1
|
Rimkunas A, Gudas R, Mickevicius T, Maciulaitis J, Malinauskas M, Smailys A, Staskunas M, Usas A. Arthroscopic Electromechanical Assessment of Human Articular Cartilage Injury Correlates with ICRS Scores. Cartilage 2024; 15:250-258. [PMID: 38054444 PMCID: PMC11418488 DOI: 10.1177/19476035231216439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE This study aimed to conduct arthroscopic evaluation of cartilage electromechanical properties and establish their correlation with International Cartilage Repair Society (ICRS) grading scores. METHODS In 18 patients, quantitative parameter (QP) measurements were taken on the weight-bearing surface of the medial femoral condyle. Adjacently, the same site was graded using ICRS scores (0-4). Electromechanical QPs for ICRS grades 0 to 3 were obtained during arthroscopy, while complete grade 4 injuries were assessed using femur cartilage-bone blocks from knee arthroplasty. The QP values for ICRS grades 0 to 2 were compared with grades 3 and 4 using Welch t test. The corresponding QP values were assigned to ICRS grades 0 to 4 and compared using Welch ANOVA (analysis of variance). Pearson's coefficient evaluated QP-ICRS grade relationship. RESULTS Healthy grade 0 cartilage displayed a mean QP value of 10.5 (±2.8 SD, n = 4). The ICRS grade 1 and grade 2 injuries were associated with QP values of 12 (±0.7, n = 2) and 13.25 (±1.77, n = 2), respectively. The grade 3 defects had QP values of 20.43 (±4.84, n = 4), whereas complete grade 4 defects showed electromechanical values of 30.17 (±2.19, n = 6). Significant differences in QP values were observed between ICRS grades 0 to 2 (mean QP 11.56 ± 2.3, n = 8) and grades 3 and 4 (26.27 ± 6, n = 10; P < 0.0001). Pearson's correlation coefficient of 0.9 indicated a strong association between higher ICRS cartilage injury grades and elevated QP values (P < 0.0001). CONCLUSION Arthroscopic electromechanical QP assessment robustly correlates with ICRS scores. The QP values for ICRS grades 0 to 2 are significantly lower, compared with grades 3 and 4.
Collapse
Affiliation(s)
- Augustinas Rimkunas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Rimtautas Gudas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Tomas Mickevicius
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Justinas Maciulaitis
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Mantas Malinauskas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Alfredas Smailys
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Mantas Staskunas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Department of Orthopaedics and Traumatology, Kaunas, Lithuania
| | - Arvydas Usas
- Lithuanian University of Health Sciences, Medical Academy, Faculty of Medicine, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| |
Collapse
|
2
|
Abusara Z, Moo EK, Haider I, Timmermann C, Miller S, Timmermann S, Herzog W. Functional Assessment of Human Articular Cartilage Using Second Harmonic Generation (SHG) Imaging: A Feasibility Study. Ann Biomed Eng 2024; 52:1009-1020. [PMID: 38240956 DOI: 10.1007/s10439-023-03437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/26/2023] [Indexed: 03/16/2024]
Abstract
Many arthroscopic tools developed for knee joint assessment are contact-based, which is challenging for in vivo application in narrow joint spaces. Second harmonic generation (SHG) laser imaging is a non-invasive and non-contact method, thus presenting an attractive alternative. However, the association between SHG-based measures and cartilage quality has not been established systematically. Here, we investigated the feasibility of using image-based measures derived from SHG microscopy for objective evaluation of cartilage quality as assessed by mechanical testing. Human tibial plateaus harvested from nine patients were used. Cartilage mechanical properties were determined using indentation stiffness (Einst) and streaming potential-based quantitative parameters (QP). The correspondence of the cartilage electromechanical properties (Einst and QP) and the image-based measures derived from SHG imaging, tissue thickness and cell viability were evaluated using correlation and logistic regression analyses. The SHG-related parameters included the newly developed volumetric fraction of organised collagenous network (Φcol) and the coefficient of variation of the SHG intensity (CVSHG). We found that Φcol correlated strongly with Einst and QP (ρ = 0.97 and - 0.89, respectively). CVSHG also correlated, albeit weakly, with QP and Einst, (|ρ| = 0.52-0.58). Einst and Φcol were the most sensitive predictors of cartilage quality whereas CVSHG only showed moderate sensitivity. Cell viability and tissue thickness, often used as measures of cartilage health, predicted the cartilage quality poorly. We present a simple, objective, yet effective image-based approach for assessment of cartilage quality. Φcol correlated strongly with electromechanical properties of cartilage and could fuel the continuous development of SHG-based arthroscopy.
