1
|
Jamshidi A, Espin-Garcia O, Wilson TG, Loveless I, Pelletier JP, Martel-Pelletier J, Ali SA. MicroRNA signature for early prediction of knee osteoarthritis structural progression using integrated machine and deep learning approaches. Osteoarthritis Cartilage 2025; 33:330-340. [PMID: 39617204 DOI: 10.1016/j.joca.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Conventional methodologies are ineffective in predicting the rapid progression of knee osteoarthritis (OA). MicroRNAs (miRNAs) show promise as biomarkers for patient stratification. We aimed to develop a miRNA prognosis model for identifying knee OA structural progressors/non-progressors using integrated machine/deep learning tools. METHODS Baseline serum miRNAs from Osteoarthritis Initiative (OAI) participants were isolated and sequenced. Participants were categorized based on their likelihood of knee structural progression/non-progression using magnetic resonance imaging and X-ray data. For prediction model development, 152 OAI participants (91 progressors, 61 non-progressors) were used. MiRNA features were reduced through VarClusHi clustering. Key miRNAs and OA determinants (age, sex, body mass index, race) were identified using seven machine learning tools. The final prediction model was developed using advanced machine/deep learning techniques. Model performance was assessed with area under the curve (AUC) (95% confidence intervals) and accuracy. Monte Carlo cross-validation ensured robustness. Model validation used 30 OAI baseline plasma samples from an independent set of participants (14 progressors, 16 non-progressors). RESULTS Feature clustering selected 107 miRNAs. Elastic Net was chosen for feature selection. An optimized prediction model based on an Artificial Neural Network comprising age and four miRNAs (hsa-miR-556-3p, hsa-miR-3157-5p, hsa-miR-200a-5p, hsa-miR-141-3p) exhibited excellent performance (AUC, 0.94 [0.89, 0.97]; accuracy, 0.84 [0.77, 0.89]). Model validation performance (AUC, 0.81 [0.63, 0.92]; accuracy, 0.83 [0.66, 0.93]) demonstrated the potential for generalization. CONCLUSION This study introduces a novel miRNA prognosis model for knee OA patients at risk of structural progression. It requires five baseline features, demonstrates excellent performance, is validated with an independent set, and holds promise for future personalized therapeutic monitoring.
Collapse
Affiliation(s)
- Afshin Jamshidi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Osvaldo Espin-Garcia
- Department of Biostatistics, Schroeder Arthritis Institute and Krembil Research Institute, University Health Network, Toronto, Canada; Dalla Lana School of Public Health and Department of Statistical Sciences, University of Toronto, Toronto, Canada; Department of Epidemiology and Biostatistics, University of Western Ontario, London, Canada, Toronto, Canada.
| | - Thomas G Wilson
- Henry Ford Health + Michigan State University Health Sciences, Detroit, USA.
| | - Ian Loveless
- Henry Ford Health + Michigan State University Health Sciences, Detroit, USA.
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, USA.
| |
Collapse
|
2
|
Wilson TG, Baghel M, Kaur N, Datta I, Loveless I, Potla P, Mendez D, Hansen L, Baker K, Lynch TS, Moutzouros V, Davis J, Ali SA. Circulating miR-126-3p is a mechanistic biomarker for knee osteoarthritis. Nat Commun 2025; 16:2021. [PMID: 40016267 PMCID: PMC11868599 DOI: 10.1038/s41467-025-57308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Osteoarthritis is a major contributor to pain and disability worldwide, yet there are currently no validated soluble biomarkers or disease-modifying treatments. Given that microRNAs are promising mechanistic biomarkers that can be therapeutically targeted, in this study, we aimed to identify and prioritize reproducible circulating microRNAs associated with radiographic knee osteoarthritis. Across four independent cohorts, we find circulating miR-126-3p is elevated in knee osteoarthritis versus controls. Across six primary human knee osteoarthritis tissues, miR-126-3p is highest in subchondral bone, fat pad and synovium, and lowest in cartilage. Following both intravenous and intra-articular miR-126-3p mimic treatment in a surgical mouse model of knee osteoarthritis, we show reduced disease severity in males. In human knee osteoarthritis biospecimens, miR-126-3p mimic treatment reduces genes and markers associated with angiogenesis, as well as genes linked to osteogenesis, adipogenesis, and synovitis-processes secondary to angiogenesis. Our findings indicate that miR-126-3p is elevated in knee osteoarthritis and mitigates disease severity, supporting its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Wilson
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Madhu Baghel
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Navdeep Kaur
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Indrani Datta
- Center for Bioinformatics, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Ian Loveless
- Center for Bioinformatics, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Pratibha Potla
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Devin Mendez
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Logan Hansen
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Kevin Baker
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - T Sean Lynch
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | | | - Jason Davis
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Shabana Amanda Ali
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
3
|
Wei Y, Qian H, Zhang X, Wang J, Yan H, Xiao N, Zeng S, Chen B, Yang Q, Lu H, Xie J, Xie Z, Qin D, Li Z. Progress in multi-omics studies of osteoarthritis. Biomark Res 2025; 13:26. [PMID: 39934890 DOI: 10.1186/s40364-025-00732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Osteoarthritis (OA), a ubiquitous degenerative joint disorder, is marked by pain and disability, profoundly impacting patients' quality of life. As the population ages, the global prevalence of OA is escalating. Omics technologies have become instrumental in investigating complex diseases like OA, offering comprehensive insights into its pathogenesis and progression by uncovering disease-specific alterations across genomics, transcriptomics, proteomics, and metabolomics levels. In this review, we systematically analyzed and summarized the application and recent achievements of omics technologies in OA research by scouring relevant literature in databases such as PubMed. These studies have shed light on new potential therapeutic targets and biomarkers, charting fresh avenues for OA diagnosis and treatment. Furthermore, in our discussion, we highlighted the immense potential of spatial omics technologies in unraveling the molecular mechanisms of OA and in the development of novel therapeutic strategies, proposing future research directions and challenges. Collectively, this study encapsulates the pivotal advances in current OA research and prospects for future investigation, providing invaluable references for a deeper understanding and treatment of OA. This review aims to synthesize the recent progress of omics technologies in the realm of OA, aspiring to furnish theoretical foundations and research orientations for more profound studies of OA in the future.
Collapse
Affiliation(s)
- Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - He Qian
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Heguo Yan
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sanjin Zeng
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bingbing Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qianqian Yang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hongting Lu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Zhaofu Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Walters M, Skovgaard K, Heegaard PMH, Fang Y, Kharaz YA, Bundgaard L, Skovgaard LT, Jensen HE, Andersen PH, Peffers MJ, Jacobsen S. Identification and characterisation of temporal abundance of microRNAs in synovial fluid from an experimental equine model of osteoarthritis. Equine Vet J 2025. [PMID: 39775906 DOI: 10.1111/evj.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND MicroRNAs, a class of small noncoding RNAs, serve as post-transcriptional regulators of gene expression and are present in a stable and quantifiable form in biological fluids. MicroRNAs may influence intra-articular responses and the course of disease, but very little is known about their temporal changes in osteoarthritis. OBJECTIVES To identify miRNAs and characterise the temporal changes in their abundance in SF from horses with experimentally induced osteoarthritis. We hypothesised that the abundance of miRNA would change during disease progression. STUDY DESIGN In vivo experiments. METHODS RNA extracted from synovial fluid obtained sequentially (Day 0, 28 and 70) from nine horses with experimentally induced osteoarthritis was subjected to small RNA sequencing using the Illumina Hiseq 4000 sequencing platform. Differentially abundant miRNAs underwent further validation and mapping of temporal abundance (Day 0, 14, 17, 21, 28, 35, 42, 49, 56, 63 and 70 days after osteoarthritis induction) by microfluidic reverse transcription quantitative real-time PCR. Bioinformatic analyses were performed to predict potential biological associations and target genes of the differentially abundant microRNAs. RESULTS Small RNA sequencing revealed 61 differentially abundant microRNAs at an early osteoarthritis stage (Day 28), and subsequent reverse transcription quantitative real-time PCR analysis validated 20 of these. Significant biological functions of the differentially abundant microRNAs were apoptosis, necrosis, cell proliferation and cell invasion. Following validation, four microRNAs (miRNA-199b-3p, miRNA-139-5p, miRNA-1839 and miRNA-151-5p) were detected in more than 50% of the synovial fluid samples and had higher abundance in osteoarthritic than in control joints. MAIN LIMITATIONS Limited sample size. CONCLUSION This is the first study to determine longitudinal changes in synovial fluid microRNA abundance in an equine model of osteoarthritis. Larger studies are needed in naturally occurring osteoarthritis to interrogate putative changes identified by this study.
Collapse
Affiliation(s)
- Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter M H Heegaard
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yalda A Kharaz
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lene T Skovgaard
- Department of Public Health, University of Copenhagen, Copenhagen K, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pia H Andersen
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mandy J Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
5
|
Elbezanti WO, Challagundla KB, Pandey MK. The Study of Small RNA Sequencing from Biological Samples (miRNA-seq). Methods Mol Biol 2025; 2866:175-188. [PMID: 39546203 DOI: 10.1007/978-1-0716-4192-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Small RNA sequencing (sRNA-seq) has greatly transformed the study of molecular biology by allowing thorough analysis of several types of short RNA molecules, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs). This chapter presents a comprehensive methodology for conducting miRNA -seq on biological materials. The text introduces the principles and uses of miRNA-seq, emphasizing its importance in gene regulation, disease processes, and therapeutic interventions. The chapter subsequently explores the essential stages of miRNA-seq, encompassing sample acquisition, RNA isolation, library construction, sequencing, and data interpretation. Every part contains pragmatic suggestions, guidance for resolving issues, and optimal methods to guarantee excellent outcomes. Upon completion of this chapter, readers will possess a comprehensive comprehension of the miRNA-seq workflow and will be adequately prepared to apply this potent approach in their own research endeavors.
