-regulated by Sox9, an essential transcription factor for cartilage differentiation and function. Both miR-455-5p and -3p are highly expressed in human chondrocytes from normal articular cartilage and in mouse primary chondrocytes. We generate miR-455 knockout mice, and find that cartilage degeneration mimicking OA and elevated expression of cartilage degeneration-related genes are observed at 6-months-old. Using a cell-based miRNA target screening system, we identify hypoxia-inducible factor-2α (HIF-2α), a catabolic factor for cartilage homeostasis, as a direct target of both miR-455-5p and -3p. In addition, overexpression of both miR-455-5p and -3p protect cartilage degeneration in a mouse OA model, demonstrating their potential therapeutic value. Furthermore, knockdown of HIF-2α in 6-month-old miR-455 knockout cartilage rescues the elevated expression of cartilage degeneration-related genes. These data demonstrate that both strands of a miRNA target the same gene to regulate articular cartilage homeostasis.
Collapse
|
50
|
Cao F, Chen Y, Wang X, Wu LM, Tian M, Li HY, Si HB, Shen B. Therapeutic effect and potential mechanisms of intra-articular injections of miR-140-5p on early-stage osteoarthritis in rats. Int Immunopharmacol 2021; 96:107786. [PMID: 34162150 DOI: 10.1016/j.intimp.2021.107786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRs) receive extensive attention in osteoarthritis (OA) pathogenesis in recent years, and our previous study confirmed that an intra-articular injection (IAJ) of miR-140-5p alleviates early-stage OA (EOA) progression in rats. This study aims to investigate the therapeutic effect and potential mechanisms of single IAJ (SIAJ) of miR-140-5p on different stage OA and multiple IAJs (MIAJ) of miR-140-5p on EOA. Firstly, the OA model was surgically induced in rats, nine were treated with IAJ of Cy5-miR-140-5p at one week after surgery, and fluorescence distribution was analyzed at different times. Then, 72 rats were treated with SIAJ of miR-140-5p at different stages or MIAJ of miR-140-5p at one week after surgery, and OA progression was evaluated macroscopically and histologically at different times. Finally, the downstream targets and underlying molecular mechanisms of miR-140-5p were predicted by bioinformatics and partially validated. As a result, the intra-articularly injected miR-140-5p entered cartilage and could be taken up by chondrocytes rapidly. IAJ(s) of miR-140-5p improved the behavioral scores, chondrocyte number, cartilage thickness, and pathological scores to varying degrees. Specifically, the earlier a SIAJ of miR-140-5p was administrated, the better the therapeutic effect; meanwhile, MIAJ of miR-140-5p exhibited a better therapeutic effect than SIAJ on EOA. Eighty-four potential target genes and mechanisms of rno-miR-140-5p were predicted, and the effect of miR-140-5p on the potential target genes VEGFA and JAG1 was experimentally validated. Collectively, IAJs of miR-140-5p effectively alleviate EOA progression by modulating multiple biological processes and pathways in rats, representing a promising therapeutic for EOA.
Collapse
Affiliation(s)
- Fei Cao
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, China
| | - Yang Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing Wang
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li-Min Wu
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Tian
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Han-Yu Li
- Clinical Medicine of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hai-Bo Si
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bin Shen
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|