Collapse
Affiliation(s)
- Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, Canada
| | - Ifaz Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Claire Timmermann
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Sue Miller
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Canada
- Taylor Institute for Teaching and Learning, University of Calgary, Calgary, Canada
| | - Scott Timmermann
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Schadow JE, Maxey D, Smith TO, Finnilä MAJ, Manske SL, Segal NA, Wong AKO, Davey RA, Turmezei T, Stok KS. Systematic review of computed tomography parameters used for the assessment of subchondral bone in osteoarthritis. Bone 2024; 178:116948. [PMID: 37926204 DOI: 10.1016/j.bone.2023.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To systematically review the published parameters for the assessment of subchondral bone in human osteoarthritis (OA) using computed tomography (CT) and gain an overview of current practices and standards. DESIGN A literature search of Medline, Embase and Cochrane Library databases was performed with search strategies tailored to each database (search from 2010 to January 2023). The search results were screened independently by two reviewers against pre-determined inclusion and exclusion criteria. Studies were deemed eligible if conducted in vivo/ex vivo in human adults (>18 years) using any type of CT to assess subchondral bone in OA. Extracted data from eligible studies were compiled in a qualitative summary and formal narrative synthesis. RESULTS This analysis included 202 studies. Four groups of CT modalities were identified to have been used for subchondral bone assessment in OA across nine anatomical locations. Subchondral bone parameters measuring similar features of OA were combined in six categories: (i) microstructure, (ii) bone adaptation, (iii) gross morphology (iv) mineralisation, (v) joint space, and (vi) mechanical properties. CONCLUSIONS Clinically meaningful parameter categories were identified as well as categories with the potential to become relevant in the clinical field. Furthermore, we stress the importance of quantification of parameters to improve their sensitivity and reliability for the evaluation of OA disease progression and the need for standardised measurement methods to improve their clinical value.
Collapse
Affiliation(s)
- Jemima E Schadow
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| | - David Maxey
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom.
| | - Toby O Smith
- Warwick Medical School, University of Warwick, United Kingdom.
| | - Mikko A J Finnilä
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Sarah L Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Neil A Segal
- Department of Rehabilitation Medicine, The University of Kansas Medical Center, Kansas City, United States.
| | - Andy Kin On Wong
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada; Schroeder's Arthritis Institute, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| | - Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia.
| | - Tom Turmezei
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom; Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
4
|
Hollander JM, Goraltchouk A, Rawal M, Liu J, Luppino F, Zeng L, Seregin A. Adeno-Associated Virus-Delivered Fibroblast Growth Factor 18 Gene Therapy Promotes Cartilage Anabolism. Cartilage 2023; 14:492-505. [PMID: 36879540 PMCID: PMC10807742 DOI: 10.1177/19476035231158774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE To determine the characterization of chondrogenic properties of adeno-associated virus type 2 (AAV2)-delivered hFGF18, via analysis of effects on primary human chondrocyte proliferation, gene expression, and in vivo cartilage thickness changes in the tibia and meniscus. DESIGN Chondrogenic properties of AAV2-FGF18 were compared with recombinant human FGF18 (rhFGF18) in vitro relative to phosphate-buffered saline (PBS) and AAV2-GFP negative controls. Transcriptome analysis was performed using RNA-seq on primary human chondrocytes treated with rhFGF18 and AAV2-FGF18, relative to PBS. Durability of gene expression was assessed using AAV2-nLuc and in vivo imaging. Chondrogenesis was evaluated by measuring weight-normalized thickness in the tibial plateau and the white zone of the anterior horn of the medial meniscus in Sprague-Dawley rats. RESULTS AAV2-FGF18 elicits chondrogenesis by promoting proliferation and upregulation of hyaline cartilage-associated genes, including COL2A1 and HAS2, while downregulating fibrocartilage-associated COL1A1. This activity translates to statistically significant, dose-dependent increases in cartilage thickness in vivo within the area of the tibial plateau, following a single intra-articular injection of the AAV2-FGF18 or a regimen of 6 twice-weekly injections of rhFGF18 protein relative to AAV2-GFP. In addition, we observed AAV2-FGF18-induced and rhFGF18-induced increases in cartilage thickness of the anterior horn of the medial meniscus. Finally, the single-injection AAV2-delivered hFGF18 offers a potential safety advantage over the multi-injection protein treatment as evidenced by reduced joint swelling over the study period. CONCLUSION AAV2-delivered hFGF18 represents a promising strategy for the restoration of hyaline cartilage by promoting extracellular matrix production, chondrocyte proliferation, and increasing articular and meniscal cartilage thickness in vivo after a single intra-articular injection.