Collapse
Affiliation(s)
- Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper Health System, Camden, NJ, USA
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
6
|
Li S, Peng Y, Yu Y, Xu H, Yin Z, Du Y, Ma M, Ji Z, Qian W. Investigating the Impact of Circulating MicroRNAs on Knee and Hip Osteoarthritis: Causal Links, Biological Mechanisms, and Drug Interactions. Int J Mol Sci 2024; 26:283. [PMID: 39796139 PMCID: PMC11720664 DOI: 10.3390/ijms26010283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Osteoarthritis (OA), particularly in the knee and hip, poses a significant global health challenge due to limited therapeutic options. To elucidate the molecular mechanisms of OA and identify potential biomarkers and therapeutic targets, we utilized genome-wide association studies (GWAS) and cis-miRNA expression quantitative trait loci (cis-miR-eQTL) datasets to identify miRNAs associated with OA, revealing 16 that were linked to knee OA and 21 to hip OA. Among these, hsa-miR-1303 was significantly upregulated in both knee and hip OA (IVW: p = 6.8164×10-36 and 4.7919×10-2 respectively, OR > 1) and identified as a key factor in disease progression. Hsa-miR-1303 potentially regulates 30 genes involved in critical signaling pathways, such as the neurotrophin signaling pathway, and interacts with competing endogenous RNAs (ceRNAs) like circ_0041843 and LINC01338, thereby influencing key regulatory proteins such as SUMO2 and PARP1. Pharmacologically, hsa-miR-1303 targets nine druggable genes, including NRAS, H2AZ1, and RPS3, which have implications for drugs like cantharidin and diindolylmethane, potentially critical for developing novel OA treatments. Conversely, hsa-miR-125a-5p and hsa-miR-125b-5p, which are downregulated in both knee and hip OA, are associated with pathways such as HIF-1 and JAK-STAT, which modulate apoptotic signaling and transcriptional regulation. These miRNAs also interact with ceRNAs such as circ_0000254 and SPACA6P-AS, impacting proteins like STAT3, MCL1, and TRAF6. A drug interaction analysis identified 47 potential treatments, including Resveratrol and Acetaminophen, suggesting new therapeutic possibilities for OA management. This study not only highlights the role of miRNAs like hsa-miR-1303 and hsa-miR-125 in OA but also opens avenues for miRNA-based therapeutic development.
Collapse
Affiliation(s)
- Shanni Li
- Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100010, China; (S.L.); (Y.Y.); (H.X.); (M.M.); (Z.J.)
| | - Yihui Peng
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Yang Yu
- Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100010, China; (S.L.); (Y.Y.); (H.X.); (M.M.); (Z.J.)
| | - Hongjun Xu
- Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100010, China; (S.L.); (Y.Y.); (H.X.); (M.M.); (Z.J.)
| | - Zhaojing Yin
- School of Medicine, Tsinghua University, Beijing 100084, China; (Z.Y.); (Y.D.)
| | - Yiyang Du
- School of Medicine, Tsinghua University, Beijing 100084, China; (Z.Y.); (Y.D.)
| | - Mingyang Ma
- Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100010, China; (S.L.); (Y.Y.); (H.X.); (M.M.); (Z.J.)
| | - Zhongyin Ji
- Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100010, China; (S.L.); (Y.Y.); (H.X.); (M.M.); (Z.J.)
| | - Wenwei Qian
- Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100010, China; (S.L.); (Y.Y.); (H.X.); (M.M.); (Z.J.)
| |
Collapse
|
7
|
Zang K, Brossard M, Wilson T, Ali SA, Espin-Garcia O. A scoping review of statistical methods to investigate colocalization between genetic associations and microRNA expression in osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100540. [PMID: 39640910 PMCID: PMC11617925 DOI: 10.1016/j.ocarto.2024.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Genetic colocalization analysis is a statistical method that evaluates whether two traits (e.g., osteoarthritis [OA] risk and microRNA [miRNA] expression levels) share the same or distinct genetic association signals in a locus typically identified in genome-wide association studies (GWAS). This method is useful for providing insights into the biological relevance of genetic association signals, particularly in intergenic regions, which can help to elucidate disease mechanisms in OA and other complex traits. Objectives To review the existing literature on genetic colocalization methods, assess their suitability for studying OA, and investigate their capacity to integrate miRNA data, while bearing in view their statistical assumptions. Design We followed scoping review methodology and used Covidence software for data management. Search terms for colocalization, GWAS, and genetic or statistical models were used in the databases MEDLINE and EMBASE, searched till March 4, 2024. Results Our search returned 546 peer-reviewed papers, of which 96 were included following title/abstract and full-text screening. Based on both cumulative and annual publication counts, the most cited method for colocalization analysis was coloc. Four papers examined OA-related phenotypes, and none examined miRNA. An approach to colocalization analysis using miRNA was postulated based on further hand-searching. Conclusions Colocalization analysis is a largely unexplored method in OA. Many of the approaches to colocalization analysis identified in this review, including the integration of GWAS and miRNA data, may help to elucidate genetic and epigenetic factors implicated in OA and other complex traits.
Collapse
Affiliation(s)
- Kathleen Zang
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Myriam Brossard
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Thomas Wilson
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Osvaldo Espin-Garcia
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Biostatistics, Krembil Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Funahashi H, Takegami Y, Osawa Y, Nakashima H, Ishizuka S, Fujii R, Yamada H, Suzuki K, Hasegawa Y, Imagama S. Circulating miRNA-122 is associated with knee osteoarthritis progression: A 6-year longitudinal cohort study in the Yakumo study. J Orthop Sci 2024; 29:1411-1416. [PMID: 37945499 DOI: 10.1016/j.jos.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The association between knee osteoarthritis (OA) and miRNAs has been widely reported. However, the utility of miRNAs as predictors of knee osteoarthritis (KOA) progression in longitudinal studies has not been reported. We aimed to identify circulating miRNAs (c-miRNAs) associated with KOA progression in the general population and to examine their potential use as predictors of KOA progression. METHODS In 2012 and 2018, 66 participants (128 knees) took part in a resident health check-up in the Yakumo study. If the KL classification progressed two or more levels, the patient was classified as having progressive OA. Quantitative real-time polymerase chain reaction was used to screen 21 c-miRNAs. The expression levels of those c-miRNAs were compared between the progressive OA group and non-progressive OA group using student-t-test. Logistic analysis was performed in c-miRNAs less than p < 0.10 in univariate analysis. RESULTS The progressive OA group consisted of 78 knees. The results of the comparison between the progressive OA group and the non-progressive OA group showed that six c-miRNAs as follows; let7d (p = 0.030), c-miRNA-122 (p < 0.001), 150 (p = 0.070), 199 (p = 0.078), 21 (p = 0.016) and 320 (p = 0.093) were extracted as factors related to the progression of knee OA. In addition, logistic regression analysis identified c-miRNA-122 as an independent factor involved in the progression of knee osteoarthritis (odds ratio: 1.510, 95% confidence interval: 1.060-2.140, p = 0.023). The ROC curve showed by c-miRNA-122 for the progression of OA risk had an area under the curve of 0.702 (95% CI: 0.609-0.795). The threshold of c-miRNA-122 was -4.609. CONCLUSION The expression level of c-miRNA-122 was associated with the risk of KOA progression in community dwelling Japanese people.
Collapse
Affiliation(s)
- Hiroto Funahashi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Yasuhiko Takegami
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Yusuke Osawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Hiroaki Nakashima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Shinya Ishizuka
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Japan; Institute for Biomedicine, Eurac Research, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Japan.
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Japan.
| | - Yukiharu Hasegawa
- Department of Rehabilitation, Kansai University of Welfare Science, Osaka, Japan.
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
9
|
Su K, Cui X, Zhou J, Yi Q, Liu O. Construction of an interactome network among circRNA-miRNA-mRNA reveals new biomarkers in hBMSCs osteogenic differentiation. Sci Rep 2024; 14:24507. [PMID: 39424659 PMCID: PMC11489463 DOI: 10.1038/s41598-024-76136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Human bone marrow mesenchymal stem cells (hBMSCs) are adult stem cells residing in the bone marrow, characterized by their capacity for multi-directional differentiation, self-renewal, migration, and engraftment. Serving as seed cells, BMSCs play a pivotal role in the regeneration of bone defects. Hence, investigating the transcription factors and signaling pathways involved in the regulation of osteogenic differentiation in BMSCs holds significant importance. Recent research has unveiled that certain circular RNAs (circRNAs) can function as molecular sponges, influencing the osteogenic differentiation process of mesenchymal stem cells. However, many circRNAs remain undiscovered, and their precise mechanisms remain elusive. Therefore, the objective of this study is to construct an osteogenic differentiation-related circRNA-miRNA-mRNA network in hBMSCs. Subsequently, through bioinformatics analysis, we constructed a ceRNA network related to the osteogenic differentiation ability of hBMSCs, comprising 22 circRNAs, 17 miRNAs, and 15 mRNAs. The potential circRNA-miRNA-mRNA axes, including the role of hsa_circ_0001600 in promoting the osteogenic differentiation of hBMSCs through the targeted regulation of hsa-miR-542-3p, were validated through in vitro experiments.
Collapse
Affiliation(s)
- Kaixin Su
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China
| | - Xinyan Cui
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, 100050, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiao Yi
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China.
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Sandhu A, Hueniken K, Pastrello C, Jurisica I, Looby N, Chandran V, Lively S, Rockel JS, Potla P, Sanjevic A, Perry K, Li S, Docter S, Wagner T, Ogilive-Harris D, Dwyer T, Chahal J, Kapoor M. Early microRNA and metabolite changes after anterior cruciate ligament reconstruction surgery. Osteoarthritis Cartilage 2024; 32:1113-1125. [PMID: 38971555 DOI: 10.1016/j.joca.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Anterior cruciate ligament (ACL) reconstruction after injury does not prevent post-traumatic osteoarthritis (PTOA). Circulating microRNA (miRNA) and metabolite changes emerging shortly after ACL injury and reconstruction remain insufficiently defined, potentially harbouring early cues contributing to PTOA evolution. Moreover, their differential expression between females and males also may influence PTOA's natural trajectory. This study aims to determine alterations in plasma miRNA and metabolite levels in the early stages following ACL reconstruction and between females and males. METHODS A cohort of 43 ACL reconstruction patients was examined. Plasma was obtained at baseline, 2 weeks, and 6 weeks post-surgery (129 biospecimens in total). High-throughput miRNA sequencing and metabolomics were conducted. Differentially expressed miRNAs and metabolites were identified using negative binomial and linear regression models, respectively. Associations between miRNAs and metabolites were explored using time and sex as co-variants, (pre-surgery versus 2 and 6 weeks post-surgery). Using computational biology, miRNA-metabolite-gene interaction and pathway analyses were performed. RESULTS Levels of 46 miRNAs were increased at 2 weeks post-surgery compared to pre-surgery (baseline) using miRNA sequencing. Levels of 13 metabolites were significantly increased while levels of 6 metabolites were significantly decreased at 2 weeks compared to baseline using metabolomics. Hsa-miR-145-5p levels were increased in female subjects at both 2 weeks (log2-fold-change 0.71, 95%CI 0.22,1.20) and 6 weeks (log2-fold-change 0.75, 95%CI 0.07,1.43) post-surgery compared to males. In addition, hsa-miR-497-5p showed increased levels in females at 2 weeks (log2-fold-change 0.77, 95%CI 0.06,1.48) and hsa-miR-143-5p at 6 weeks (log2-fold-change 0.83, 95%CI 0.07,1.59). Five metabolites were decreased at 2 weeks post-surgery in females compared to males: L-leucine (-1.44, 95%CI -1.75,-1.13), g-guanidinobutyrate (-1.27, 95%CI 1.54,-0.99), creatinine (-1.17, 95%CI -1.44,-0.90), 2-methylbutyrylcarnitine (-1.76, 95%CI -2.17,-1.35), and leu-pro (-1.13, 95%CI -1.44,-0.83). MiRNA-metabolite-gene interaction analysis revealed key signalling pathways based on post-surgical time-point and in females versus males. CONCLUSION MiRNA and metabolite profiles were modified by time and by sex early after ACL reconstruction surgery, which could influence surgical response and ultimately risk of developing PTOA.
Collapse
Affiliation(s)
- Amit Sandhu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics and computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Nikita Looby
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Vinod Chandran
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jason S Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pratibha Potla
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anastasia Sanjevic
- University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| | - Kimberly Perry
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shenghan Li
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shgufta Docter
- University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| | - Tamara Wagner
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Darrell Ogilive-Harris
- University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| | - Tim Dwyer
- University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| | - Jas Chahal
- University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; University of Toronto Orthopaedic Sports Medicine Program, Women's College Hospital, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Ramos YFM, Rice SJ, Ali SA, Pastrello C, Jurisica I, Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Thomas Appleton C, Rockel JS, Kapoor M. Evolution and advancements in genomics and epigenomics in OA research: How far we have come. Osteoarthritis Cartilage 2024; 32:858-868. [PMID: 38428513 DOI: 10.1016/j.joca.2024.02.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most prevalent musculoskeletal disease affecting articulating joint tissues, resulting in local and systemic changes that contribute to increased pain and reduced function. Diverse technological advancements have culminated in the advent of high throughput "omic" technologies, enabling identification of comprehensive changes in molecular mediators associated with the disease. Amongst these technologies, genomics and epigenomics - including methylomics and miRNomics, have emerged as important tools to aid our biological understanding of disease. DESIGN In this narrative review, we selected articles discussing advancements and applications of these technologies to OA biology and pathology. We discuss how genomics, deoxyribonucleic acid (DNA) methylomics, and miRNomics have uncovered disease-related molecular markers in the local and systemic tissues or fluids of OA patients. RESULTS Genomics investigations into the genetic links of OA, including using genome-wide association studies, have evolved to identify 100+ genetic susceptibility markers of OA. Epigenomic investigations of gene methylation status have identified the importance of methylation to OA-related catabolic gene expression. Furthermore, miRNomic studies have identified key microRNA signatures in various tissues and fluids related to OA disease. CONCLUSIONS Sharing of standardized, well-annotated omic datasets in curated repositories will be key to enhancing statistical power to detect smaller and targetable changes in the biological signatures underlying OA pathogenesis. Additionally, continued technological developments and analysis methods, including using computational molecular and regulatory networks, are likely to facilitate improved detection of disease-relevant targets, in-turn, supporting precision medicine approaches and new treatment strategies for OA.
Collapse
Affiliation(s)
- Yolande F M Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah J Rice
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Muhammad Farooq Rai
- Department of Biological Sciences, Center for Biotechnology, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, A Coruña, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Ma L, Wu Q, You Y, Zhang P, Tan D, Liang M, Huang Y, Gao Y, Ban Y, Chen Y, Yuan J. Neuronal small extracellular vesicles carrying miR-181c-5p contribute to the pathogenesis of epilepsy by regulating the protein kinase C-δ/glutamate transporter-1 axis in astrocytes. Glia 2024; 72:1082-1095. [PMID: 38385571 DOI: 10.1002/glia.24517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Information exchange between neurons and astrocytes mediated by extracellular vesicles (EVs) is known to play a key role in the pathogenesis of central nervous system diseases. A key driver of epilepsy is the dysregulation of intersynaptic excitatory neurotransmitters mediated by astrocytes. Thus, we investigated the potential association between neuronal EV microRNAs (miRNAs) and astrocyte glutamate uptake ability in epilepsy. Here, we showed that astrocytes were able to engulf epileptogenic neuronal EVs, inducing a significant increase in the glutamate concentration in the extracellular fluid of astrocytes, which was linked to a decrease in glutamate transporter-1 (GLT-1) protein expression. Using sequencing and gene ontology (GO) functional analysis, miR-181c-5p was found to be the most significantly upregulated miRNA in epileptogenic neuronal EVs and was linked to glutamate metabolism. Moreover, we found that neuronal EV-derived miR-181c-5p interacted with protein kinase C-delta (PKCδ), downregulated PKCδ and GLT-1 protein expression and increased glutamate concentrations in astrocytes both in vitro and in vivo. Our findings demonstrated that epileptogenic neuronal EVs carrying miR-181c-5p decrease the glutamate uptake ability of astrocytes, thus promoting susceptibility to epilepsy.
Collapse
Affiliation(s)
- Limin Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yu You
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minxue Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyi Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Gao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuenan Ban
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxian Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Ramos Y, Rice SJ, Ali SA, Pastrello C, Jurisica I, Thomas Appleton C, Rockel JS, Kapoor M. Three decades of advancements in osteoarthritis research: insights from transcriptomic, proteomic, and metabolomic studies. Osteoarthritis Cartilage 2024; 32:385-397. [PMID: 38049029 DOI: 10.1016/j.joca.2023.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades. DESIGN We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease. RESULTS Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns within OA-afflicted tissues. CONCLUSIONS Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients' clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Yolande Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada.
| |
Collapse
|
14
|
Sandhu A, Espin-Garcia O, Rockel JS, Lively S, Perry K, Mohamed NN, Raja Rampersaud Y, Perruccio AV, Robin Poole A, Gandhi R, Kapoor M. Association of synovial fluid and urinary C2C-HUSA levels with surgical outcomes post-total knee arthroplasty. Osteoarthritis Cartilage 2024; 32:98-107. [PMID: 37805006 DOI: 10.1016/j.joca.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES After total knee arthroplasty (TKA), ∼30% of knee osteoarthritis (KOA) patients show little symptomatic improvement. Earlier studies have correlated urinary (u) type 2 collagen C terminal cleavage peptide assay (C2C-HUSA), which detects a fragment of cartilage collagen breakdown, with KOA progression. This study determines whether C2C levels in urine, synovial fluid, or their ratio, are associated with post-surgical outcomes. METHODS From a large sample of 489 subjects, diagnosed with primary KOA undergoing TKA, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and function scores were collected at baseline (time of surgery) and one-year post-TKA. Baseline urine (u) and synovial fluid (sf) were analysed using the IBEX-C2C-HUSA assay, with higher values indicating higher amounts of cartilage degradation. For urine, results were normalised to creatinine. Furthermore, subjects' changes in WOMAC scores were categorised based on percent reduction in pain or improvement in function, compared to baseline, such that >66.7%, >33.3 to ≤66.7%, and ≤33.3% denoted "strong", "moderate" and "mild/worse" responses, respectively. Associations of individual biofluid C2C-HUSA levels, or their ratio, with change in WOMAC pain and function scores up to one-year post-TKA, or category of change, were analysed by linear, logistic, or cumulative odds models. RESULTS Higher baseline uC2C-HUSA levels or a lower ratio of baseline sfC2C-HUSA to uC2C-HUSA were associated with improvements in WOMAC pain by linear multivariable modelling [odds ratio -0.40 (95% confidence interval -0.76, -0.05) p = 0.03; 0.36 (0.01, 0.71), p = 0.04, respectively], while sfC2C-HUSA alone was not. However, lower ratios of sfC2C-HUSA to uC2C-HUSA were associated with improvements in WOMAC function [1.37 (0.18, 2.55), p = 0.02], while sfC2C-HUSA and uC2C-HUSA alone were not. Lower ratios of sfC2C-HUSA to uC2C-HUSA were also associated with an increased likelihood of a subject being categorised in a group where TKA was beneficial in both univariable [pain, 0.81 (0.68, 0.96), p = 0.02; function, 0.92 (0.85, 0.99), p = 0.035] and multivariable [pain, 0.81 (0.68, 0.97) p = 0.02; function, 0.92 (0.85, 1.00), p = 0.043] ordinal modelling, while sfC2C-HUSA and uC2C-HUSA alone were not. CONCLUSIONS Overall, ratios of baseline sfC2C-HUSA to uC2C-HUSA, and baseline uC2C-HUSA, may play an important role in studying post-TKA surgical outcomes.