Collapse
Affiliation(s)
- Judith M. Hollander
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Miraj Rawal
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
5
|
Men Y, Ren Y, Zhao Z, Wang X, Liu L. Numerical analysis of streaming potential induced by loads in micro-pores of articular cartilage. Comput Methods Biomech Biomed Engin 2023; 26:1761-1771. [PMID: 37902439 DOI: 10.1080/10255842.2022.2141570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
In order to understand the distribution of streaming potentials in cartilage pores, this paper established finite element model to analyze. The results showed that the streaming potential in cartilage micro-pores increased along the axis. The electric potential in 5 μm straight micro-pore was about 50 μV, and the electric potential of curved bifurcation model was about 30 μV. The pressure and Zeta potential had a linear growth relationship with the streaming potential. The streaming potential decreased with the increase of ion concentration until ion concentration was saturated. These results could provide a theoretical basis for cartilage research.
Collapse
Affiliation(s)
- Yutao Men
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yucheng Ren
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Zhonghai Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Xin Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Lu Liu
- Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research Enterprises, Just Huajian Medical Devices (Tianjin) Co., Ltd, Tianjin, China
| |
Collapse
|
6
|
Berni M, Erani P, Lopomo NF, Baleani M. Optimization of In Situ Indentation Protocol to Map the Mechanical Properties of Articular Cartilage. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6425. [PMID: 36143736 PMCID: PMC9505484 DOI: 10.3390/ma15186425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Tissue engineering aims at developing complex composite scaffolds for articular cartilage repair. These scaffolds must exhibit a mechanical behavior similar to the whole osteochondral unit. In situ spherical indentation allows us to map the mechanical behavior of articular cartilage, avoiding removal of the underlying bone tissue. Little is known about the impact of grid spacing, indenter diameter, and induced deformation on the cartilage response to indentation. We investigated the impact of grid spacing (range: a to 3a, where a is the radius of the contact area between cartilage and indenter), indenter diameter (range: 1 to 8 mm), and deformation induced by indentation (constant indentation depth versus constant nominal deformation) on cartilage response. The bias induced by indentations performed in adjacent grid points was minimized with a 3a grid spacing. The cartilage response was indenter-dependent for diameters ranging between 1 and 6 mm with a nominal deformation of 15%. No significant differences were found using 6 mm and 8 mm indenters. Six mm and 8 mm indenters were used to map human articular cartilage with a grid spacing equal to 3a. Instantaneous elastic modulus E0 was calculated for constant indentation depth and constant nominal deformation. E0 value distribution did not change significantly by switching the two indenters, while dispersion decreased by 5-6% when a constant nominal deformation was applied. Such an approach was able to discriminate changes in tissue response due to doubling the indentation rate. The proposed procedure seems to reduce data dispersion and properly determine cartilage mechanical properties to be compared with those of complex composite scaffolds.
Collapse
Affiliation(s)
- Matteo Berni
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Erani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | - Massimiliano Baleani
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
7
|
Cykowska A, Danalache M, Bonnaire FC, Feierabend M, Hofmann UK. Detecting early osteoarthritis through changes in biomechanical properties - A review of recent advances in indentation technologies in a clinical arthroscopic setup. J Biomech 2022; 132:110955. [PMID: 35042088 DOI: 10.1016/j.jbiomech.2022.110955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease currently affecting half of all women and one-third of all men aged over 65 and it is predicted to even increase in the next decades. In the variety of causes leading to OA, the first common denominator are changes in the extracellular matrix of the cartilage. In later stages, OA affects the whole joint spreading to higher levels of tissue architecture causing irreversible functional and structural damage. To date, the diagnosis of OA is only formulated in the late stages of the disease. This is also, where most present therapies apply. Since a precise diagnosis is a prerequisite for targeted therapy, tools to diagnose early OA, monitor its progression, and accurately stage the disease are wanted. This review article focuses on recent advances in indentation technologies to diagnose early OA through describing biomechanical cartilage characteristics. We provide an overview of microindentation instruments, indentation-type Atomic Force Microscopy, ultrasound, and water-jet ultrasound indentation, Optical Coherence Tomography-based air-jet indentation, as well as fiber Bragg grating.