Collapse
Affiliation(s)
- Amit Sandhu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada; Dalla Lana School of Public Health and Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jason S Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kimberly Perry
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nizar N Mohamed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Y Raja Rampersaud
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony V Perruccio
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - A Robin Poole
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebec, Canada
| | - Rajiv Gandhi
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Li J, Xu K, Cui Y, Xu T, Fei W, Lyu C, Yu Y, Yang L, Hong Y, Yang G. ECM1-associated miR-1260b promotes osteogenic differentiation by targeting GDI1. Acta Histochem 2024; 126:152133. [PMID: 38266317 DOI: 10.1016/j.acthis.2024.152133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Osteoporosis (OP) is a common disease among older adults. The promotion of osteoblast differentiation plays a crucial role in alleviating OP symptoms. Extracellular matrix protein 1 (ECM1) has been reported to be closely associated with osteogenic differentiation. In this study, we constructed U2OS cell lines with ECM1 knockdown and ECM1a overexpression based on knockdown, and identified the target miRNA (miR-1260b) by sequencing. Overexpression of miR-1260b promoted the osteogenic differentiation of U2OS and MG63 cells, as demonstrated by increased alkaline phosphatase (ALP) activity, matrix mineralization, and Runt-Related Transcription Factor 2 (RUNX2), Osteopontin (OPN), Collagen I (COL1A1), and Osteocalcin (OCN) protein expressions, whereas low expression of miR-1260b had the opposite effect. In addition, miR-1260b expression was decreased in OP patients than in non-OP patients. Next, we predicted the target gene of miRNA through TargetScan and miRDB and found that miR-1260b negatively regulated GDP dissociation inhibitor 1 (GDI1) by directly binding to its 3'-untranslated region. Subsequent experiments revealed that GDI1 overexpression decreased ALP activity and calcium deposit, reduced RUNX2, OPN, COL1A1, and OCN expression levels, and reversed the effects of miR-1260b on osteogenic differentiation. In conclusion, ECM1-related miR-1260b promotes osteogenic differentiation by targeting GDI1 in U2OS and MG63 cells. Thus, this study has significant implication for osteoporosis treatment.
Collapse
Affiliation(s)
- Jiangxia Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Ke Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai 200040, China; Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
| | - Yunqing Cui
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Tianyuan Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai 200040, China; Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
| | - Cuiting Lyu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Yinjue Yu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Lina Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Yang Hong
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai 200040, China; Center of Community-Based Health Research, Fudan University, Shanghai 200240, China.
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
16
|
Tavasolian F, Lively S, Pastrello C, Tang M, Lim M, Pacheco A, Qaiyum Z, Yau E, Baskurt Z, Jurisica I, Kapoor M, Inman RD. Proteomic and genomic profiling of plasma exosomes from patients with ankylosing spondylitis. Ann Rheum Dis 2023; 82:1429-1443. [PMID: 37532285 DOI: 10.1136/ard-2022-223791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Recent advances in understanding the biology of ankylosing spondylitis (AS) using innovative genomic and proteomic approaches offer the opportunity to address current challenges in AS diagnosis and management. Altered expression of genes, microRNAs (miRNAs) or proteins may contribute to immune dysregulation and may play a significant role in the onset and persistence of inflammation in AS. The ability of exosomes to transport miRNAs across cells and alter the phenotype of recipient cells has implicated exosomes in perpetuating inflammation in AS. This study reports the first proteomic and miRNA profiling of plasma-derived exosomes in AS using comprehensive computational biology analysis. METHODS Plasma samples from patients with AS and healthy controls (HC) were isolated via ultracentrifugation and subjected to extracellular vesicle flow cytometry analysis to characterise exosome surface markers by a multiplex immunocapture assay. Cytokine profiling of plasma-derived exosomes and cell culture supernatants was performed. Next-generation sequencing was used to identify miRNA populations in exosomes enriched from plasma fractions. CD4+ T cells were sorted, and the frequency and proliferation of CD4+ T-cell subsets were analysed after treatment with AS-exosomes using flow cytometry. RESULTS The expression of exosome marker proteins CD63 and CD81 was elevated in the patients with AS compared with HC (q<0.05). Cytokine profiling in plasma-derived AS-exosomes demonstrated downregulation of interleukin (IL)-8 and IL-10 (q<0.05). AS-exosomes cocultured with HC CD4+ T cells induced significant upregulation of IFNα2 and IL-33 (q<0.05). Exosomes from patients with AS inhibited the proliferation of regulatory T cells (Treg), suggesting a mechanism for chronically activated T cells in this disease. Culture of CD4+ T cells from healthy individuals in the presence of AS-exosomes reduced the proliferation of FOXP3+ Treg cells and decreased the frequency of FOXP3+IRF4+ Treg cells. miRNA sequencing identified 24 differentially expressed miRNAs found in circulating exosomes of patients with AS compared with HC; 22 of which were upregulated and 2 were downregulated. CONCLUSIONS Individuals with AS have different immunological and genetic profiles, as determined by evaluating the exosomes of these patients. The inhibitory effect of exosomes on Treg in AS suggests a mechanism contributing to chronically activated T cells in this disease.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Addison Pacheco
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Enoch Yau
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zeynep Baskurt
- Department of Biostatistics, Princess Margaret Cancer Center, 610 University Ave, Toronto, Ontario, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery and Department of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Cheleschi S, Veronese N, Carta S, Collodel G, Bottaro M, Moretti E, Corsaro R, Barbarino M, Fioravanti A. MicroRNA as Possible Mediators of the Synergistic Effect of Celecoxib and Glucosamine Sulfate in Human Osteoarthritic Chondrocyte Exposed to IL-1β. Int J Mol Sci 2023; 24:14994. [PMID: 37834442 PMCID: PMC10573984 DOI: 10.3390/ijms241914994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1β (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1β. The transfection with miRNA specific inhibitors significantly counteracted the IL-1β activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators.
Collapse
Affiliation(s)
- Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Viale Scaduto, 90100 Palermo, Italy
| | - Serafino Carta
- Section of Orthopedics and Traumatology, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
18
|
Sandhu A, Rockel JS, Lively S, Kapoor M. Emerging molecular biomarkers in osteoarthritis pathology. Ther Adv Musculoskelet Dis 2023; 15:1759720X231177116. [PMID: 37359177 PMCID: PMC10288416 DOI: 10.1177/1759720x231177116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis resulting in joint discomfort and disability, culminating in decline in life quality. Attention has been drawn in recent years to disease-associated molecular biomarkers found in readily accessible biofluids due to low invasiveness of acquisition and their potential to detect early pathological molecular changes not observed with traditional imaging methodology. These biochemical markers of OA have been found in synovial fluid, blood, and urine. They include emerging molecular classes, such as metabolites and noncoding RNAs, as well as classical biomarkers, like inflammatory mediators and by-products of degradative processes involving articular cartilage. Although blood-based biomarkers tend to be most studied, the use of synovial fluid, a more isolated biofluid in the synovial joint, and urine as an excreted fluid containing OA biomarkers can offer valuable information on local and overall disease activity, respectively. Furthermore, larger clinical studies are required to determine relationships between biomarkers in different biofluids, and their impacts on patient measures of OA. This narrative review provides a concise overview of recent studies of OA using these four classes of biomarkers as potential biomarker for measuring disease incidence, staging, prognosis, and therapeutic intervention efficacy.
Collapse
Affiliation(s)
- Amit Sandhu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jason S. Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5th Floor Krembil Discovery Tower, Toronto, ON M5G 2C4, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Wilson TG, Baghel M, Kaur N, Moutzouros V, Davis J, Ali SA. Characterization of miR-335-5p and miR-335-3p in human osteoarthritic tissues. Arthritis Res Ther 2023; 25:105. [PMID: 37328905 PMCID: PMC10273720 DOI: 10.1186/s13075-023-03088-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVE We aimed to characterize the expression patterns, gene targets, and functional effects of miR-335-5p and miR-335-3p among seven primary human knee and hip osteoarthritic tissue types. METHODS We collected synovial fluid, subchondral bone, articular cartilage, synovium, meniscus/labrum, infrapatellar/acetabular fat, anterior cruciate ligament/ligamentum teres, and vastus medialis oblique/quadratus femoris muscle (n = 7-20) from surgical patients with early- or late-stage osteoarthritis (OA) and quantified miR-335-5p and miR-335-3p expression by real-time PCR. Predicted gene targets were measured in knee OA infrapatellar fat following miRNA inhibitor transfection (n = 3), and prioritized gene targets were validated following miRNA inhibitor and mimic transfection (n = 6). Following pathway analyses, we performed Oil-Red-O staining to assess changes in total lipid content in infrapatellar fat. RESULTS Showing a 227-fold increase in knee OA infrapatellar fat (the highest expressing tissue) versus meniscus (the lowest expressing tissue), miR-335-5p was more abundant than miR-335-3p (92-fold increase). MiR-335-5p showed higher expression across knee tissues versus hip tissues, and in late-stage versus early-stage knee OA fat. Exploring candidate genes, VCAM1 and MMP13 were identified as putative direct targets of miR-335-5p and miR-335-3p, respectively, showing downregulation with miRNA mimic transfection. Exploring candidate pathways, predicted miR-335-5p gene targets were enriched in a canonical adipogenesis network (p = 2.1e - 5). Modulation of miR-335-5p in late-stage knee OA fat showed an inverse relationship to total lipid content. CONCLUSION Our data suggest both miR-335-5p and miR-335-3p regulate gene targets in late-stage knee OA infrapatellar fat, though miR-335-5p appears to be more prominent, with tissue-, joint-, and stage-specific effects.
Collapse
Affiliation(s)
- Thomas G Wilson
- Bone and Joint Center, Henry Ford Health, 6135 Woodward Avenue, Detroit, MI, 48202, USA
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Madhu Baghel
- Bone and Joint Center, Henry Ford Health, 6135 Woodward Avenue, Detroit, MI, 48202, USA
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Navdeep Kaur
- Bone and Joint Center, Henry Ford Health, 6135 Woodward Avenue, Detroit, MI, 48202, USA
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | | | - Jason Davis
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Shabana Amanda Ali
- Bone and Joint Center, Henry Ford Health, 6135 Woodward Avenue, Detroit, MI, 48202, USA.
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA.
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
20
|
Li Z, Lu J. CircRNAs in osteoarthritis: research status and prospect. Front Genet 2023; 14:1173812. [PMID: 37229197 PMCID: PMC10203419 DOI: 10.3389/fgene.2023.1173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease globally, and its progression is irreversible. The mechanism of osteoarthritis is not fully understood. Research on the molecular biological mechanism of OA is deepening, among which epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical target and biomarker. Many studies have found that circRNAs play an essential role in the progression of OA, including extracellular matrix metabolism, autophagy, apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress, cartilage development, and chondrogenic differentiation. Differential expression of circRNAs was also observed in the synovium and subchondral bone in the OA joint. In terms of mechanism, existing studies have mainly found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few studies have found that circRNA can serve as a scaffold for protein reactions. In terms of clinical transformation, circRNAs are considered promising biomarkers, but no large cohort has tested their diagnostic value. Meanwhile, some studies have used circRNAs loaded in extracellular vesicles for OA precision medicine. However, there are still many problems to be solved in the research, such as the role of circRNA in different OA stages or OA subtypes, the construction of animal models of circRNA knockout, and more research on the mechanism of circRNA. In general, circRNAs have a regulatory role in OA and have particular clinical potential, but further studies are needed in the future.
Collapse
Affiliation(s)
- Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Smith MD, Leemaqz SY, Jankovic-Karasoulos T, McCullough D, McAninch D, Arthurs AL, Breen J, Roberts CT, Pillman KA. DraculR: A Web-Based Application for In Silico Haemolysis Detection in High-Throughput microRNA Sequencing Data. Genes (Basel) 2023; 14:448. [PMID: 36833375 PMCID: PMC9957079 DOI: 10.3390/genes14020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The search for novel microRNA (miRNA) biomarkers in plasma is hampered by haemolysis, the lysis and subsequent release of red blood cell contents, including miRNAs, into surrounding fluid. The biomarker potential of miRNAs comes in part from their multicompartment origin and the long-lived nature of miRNA transcripts in plasma, giving researchers a functional window for tissues that are otherwise difficult or disadvantageous to sample. The inclusion of red-blood-cell-derived miRNA transcripts in downstream analysis introduces a source of error that is difficult to identify posthoc and may lead to spurious results. Where access to a physical specimen is not possible, our tool will provide an in silico approach to haemolysis prediction. We present DraculR, an interactive Shiny/R application that enables a user to upload miRNA expression data from a short-read sequencing of human plasma as a raw read counts table and interactively calculate a metric that indicates the degree of haemolysis contamination. The code, DraculR web tool and its tutorial are freely available as detailed herein.
Collapse
Affiliation(s)
- Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Shalem Y. Leemaqz
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Tanja Jankovic-Karasoulos
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Anya L. Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA 5000, Australia
- College of Health & Medicine, Australian National University, Canberra, ACT 2600, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Katherine A. Pillman
- Centre for Cancer Biology, an Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Huang L, Jin M, Gu R, Xiao K, Lu M, Huo X, Sun M, Yang Z, Wang Z, Zhang W, Zhi L, Meng Z, Ma J, Ma J, Zhang R. miR-199a-5p Reduces Chondrocyte Hypertrophy and Attenuates Osteoarthritis Progression via the Indian Hedgehog Signal Pathway. J Clin Med 2023; 12:jcm12041313. [PMID: 36835852 PMCID: PMC9959662 DOI: 10.3390/jcm12041313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Osteoarthritis (OA), the most common type of arthritis, is an age-associated disease, characterized by the progressive degradation of articular cartilage, synovial inflammation, and degeneration of subchondral bone. Chondrocyte proliferation is regulated by the Indian hedgehog (IHH in humans, Ihh in animals) signaling molecule, which regulates hypertrophy and endochondral ossification in the development of the skeletal system. microRNAs (miRNAs, miRs) are a family of about 22-nucleotide endogenous non-coding RNAs, which negatively regulate gene expression. In this study, the expression level of IHH was upregulated in the damaged articular cartilage tissues among OA patients and OA cell cultures, while that of miR-199a-5p was the opposite. Further investigations demonstrated that miR-199a-5p could directly regulate IHH expression and reduce chondrocyte hypertrophy and matrix degradation via the IHH signal pathway in the primary human chondrocytes. The intra-articular injection of synthetic miR-199a-5p agomir attenuated OA symptoms in rats, including the alleviation of articular cartilage destruction, subchondral bone degradation, and synovial inflammation. The miR-199a-5p agomir could also inhibit the Ihh signaling pathway in vivo. This study might help in understanding the role of miR-199a-5p in the pathophysiology and molecular mechanisms of OA and indicate a potential novel therapeutic strategy for OA patients.
Collapse
Affiliation(s)
- Lei Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Meng Jin
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ruiying Gu
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Kunlin Xiao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Mengnan Lu
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Xinyu Huo
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Mengyao Sun
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhiyuan Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Weijie Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ziang Meng
- Department of Mathematics and Computing Science, Simon Fraser University, Vancouver, BC V6B 5K3, Canada
| | - Jie Ma
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (J.M.); (R.Z.)
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (J.M.); (R.Z.)
| |
Collapse
|
23
|
Wang S, Hu M, Song D, Tang L, Jiang H. Research progress on the role and mechanism of miR-671 in bone metabolism and bone-related diseases. Front Oncol 2023; 12:1018308. [PMID: 36713572 PMCID: PMC9876598 DOI: 10.3389/fonc.2022.1018308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Bone metabolism consists of bone formation and resorption and maintains a dynamic balance in vivo. When bone homeostasis is broken, it can manifest as osteoarthritis (OA), rheumatoid arthritis (RA), osteosarcoma (OS), etc. MiR-671, an important class of non-coding nucleotide sequences in vivo, is regulated by lncRNA and regulates bone metabolism balance by regulating downstream target proteins and activating various signaling pathways. Based on the structure and primary function of miR-671, this paper summarizes the effect and mechanism of miR-671 in bone-related inflammation and cancer diseases, and prospects the application possibility of miR-671, providing reference information for targeted therapy of bone-related disorders.
Collapse
Affiliation(s)
- Shaotai Wang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China,*Correspondence: Min Hu, ; Huan Jiang,
| | - Dongsheng Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Linjun Tang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huan Jiang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China,*Correspondence: Min Hu, ; Huan Jiang,
| |
Collapse
|
24
|
Ghafouri-Fard S, Askari A, Hussen BM, Rasul MF, Hatamian S, Taheri M, Kiani A. A review on the role of miR-671 in human disorders. Front Mol Biosci 2022; 9:1077968. [PMID: 36545507 PMCID: PMC9760869 DOI: 10.3389/fmolb.2022.1077968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
miR-671 is encoded by a gene on 7q36.1 and contributes to the pathogenesis of a variety of disorders, including diverse types of cancers, atherosclerosis, ischemic stroke, liver fibrosis, osteoarthritis, Parkinson's disease, rheumatoid arthritis, acute myocardial infarction and Crohn's disease. In the context of cancer, different studies have revealed opposite roles for this miRNA. In brief, it has been shown to be down-regulated in pancreatic ductal carcinoma, ovarian cancer, gastric cancer, osteosarcoma, esophageal squamous cell carcinoma and myelodysplastic syndromes. Yet, miR-671 has been up-regulated in glioma, colorectal cancer, prostate cancer and hepatocellular carcinoma. Studies in breast, lung and renal cell carcinoma have reported inconsistent results. The current review aims at summarization of the role of miR-671 in these disorders focusing on its target mRNA in each context and dysregulated signaling pathways. We also provide a summary of the role of this miRNA as a prognostic factor in malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq,Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Sevak Hatamian
- Department of Anesthesia, Shahid Madani Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| | - Arda Kiani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| |
Collapse
|
25
|
Hauschild AC, Pastrello C, Ekaputeri G, Bethune-Waddell D, Abovsky M, Ahmed Z, Kotlyar M, Lu R, Jurisica I. MirDIP 5.2: tissue context annotation and novel microRNA curation. Nucleic Acids Res 2022; 51:D217-D225. [PMID: 36453996 PMCID: PMC9825511 DOI: 10.1093/nar/gkac1070] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
MirDIP is a well-established database that aggregates microRNA-gene human interactions from multiple databases to increase coverage, reduce bias, and improve usability by providing an integrated score proportional to the probability of the interaction occurring. In version 5.2, we removed eight outdated resources, added a new resource (miRNATIP), and ran five prediction algorithms for miRBase and mirGeneDB. In total, mirDIP 5.2 includes 46 364 047 predictions for 27 936 genes and 2734 microRNAs, making it the first database to provide interactions using data from mirGeneDB. Moreover, we curated and integrated 32 497 novel microRNAs from 14 publications to accelerate the use of these novel data. In this release, we also extend the content and functionality of mirDIP by associating contexts with microRNAs, genes, and microRNA-gene interactions. We collected and processed microRNA and gene expression data from 20 resources and acquired information on 330 tissue and disease contexts for 2657 microRNAs, 27 576 genes and 123 651 910 gene-microRNA-tissue interactions. Finally, we improved the usability of mirDIP by enabling the user to search the database using precursor IDs, and we integrated miRAnno, a network-based tool for identifying pathways linked to specific microRNAs. We also provide a mirDIP API to facilitate access to its integrated predictions. Updated mirDIP is available at https://ophid.utoronto.ca/mirDIP.