Collapse
Affiliation(s)
- Anna Cykowska
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany.
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany.
| | - Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany; Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72076 Tübingen, Germany.
| | - Martina Feierabend
- Department of Computational Systems Biology, Faculty of Science of the University of Tübingen, D-72076 Tübingen, Germany.
| | - Ulf Krister Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany; Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Ukai T, Sato M, Wasai S, Takahashi T, Omura H, Watanabe M. Comparison of properties determined using electromechanical assessment (Arthro-BST™) with macroscopic and histological properties in symptomatic human articular cartilage of the hip. Arthritis Res Ther 2021; 23:227. [PMID: 34465392 PMCID: PMC8406846 DOI: 10.1186/s13075-021-02611-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cartilage degeneration is assessed using various methods. Although macroscopic evaluation can directly measure cartilage degeneration, it cannot accurately assess cartilage properties. Histological examination is one of the most accurate methods for evaluating cartilage degeneration. However, it is invasive and requires collection of cartilage tissue. In contrast, the Arthro-BST™ probe can assess cartilage properties noninvasively. This study aimed to evaluate the effectiveness of the Arthro-BST in assessing cartilage degeneration by comparing macroscopic (International Cartilage Repair Society [ICRS] classification) and histological evaluations (modified Mankin score and Osteoarthritis Research Society International [OARSI] histological grade). METHODS Fourteen femoral heads were excised from 13 patients during surgery to treat hip osteoarthritis or femoral fracture. The ICRS score was used for macroscopic evaluation of cartilage degeneration. The Arthro-BST was applied at sites matching the areas of cartilage damage. The sites assessed using the ICRS classification and Arthro-BST were evaluated histologically (modified Mankin score and OARSI histological grade), and these were compared with the Arthro-BST results. RESULTS The ICRS classification identified significant differences between grades 1 and 3 (p < 0.01), between grades 1 and 4 (p < 0.01), between grades 2 and 3 (p < 0.01), and between grades 2 and 4 (p < 0.01). Significant correlations were observed between the Arthro-BST results and the ICRS score, modified Mankin score (structure, cellularity, matrix staining, total score), and OARSI histological grade. CONCLUSIONS In the assessment of hip osteoarthritis, the Arthro-BST results correlated with those of macroscopic and histological evaluations. The Arthro-BST is useful for assessing hip osteoarthritis and may be helpful for noninvasive assessment of cartilage degeneration.
Collapse
Affiliation(s)
- Taku Ukai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masato Sato
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan. .,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Shiho Wasai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Takumi Takahashi
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Haruka Omura
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Bohseidai, Isehara, Kanagawa, 259-1193, Japan.,Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
9
|
Seitz AM, Osthaus F, Schwer J, Warnecke D, Faschingbauer M, Sgroi M, Ignatius A, Dürselen L. Osteoarthritis-Related Degeneration Alters the Biomechanical Properties of Human Menisci Before the Articular Cartilage. Front Bioeng Biotechnol 2021; 9:659989. [PMID: 34026741 PMCID: PMC8134692 DOI: 10.3389/fbioe.2021.659989] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
An exact understanding of the interplay between the articulating tissues of the knee joint in relation to the osteoarthritis (OA)-related degeneration process is of considerable interest. Therefore, the aim of the present study was to characterize the biomechanical properties of mildly and severely degenerated human knee joints, including their menisci and tibial and femoral articular cartilage (AC) surfaces. A spatial biomechanical mapping of the articulating knee joint surfaces of 12 mildly and 12 severely degenerated human cadaveric knee joints was assessed using a multiaxial mechanical testing machine. To do so, indentation stress relaxation tests were combined with thickness and water content measurements at the lateral and medial menisci and the AC of the tibial plateau and femoral condyles to calculate the instantaneous modulus (IM), relaxation modulus, relaxation percentage, maximum applied force during the indentation, and the water content. With progressing joint degeneration, we found an increase in the lateral and the medial meniscal instantaneous moduli (p < 0.02), relaxation moduli (p < 0.01), and maximum applied forces (p < 0.01), while for the underlying tibial AC, the IM (p = 0.01) and maximum applied force (p < 0.01) decreased only at the medial compartment. Degeneration had no influence on the relaxation percentage of the soft tissues. While the water content of the menisci did not change with progressing degeneration, the severely degenerated tibial AC contained more water (p < 0.04) compared to the mildly degenerated tibial cartilage. The results of this study indicate that degeneration-related (bio-)mechanical changes seem likely to be first detectable in the menisci before the articular knee joint cartilage is affected. Should these findings be further reinforced by structural and imaging analyses, the treatment and diagnostic paradigms of OA might be modified, focusing on the early detection of meniscal degeneration and its respective treatment, with the final aim to delay osteoarthritis onset.