Collapse
Affiliation(s)
| | | | - Gitta Kirana Anindya Ekaputeri
- Department of Medical Informatics, University Medical Center Göttingen, Georg-August University, Göttingen, Lower Saxony 37075, Germany
| | - Dylan Bethune-Waddell
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
| | - Zuhaib Ahmed
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
| | - Richard Lu
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto M5T 0S8, Canada
| | - Igor Jurisica
- To whom correspondence should be addressed. Tel: +1 416 581 7437;
| |
Collapse
|
26
|
Yamazaki A, Tomo Y, Eto H, Tanegashima K, Edamura K. A pilot study of microRNA assessment as a means to identify novel biomarkers of spontaneous osteoarthritis in dogs. Sci Rep 2022; 12:18152. [PMID: 36307470 PMCID: PMC9616959 DOI: 10.1038/s41598-022-22362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/13/2022] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are important regulators of intercellular signaling and are promising biomarkers in osteoarthritis (OA). In this study, comprehensive analysis was performed to identify miRNAs involved in the pathogenesis of spontaneous OA in dogs. Dogs diagnosed with OA based on radiography and arthroscopy of the stifle joint were included in the OA group. Dogs without any evidence of orthopedic disease were included in the unaffected group. To investigate miRNA expression levels, RNA sequencing analysis (RNA-seq) was performed in synovial tissue (OA group: n = 3, Unaffected group: n = 3) and RT-qPCR was performed in synovial tissue, synovial fluid and serum (OA group: n = 17, Unaffected group: n = 6), and compared between the two groups. The RNA-seq results showed that 57 miRNAs were significantly upregulated and 42 were significantly downregulated in the OA group. Specifically, miR-542 and miR-543 expression levels in the synovial tissue, synovial fluid, and serum were consistently higher in the OA group than in the unaffected group, suggesting that these miRNAs may be used as biomarkers for detecting canine OA. This is the first report to comprehensively analyze the expression patterns of miRNAs in the synovial tissue of dogs with spontaneous OA.
Collapse
Affiliation(s)
- Atsushi Yamazaki
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Yuma Tomo
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Hinano Eto
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Koji Tanegashima
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kazuya Edamura
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa Japan
| |
Collapse
|
27
|
Lively S, Milliot M, Potla P, Espin-Garcia O, Layeghifard M, Sundararajan K, Endisha H, Nakamura A, Perruccio AV, Veillette C, Kapoor M, Rampersaud YR. Association of presurgical circulating MicroRNAs with 1-year postsurgical pain reduction in spine facet osteoarthritis patients with lumbar spinal stenosis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100283. [PMID: 36474943 PMCID: PMC9718249 DOI: 10.1016/j.ocarto.2022.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Up to 30% of spine facet osteoarthritis patients with lumbar spinal stenosis (SF-OA + LSS) have little to no improvement in their pain after surgery. Lack of meaningful improvement in pain following surgery provides a unique opportunity to identify specific predictive biomarker signatures that might be associated with the outcomes of surgical treatment. The objective of the present study was to determine whether a microRNA (miRNA) biomarker signature could be identified in presurgical blood plasma that corresponded with levels of SF-OA + LSS patient post-surgical pain intensity one year later. Methods RNA was extracted from baseline plasma of SF-OA + LSS patients and prepared for miRNA sequencing. Statistical approaches were performed to identify differentially expressed miRNAs associated with reduced 1-year postsurgical pain (n = 56). Using an integrated computational approach, we further created predicted gene and pathway networks for each identified miRNA. Results We identified a panel of 4 circulating candidate miRNAs (hsa-miR-155-5p, hsa-let-7e-5p, hsa-miR-125a-5p, hsa-miR-99b-5p) with higher levels at presurgical baseline that were associated with greater changes in % NPRS20Δ, reflecting reduced pain intensity levels at one year. Genes encoding hsa-let-7e-5p, hsa-miR-125a-5p, and hsa-miR-99b-5p are part of an evolutionarily conserved miRNA cluster. Using integrated computational analyses, we showed that mammalian target of rapamycin, transforming growth factor-β1 receptor, Wnt signaling, epithelial-mesenchymal transition regulators, and cholecystokinin signaling were enriched pathways of predicted gene targets. Conclusions Taken together, our findings suggest that 4 presurgical baseline circulating miRNAs correlate with 1-year postsurgical SF-OA + LSS patient pain intensity and represent possible candidate biomarker signature of surgical pain response.
Collapse
Affiliation(s)
- Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marie Milliot
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Pratibha Potla
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mehdi Layeghifard
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kala Sundararajan
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Helal Endisha
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Akihiro Nakamura
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Anthony V. Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Health Policy, Management & Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Christian Veillette
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, Division of Orthopaedic Surgery, University of Toronto, ON, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, Division of Orthopaedic Surgery, University of Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Y. Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Health Policy, Management & Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Anderson JR, Jacobsen S, Walters M, Bundgaard L, Diendorfer A, Hackl M, Clarke EJ, James V, Peffers MJ. Small non-coding RNA landscape of extracellular vesicles from a post-traumatic model of equine osteoarthritis. Front Vet Sci 2022; 9:901269. [PMID: 36003409 PMCID: PMC9393553 DOI: 10.3389/fvets.2022.901269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles comprise an as yet inadequately investigated intercellular communication pathway in the field of early osteoarthritis. We hypothesised that the small non-coding RNA expression pattern in synovial fluid and plasma would change during progression of experimental osteoarthritis. In this study, we conducted small RNA sequencing to provide a comprehensive overview of the temporal expression profiles of small non-coding transcripts carried by extracellular vesicles derived from plasma and synovial fluid for the first time in a posttraumatic model of equine osteoarthritis. Additionally, we characterised synovial fluid and plasma-derived extracellular vesicles with respect to quantity, size, and surface markers. The different temporal expressions of seven microRNAs in plasma and synovial fluid-derived extracellular vesicles, eca-miR-451, eca-miR-25, eca-miR-215, eca-miR-92a, eca-miR-let-7c, eca-miR-486-5p, and eca-miR-23a, and four snoRNAs, U3, snord15, snord46, and snord58, represent potential biomarkers for early osteoarthritis. Bioinformatics analysis of the differentially expressed microRNAs in synovial fluid highlighted that in early osteoarthritis these related to the inhibition of cell cycle, cell cycle progression, DNA damage and cell proliferation as well as increased cell viability and differentiation of stem cells. Plasma and synovial fluid-derived extracellular vesicle small non-coding signatures have been established for the first time in a temporal model of osteoarthritis. These could serve as novel biomarkers for evaluation of osteoarthritis progression or act as potential therapeutic targets.
Collapse
Affiliation(s)
- James R. Anderson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | | | - Emily J. Clarke
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Mandy J. Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
29
|
Wu Y, Li J, Zeng Y, Pu W, Mu X, Sun K, Peng Y, Shen B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022; 14:40. [PMID: 35927232 PMCID: PMC9352673 DOI: 10.1038/s41368-022-00187-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Smith MD, Leemaqz SY, Jankovic-Karasoulos T, McAninch D, McCullough D, Breen J, Roberts CT, Pillman KA. Haemolysis Detection in MicroRNA-Seq from Clinical Plasma Samples. Genes (Basel) 2022; 13:1288. [PMID: 35886071 PMCID: PMC9317737 DOI: 10.3390/genes13071288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
The abundance of cell-free microRNA (miRNA) has been measured in blood plasma and proposed as a source of novel, minimally invasive biomarkers for several diseases. Despite improvements in quantification methods, there is no consensus regarding how haemolysis affects plasma miRNA content. We propose a method for haemolysis detection in miRNA high-throughput sequencing (HTS) data from libraries prepared using human plasma. To establish a miRNA haemolysis signature we tested differential miRNA abundance between plasma samples with known haemolysis status. Using these miRNAs with statistically significant higher abundance in our haemolysed group, we further refined the set to reveal high-confidence haemolysis association. Given our specific context, i.e., women of reproductive age, we also tested for significant differences between pregnant and non-pregnant groups. We report a novel 20-miRNA signature used to identify the presence of haemolysis in silico in HTS miRNA-sequencing data. Further, we validated the signature set using firstly an all-male cohort (prostate cancer) and secondly a mixed male and female cohort (radiographic knee osteoarthritis). Conclusion: Given the potential for haemolysis contamination, we recommend that assays for haemolysis detection become standard pre-analytical practice and provide here a simple method for haemolysis detection.
Collapse
Affiliation(s)
- Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (S.Y.L.); (T.J.-K.); (D.M.); (C.T.R.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Shalem Y. Leemaqz
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (S.Y.L.); (T.J.-K.); (D.M.); (C.T.R.)
| | - Tanja Jankovic-Karasoulos
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (S.Y.L.); (T.J.-K.); (D.M.); (C.T.R.)
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (S.Y.L.); (T.J.-K.); (D.M.); (C.T.R.)
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA 5000, Australia;
- College of Health & Medicine, Australian National University, Canberra, ACT 2601, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (S.Y.L.); (T.J.-K.); (D.M.); (C.T.R.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Katherine A. Pillman
- Centre for Cancer Biology, University of South Australia/SA Pathology, Adelaide, SA 5000, Australia
| |
Collapse
|
31
|
Pentraxin 3 regulated by miR-224-5p modulates macrophage reprogramming and exacerbates osteoarthritis associated synovitis by targeting CD32. Cell Death Dis 2022; 13:567. [PMID: 35739102 PMCID: PMC9226026 DOI: 10.1038/s41419-022-04962-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/24/2022] [Accepted: 05/17/2022] [Indexed: 01/21/2023]
Abstract
Emerging evidence has shown an imbalance in M1/M2 macrophage polarization to play an essential role in osteoarthritis (OA) progression. However, the underlying mechanistic basis for this polarization is unknown. RNA sequencing of OA M1-polarized macrophages found highly expressed levels of pentraxin 3 (PTX3), suggesting a role for PTX3 in OA occurrence and development. Herein, PTX3 was found to be increased in the synovium and articular cartilage of OA patients and OA mice. Intra-articular injection of PTX3 aggravated, while PTX3 neutralization reversed synovitis and cartilage degeneration. No metabolic disorder or proteoglycan loss were observed in cartilage explants when treated with PTX3 alone. However, cartilage explants exhibited an OA phenotype when treated with culture supernatants of macrophages stimulated with PTX3, suggesting that PTX3 did not have a direct effect on chondrocytes. Therefore, the OA anti-chondrogenic effects of PTX3 are primarily mediated through macrophages. Mechanistically, PTX3 was upregulated by miR-224-5p deficiency, which activated the p65/NF-κB pathway to promote M1 macrophage polarization by targeting CD32. CD32 was expressed by macrophages, that when stimulated with PTX3, secreted abundant pro-inflammation cytokines that induced severe articular cartilage damage. The paracrine interaction between macrophages and chondrocytes produced a feedback loop that enhanced synovitis and cartilage damage. The findings of this study identified a functional pathway important to OA development. Blockade of this pathway and PTX3 may prevent and treat OA.
Collapse
|
32
|
Rockel JS, Layeghifard M, Rampersaud YR, Perruccio AV, Mahomed NN, Davey JR, Syed K, Gandhi R, Kapoor M. Identification of a differential metabolite-based signature in patients with late-stage knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100258. [DOI: 10.1016/j.ocarto.2022.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022] Open
|
33
|
Ali SA, Espin-Garcia O, Wong AK, Potla P, Pastrello C, McIntyre M, Lively S, Jurisica I, Gandhi R, Kapoor M. Circulating microRNAs differentiate fast-progressing from slow-progressing and non-progressing knee osteoarthritis in the Osteoarthritis Initiative cohort. Ther Adv Musculoskelet Dis 2022; 14:1759720X221082917. [PMID: 35321117 PMCID: PMC8935408 DOI: 10.1177/1759720x221082917] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/07/2022] [Indexed: 02/02/2023] Open
Abstract
Introduction The objective of this study is to identify circulating microRNAs that distinguish fast-progressing radiographic knee osteoarthritis (OA) in the Osteoarthritis Initiative cohort by applying microRNA-sequencing. Methods Participants with Kellgren-Lawrence (KL) grade 0/1 at baseline were included (N = 106). Fast-progressors were defined by an increase to KL 3/4 by 4-year follow-up (N = 20), whereas slow-progressors showed an increase to KL 2/3/4 only at 8-year follow-up (N = 35). Non-progressors remained at KL 0/1 by 8-year follow-up (N = 51). MicroRNA-sequencing was performed on plasma collected at baseline and 4-year follow-up from the same participants. Negative binomial models were fitted to identify differentially expressed (DE) microRNAs. Penalized logistic regression (PLR) analyses were performed to select combinations of DE microRNAs that distinguished fast-progressors. Area under the receiver operating characteristic curves (AUC) were constructed to evaluate predictive ability. Results DE analyses revealed 48 microRNAs at baseline and 2 microRNAs at 4-year follow-up [false discovery rate (FDR) < 0.05] comparing fast-progressors with both slow-progressors and non-progressors. Among these were hsa-miR-320b, hsa-miR-320c, hsa-miR-320d, and hsa-miR-320e, which were predicted to target gene families, including members of the 14-3-3 gene family, involved in signal transduction. PLR models included miR-320 members as top predictors of fast-progressors and yielded AUC ranging from 82.6 to 91.9, representing good accuracy. Conclusion The miR-320 family is associated with fast-progressing radiographic knee OA and merits further investigation as potential biomarkers and mechanistic drivers of knee OA.
Collapse
Affiliation(s)
- Shabana Amanda Ali
- Bone and Joint Center, Henry Ford Health System, 6135 Woodward Avenue, Detroit, MI, 48202, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Andy K. Wong
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Pratibha Potla
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Madison McIntyre
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics, Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rajiv Gandhi
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 2R1, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Departments of Surgery and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Chen S, Shi G, Zeng J, Li PH, Peng Y, Ding Z, Cao HQ, Zheng R, Wang W. MiR-1260b protects against LPS-induced degenerative changes in nucleus pulposus cells through targeting TCF7L2. Hum Cell 2022; 35:779-791. [PMID: 35165858 DOI: 10.1007/s13577-021-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/26/2021] [Indexed: 11/04/2022]
Abstract
Nucleus pulposus (NP) cells play a critical role in maintaining intervertebral disc integrity through producing the components of extracellular matrix (ECM). NP cell dysfunction, including senescence and hyper-apoptosis, has been regarded as critical events during intervertebral disc degeneration development. In the present study, we found that Transcription Factor 7-Like 2 (TCF7L2) was overexpressed within degenerative intervertebral disc tissue samples, and TCF7L2 silencing improved lipopolysaccharide (LPS)-induced repression on NP cell proliferation, ECM synthesis, and LPS-induced NP cell senescence. miR-1260b directly targeted TCF7L2 and inhibited TCF7L2 expression. miR-1260b overexpression improved LPS-induced degenerative changes in NP cells; more importantly, TCF7L2 overexpression significantly reversed the effects of miR-1260b overexpression on LPS-stimulated degenerative changes within NP cells. For the first time, we demonstrated the function of the miR-1260b/TCF7L2 axis on the phenotypic maintenance of chondrocyte-like NP cells and ECM synthesis by NP cells under LPS stimulation.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guixia Shi
- Department of Internal Medicine, Changsha Health Vocational Collage, Changsha, 410100, Hunan, China
| | - Jin Zeng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ping Huang Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Hong Qing Cao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
35
|
Young DA, Barter MJ, Soul J. Osteoarthritis year in review: genetics, genomics, epigenetics. Osteoarthritis Cartilage 2022; 30:216-225. [PMID: 34774787 PMCID: PMC8811265 DOI: 10.1016/j.joca.2021.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In this review, we have highlighted the advances over the past year in genetics, genomics and epigenetics in the field of osteoarthritis (OA). METHODS A literature search of PubMed was performed using the criteria: "osteoarthritis" and one of the following terms "genetic(s), genomic(s), epigenetic(s), polymorphism, noncoding ribonucleic acid (RNA), microRNA, long noncoding RNA, lncRNA, circular RNA, RNA sequencing (RNA-seq), single cell sequencing, transcriptomics, or deoxyribonucleic acid (DNA) methylation between April 01, 2020 and April 30, 2021. RESULTS In total we identified 765 unique publications, which eventually reduced to 380 of relevance to the field as judged by two assessors. Many of these studies included multiple search terms. We summarised advances relating to genetics, functional genetics, genomics and epigenetics, focusing on our personal key papers during the year. CONCLUSIONS This year few studies have identified new genetic variants contributing to OA susceptibility, but a focus has been on refining risk loci or their functional validation. The use of new technologies together with investigating the cross-talk between multiple tissue types, greater sample sizes and/or better patient classification (OA subtypes) will continue to increase our knowledge of disease mechanisms and progress towards understanding and treating OA.
Collapse
Affiliation(s)
- D A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - M J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - J Soul
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
36
|
Rego-Pérez I, Durán-Sotuela A, Ramos-Louro P, Blanco FJ. Genetic biomarkers in osteoarthritis: a quick overview. Fac Rev 2022; 10:78. [PMID: 35028644 PMCID: PMC8725648 DOI: 10.12703/r/10-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disease with a polygenic and heterogeneous nature. In addition, when clinical manifestations appear, the evolution of the disease is usually already irreversible. Therefore, the efforts on OA research are focused mainly on the discovery of therapeutic targets and reliable biomarkers that permit the early identification of different OA-related parameters such as diagnosis, prognosis, or phenotype identification. To date, potential candidate protein biomarkers have been associated with different aspects of the disease; however, there is currently no gold standard. In this sense, genomic data could act as complementary biomarkers of diagnosis and prognosis or even help to identify therapeutic targets of the disease. In this review, we will describe the most recent advances in genetic biomarkers in OA over the past three years.
Collapse
Affiliation(s)
- Ignacio Rego-Pérez
- Unidad de Genómica. Grupo de Investigación en Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC). C/ As Xubias de Arriba 84, 15006, A Coruña, España
| | - Alejandro Durán-Sotuela
- Unidad de Genómica. Grupo de Investigación en Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC). C/ As Xubias de Arriba 84, 15006, A Coruña, España
| | - Paula Ramos-Louro
- Unidad de Genómica. Grupo de Investigación en Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC). C/ As Xubias de Arriba 84, 15006, A Coruña, España
| | - Francisco J Blanco
- Unidad de Genómica. Grupo de Investigación en Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC). C/ As Xubias de Arriba 84, 15006, A Coruña, España
- Universidade da Coruña (UDC), Grupo de Investigación en Reumatología y Salud. Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, 15008, A Coruña, España
| |
Collapse
|
37
|
Castanheira CIGD, Anderson JR, Fang Y, Milner PI, Goljanek-Whysall K, House L, Clegg PD, Peffers MJ. Mouse microRNA signatures in joint ageing and post-traumatic osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100186. [PMID: 34977596 PMCID: PMC8683752 DOI: 10.1016/j.ocarto.2021.100186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This study investigated mice serum and joint microRNA expression profiles in ageing and osteoarthritis to elucidate the role of microRNAs in the development and progression of disease, and provide biomarkers for ageing and osteoarthritis. DESIGN Whole joints and serum samples were collected from C57BL6/J male mice and subjected to small RNA sequencing. Groups used included; surgically-induced post-traumatic osteoarthritis, (DMM; 24 months-old); sham surgery (24 months-old); old mice (18 months-old); and young mice (8 months-old). Differentially expressed microRNAs between the four groups were identified and validated using real-time quantitative PCR. MicroRNA differential expression data was used for target prediction and pathway analysis. RESULTS In joint tissues, miR-140-5p, miR-205-5p, miR-682, miR-208b-3p, miR-499-5p, miR-455-3p and miR-6238 were differentially expressed between young and old groups; miR-146a-5p, miR-3474, miR-615-3p and miR-151-5p were differentially expressed between DMM and Sham groups; and miR-652-3p, miR-23b-3p, miR-708-5p, miR-5099, miR-23a-3p, miR-214-3p, miR-6238 and miR-148-3p between the old and DMM groups. The number of differentially expressed microRNAs in serum was higher, some in common with joint tissues including miR-140-5p and miR-455-3p between young and old groups; and miR-23b-3p, miR-5099 and miR-6238 between old and DMM groups.We confirmed miR-140-5p, miR-499-5p and miR-455-3p expression to be decreased in old mouse joints compared to young, suggesting their potential use as biomarkers of joint ageing in mice. CONCLUSIONS MiR-140-5p, miR-499-5p and miR-455-3p could be used as joint ageing biomarkers in mice. Further research into these specific molecules in human tissues is now warranted to check their potential suitability as human biomarkers of ageing.