Collapse
Affiliation(s)
- Andreas M Seitz
- Institute of Orthopedic Research and Biomechanics, Center of Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Felix Osthaus
- Institute of Orthopedic Research and Biomechanics, Center of Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Jonas Schwer
- Institute of Orthopedic Research and Biomechanics, Center of Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Daniela Warnecke
- Institute of Orthopedic Research and Biomechanics, Center of Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Martin Faschingbauer
- Department of Orthopedic Surgery, Universitäts- und Rehabilitationskliniken Ulm (RKU), Ulm University Medical Center, Ulm, Germany
| | - Mirco Sgroi
- Department of Orthopedic Surgery, Universitäts- und Rehabilitationskliniken Ulm (RKU), Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center of Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopedic Research and Biomechanics, Center of Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
10
|
Wang Z, Liang L. Research on quantitative measurement method of articular cartilage thickness change based on MR image. J Infect Public Health 2019; 13:1993-1996. [PMID: 31551187 DOI: 10.1016/j.jiph.2019.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022] Open
Abstract
In order to study the quantitative measurement method of articular cartilage thickness change based on MR image, 140 patients with no knee joint symptoms and 17 patients with knee joint damage were studied. FLASH, SE and FISP 3 sequences were scanned for all normal knee joints to determine the articular cartilage thickness. 17 patients with knee joint damage were followed up for six months. The thickness of their femoral condyle and femoral trochlea cartilage was measured by FLASH sequence and thickness changes are recorded. The results show that the thickness distribution of normal knee articular cartilage in different parts is not equal, and the thickness of articular cartilage will be gradually thinner in different ages; MR image technique can observe the change of articular cartilage thickness in patients with knee joint damage, reflecting the recovery status of the patient's condition. The results of quantitative measurement of changes in articular cartilage thickness based on MR images are presented herein, and the results are as expected. Experimental data were provided for the clinical treatment of acute knee injury and osteoarthritis. Although there are still some shortcomings in the research process, the research results still provide some reference and guidance for the future exploration of the use of MR images to monitor the condition of arthritis, so this study is a significant research topic.
Collapse
Affiliation(s)
- Zirun Wang
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan 610072, China
| | - Liqin Liang
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Sichuan 610072, China.
| |
Collapse
|
11
|
Votava L, Schwartz AG, Harasymowicz NS, Wu CL, Guilak F. Effects of dietary fatty acid content on humeral cartilage and bone structure in a mouse model of diet-induced obesity. J Orthop Res 2019; 37:779-788. [PMID: 30644575 PMCID: PMC6662729 DOI: 10.1002/jor.24219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023]
Abstract
Obesity is a primary risk factor for osteoarthritis (OA), and previous studies have shown that dietary content may play an important role in the pathogenesis of cartilage and bone in knee OA. Several previous studies have shown that the ratio of ω-3 polyunsaturated fatty acids (PUFAs), ω-6 PUFAs, and saturated fatty acids can significantly influence bone structure and OA progression. However, the influence of obesity or dietary fatty acid content on shoulder OA is not well understood. The goal of this study was to investigate the role of dietary fatty acid content on bone and cartilage structure in the mouse shoulder in a model of diet-induced obesity. For 24 weeks, mice were fed control or high-fat diets supplemented with ω-3 PUFAs, ω-6 PUFAs, or saturated fatty acids. The humeral heads were analyzed for bone morphometry and mineral density by microCT. Cartilage structure and joint synovitis were determined by histological grading, and microscale mechanical properties of the cartilage extracellular and pericellular matrices were quantified using atomic force microscopy. Diet-induced obesity significantly altered bone morphology and mineral density in a manner that was dependent on dietary free fatty acid content. In general, high-fat diet groups showed decreased bone quality, with the ω-3 diet being partially protective. Cartilage mechanical properties and OA scores showed no changes with obesity or diet. These findings are consistent with clinical literature showing little if any relationship between obesity and shoulder OA (unlike knee OA), but suggest that diet-induced obesity may influence other joint tissues. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Lauren Votava
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110,Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110
| | - Andrea G. Schwartz
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis MO 63110,Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110
| |
Collapse
|