Collapse
Affiliation(s)
- Catarina I G D Castanheira
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - James R Anderson
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Peter I Milner
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Louise House
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Peter D Clegg
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Mandy J Peffers
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| |
Collapse
|
38
|
Izda V, Martin J, Sturdy C, Jeffries MA. DNA methylation and noncoding RNA in OA: Recent findings and methodological advances. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100208. [PMID: 35360044 PMCID: PMC8966627 DOI: 10.1016/j.ocarto.2021.100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by progressive loss of joint function. Historically, it has been characterized as a disease caused by mechanical trauma, so-called 'wear and tear'. Over the past two decades, it has come to be understood as a complex systemic disorder involving gene-environmental interactions. Epigenetic changes have been increasingly implicated. Recent improvements in microarray and next-generation sequencing (NGS) technologies have allowed for ever more complex evaluations of epigenetic aberrations associated with the development and progression of OA. Methods A systematic review was conducted in the Pubmed database. We curated studies that presented the results of DNA methylation and noncoding RNA research in human OA and OA animal models since 1985. Results Herein, we discuss recent findings and methodological advancements in OA epigenetics, including a discussion of DNA methylation, including microarray and NGS studies, and noncoding RNAs. Beyond cartilage, we also highlight studies in subchondral bone and peripheral blood mononuclear cells, which highlight widespread and potentially clinically important alterations in epigenetic patterns seen in OA patients. Finally, we discuss epigenetic editing approaches in the context of OA. Conclusions Although a substantial body of literature has already been published in OA, much is still unknown. Future OA epigenetics studies will no doubt continue to broaden our understanding of underlying pathophysiology and perhaps offer novel diagnostics and/or treatments for human OA.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Jake Martin
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, And Allergy, Oklahoma City, OK, USA
| |
Collapse
|
39
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Characterization and miRNA Profiling of Extracellular Vesicles from Human Osteoarthritic Subchondral Bone Multipotential Stromal Cells (MSCs). Stem Cells Int 2021; 2021:7232773. [PMID: 34667479 PMCID: PMC8520657 DOI: 10.1155/2021/7232773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a heterogeneous disease in which the cross-talk between the cells from different tissues within the joint is affected as the disease progresses. Extracellular vesicles (EVs) are known to have a crucial role in cell-cell communication by means of cargo transfer. Subchondral bone (SB) resident cells and its microenvironment are increasingly recognised to have a major role in OA pathogenesis. The aim of this study was to investigate the EV production from OA SB mesenchymal stromal cells (MSCs) and their possible influence on OA chondrocytes. Small EVs were isolated from OA-MSCs, characterized and cocultured with chondrocytes for viability and gene expression analysis, and compared to small EVs from MSCs of healthy donors (H-EVs). OA-EVs enhanced viability of chondrocytes and the expression of chondrogenesis-related genes, although the effect was marginally lower compared to that of the H-EVs. miRNA profiling followed by unsupervised hierarchical clustering analysis revealed distinct microRNA sets in OA-EVs as compared to their parental MSCs or H-EVs. Pathway analysis of OA-EV miRNAs showed the enrichment of miRNAs implicated in chondrogenesis, stem cells, or other pathways related to cartilage and OA. In conclusion, OA SB MSCs were capable of producing EVs that could support chondrocyte viability and chondrogenic gene expression and contained microRNAs implicated in chondrogenesis support. These EVs could therefore mediate the cross-talk between the SB and cartilage in OA potentially modulating chondrocyte viability and endogenous cartilage regeneration.
Collapse
|
41
|
Liu L, Zhao C, Zhang H, Lu Y, Luo B, Yao Z, Shao Y, Zeng H, Zeng C, Zhang R, Fang H, Pan J, Bai X, Cai D. Asporin regulated by miR-26b-5p mediates chondrocyte senescence and exacerbates osteoarthritis progression via TGF-β1/Smad2 pathway. Rheumatology (Oxford) 2021; 61:2631-2643. [PMID: 34559207 DOI: 10.1093/rheumatology/keab725] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the role and mechanism of asporin in modulating chondrocyte senescence in osteoarthritis (OA) pathology. METHODS Asporin and senescence-related hallmark expression were examined in human and experimental OA mouse cartilage samples. Twelve-week-old male C57 mice were administered with recombinant protein (rm-asporin)- or asporin-siRNA-expressing lentiviruses via intra-articular injection once a week after destabilization of the medial meniscus (DMM) surgery to induce OA. Cartilage damage was measured using the Osteoarthritis Research Society International score. Senescence-associated β-galactosidase (SA-βGal) staining, γH2AX, p21, and p16INK4a were analyzed by immunofluorescence staining and western blot to assess the specific role of asporin in chondrocyte senescence. The TGF-β1/Smad2 signaling pathway and miR-26b-5p were further evaluated to explore the mechanism of asporin in OA. RESULTS Asporin was upregulated in articular chondrocytes of OA patients and DMM mice and accompanied by accumulation of senescent cells. Asporin overexpression exaggerated OA progression, whereas silencing asporin restored chondrocyte homeostasis and deferred chondrocyte senescence, leading to markedly attenuated DMM-induced OA. Cellular and molecular analyses showed that asporin can be inhibited by miR-26b-5p, which was significantly downregulated in OA cartilage, leading to exacerbation of experimental OA partially through inhibition of TGF-β1/Smad2 signaling in chondrocytes. CONCLUSIONS Our findings indicate that asporin plays an essential role in chondrocyte senescence and OA pathogenesis. Upregulated by miR-26b-5p, asporin inhibits the TGF-β1/Smad2 pathway to accelerate chondrocyte senescence and exacerbate cartilage degeneration. Targeting the miR-26b-5p/asporin/Smad2 axis may serve as a practical therapeutic strategy to delay chondrocyte senescence and OA development.
Collapse
Affiliation(s)
- Liangliang Liu
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chang Zhao
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yuheng Lu
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Bingsheng Luo
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zihao Yao
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yan Shao
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hua Zeng
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Chun Zeng
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rongkai Zhang
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hang Fang
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jianying Pan
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiaochun Bai
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Daozhang Cai
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics•Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
42
|
Circulating MicroRNAs Highly Correlate to Expression of Cartilage Genes Potentially Reflecting OA Susceptibility-Towards Identification of Applicable Early OA Biomarkers. Biomolecules 2021; 11:biom11091356. [PMID: 34572569 PMCID: PMC8468331 DOI: 10.3390/biom11091356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Objective: To identify and validate circulating micro RNAs (miRNAs) that mark gene expression changes in articular cartilage early in osteoarthritis (OA) pathophysiology process. Methods: Within the ongoing RAAK study, human preserved OA cartilage and plasma (N = 22 paired samples) was collected for RNA sequencing (respectively mRNA and miRNA). Spearman correlation was determined for 114 cartilage genes consistently and significantly differentially expressed early in osteoarthritis and 384 plasma miRNAs. Subsequently, the minimal number of circulating miRNAs serving to discriminate between progressors and non-progressors was assessed by regression analysis and area under receiver operating curves (AUC) was calculated with progression data and plasma miRNA sequencing from the GARP study (N = 71). Results: We identified strong correlations (ρ ≥ |0.7|) among expression levels of 34 unique plasma miRNAs and 21 genes, including 4 genes that correlated with multiple miRNAs. The strongest correlation was between let-7d-5p and EGFLAM (ρ = −0.75, P = 6.9 × 10−5). Regression analysis of the 34 miRNAs resulted in a set of 7 miRNAs that, when applied to the GARP study, demonstrated clinically relevant predictive value with AUC > 0.8 for OA progression over 2 years and near-clinical value for progression over 5 years- (AUC = 0.8). Conclusions: We show that plasma miRNAs levels reflect gene expression levels in cartilage and can be exploited to represent ongoing pathophysiological processes in articular cartilage. We advocate that identified signature of 7 plasma miRNAs can contribute to direct further studies toward early biomarkers predictive for progression of osteoarthritis over 2 and 5 years.
Collapse
|
43
|
Meulenbelt I, Ramos YFM, Baglio SR, Pegtel DM. Censoring exosomal crosstalk in osteoarthritis. NATURE AGING 2021; 1:332-334. [PMID: 37117594 DOI: 10.1038/s43587-021-00052-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - S Rubina Baglio
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Ali SA, Pastrello C, Kaur N, Peffers MJ, Ormseth MJ, Jurisica I. A Network Biology Approach to Understanding the Tissue-Specific Roles of Non-Coding RNAs in Arthritis. Front Endocrinol (Lausanne) 2021; 12:744747. [PMID: 34803912 PMCID: PMC8595833 DOI: 10.3389/fendo.2021.744747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
Discovery of non-coding RNAs continues to provide new insights into some of the key molecular drivers of musculoskeletal diseases. Among these, microRNAs have received widespread attention for their roles in osteoarthritis and rheumatoid arthritis. With evidence to suggest that long non-coding RNAs and circular RNAs function as competing endogenous RNAs to sponge microRNAs, the net effect on gene expression in specific disease contexts can be elusive. Studies to date have focused on elucidating individual long non-coding-microRNA-gene target axes and circular RNA-microRNA-gene target axes, with a paucity of data integrating experimentally validated effects of non-coding RNAs. To address this gap, we curated recent studies reporting non-coding RNA axes in chondrocytes from human osteoarthritis and in fibroblast-like synoviocytes from human rheumatoid arthritis. Using an integrative computational biology approach, we then combined the findings into cell- and disease-specific networks for in-depth interpretation. We highlight some challenges to data integration, including non-existent naming conventions and out-of-date databases for non-coding RNAs, and some successes exemplified by the International Molecular Exchange Consortium for protein interactions. In this perspective article, we suggest that data integration is a useful in silico approach for creating non-coding RNA networks in arthritis and prioritizing interactions for further in vitro and in vivo experimentation in translational research.
Collapse
Affiliation(s)
- Shabana Amanda Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- *Correspondence: Shabana Amanda Ali, ; Igor Jurisica,
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Navdeep Kaur
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, United States
| | - Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michelle J. Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, United States
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Shabana Amanda Ali, ; Igor Jurisica,
| |
Collapse
|