1
|
Ren L, Okimura K, Ishikawa A, Kon N, Shimba S, Yoshimura T. The role of circadian clock gene Arntl in the winter depression-like behavior in melatonin-proficient female CBA/N mice. Biochem Biophys Res Commun 2024; 734:150790. [PMID: 39369541 DOI: 10.1016/j.bbrc.2024.150790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Seasonal affective disorder (SAD), also known as winter depression, is a subtype of depression typically manifesting in winter. Typical symptoms of SAD, such as an increased need for sleep and carbohydrate cravings associated with increased appetite and weight, are distinct from those of major depression, and the underlying mechanisms of SAD remain unclear. Although laboratory mice are generally considered non-seasonal animals, we observed depression-like behaviors in melatonin-proficient female CBA/N mice maintained under winter-mimicking conditions. Transcriptome analysis of the brains of CBA/N mice maintained under winter- and summer-mimicking conditions revealed changes in the expression of circadian clock genes, including Arntl (also known as Bmal1). We generated Arntl-deficient, melatonin-proficient CBA/N mice using the speed congenic method to examine the role of Arntl in depressive behavior. The tail suspension test in these mice revealed a depressive phenotype. These results suggested that the circadian clock gene Arntl may be involved in winter depression-like behavior.
Collapse
Affiliation(s)
- Liang Ren
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Kousuke Okimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Akira Ishikawa
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Naohiro Kon
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan; Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
2
|
Salvadori L, Paiella M, Castiglioni B, Belladonna ML, Manenti T, Ercolani C, Cornioli L, Clemente N, Scircoli A, Sardella R, Tensi L, Astolfi A, Barreca ML, Chiappalupi S, Gentili G, Bosetti M, Sorci G, Filigheddu N, Riuzzi F. Equisetum arvense standardized dried extract hinders age-related osteosarcopenia. Biomed Pharmacother 2024; 174:116517. [PMID: 38574619 DOI: 10.1016/j.biopha.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Age-associated osteosarcopenia is an unresolved syndrome characterized by the concomitant loss of bone (osteopenia) and skeletal muscle (sarcopenia) tissues increasing falls, immobility, morbidity, and mortality. Unbalanced resorption of bone in the remodeling process and excessive protein breakdown, especially fast type II myosin heavy chain (MyHC-II) isoform and myofiber metabolic shift, are the leading causes of bone and muscle deterioration in the elderly, respectively. Equisetum arvense (EQ) is a plant traditionally recommended for many pathological conditions due to its anti-inflammatory properties. Thus, considering that a chronic low-grade inflammatory state predisposes to both osteoporosis and sarcopenia, we tested a standardized hydroalcoholic extract of EQ in in vitro models of muscle atrophy [C2C12 myotubes treated with proinflammatory cytokines (TNFα/IFNγ), excess glucocorticoids (dexamethasone), or the osteokine, receptor activator of nuclear factor kappa-B ligand (RANKL)] and osteoclastogenesis (RAW 264.7 cells treated with RANKL). We found that EQ counteracted myotube atrophy, blunting the activity of several pathways depending on the applied stimulus, and reduced osteoclast formation and activity. By in silico target fishing, IKKB-dependent nuclear factor kappa-B (NF-κB) inhibition emerges as a potential common mechanism underlying EQ's anti-atrophic effects. Consumption of EQ (500 mg/kg/day) by pre-geriatric C57BL/6 mice for 3 months translated into: i) maintenance of muscle mass and performance; ii) restrained myofiber oxidative shift; iii) slowed down age-related modifications in osteoporotic bone, significantly preserving trabecular connectivity density; iv) reduced muscle- and spleen-related inflammation. EQ can preserve muscle functionality and bone remodeling during aging, potentially valuable as a natural treatment for osteosarcopenia.
Collapse
Affiliation(s)
- Laura Salvadori
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Martina Paiella
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Beatrice Castiglioni
- Department Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | | | | | | | - Luca Cornioli
- Laboratori Biokyma srl, Anghiari, Arezzo 52031, Italy
| | - Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara 28100, Italy
| | - Andrea Scircoli
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | | | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Giulia Gentili
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Michela Bosetti
- Department Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Francesca Riuzzi
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy.
| |
Collapse
|
3
|
Greisen SR, Kragstrup TW, Thomsen JS, Hørslev-Pedersen K, Hetland ML, Stengaard-Pedersen K, Østergaard M, Ørnbjerg L, Junker P, Sharpe AH, Freeman GJ, Hvid M, Moestrup SK, Hauge EM, Deleuran B. The Programmed Death-1 Pathway Counter-Regulates Inflammation-Induced Osteoclast Activity in Clinical and Experimental Settings. Front Immunol 2022; 13:773946. [PMID: 35356000 PMCID: PMC8959817 DOI: 10.3389/fimmu.2022.773946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
Objective The programmed death-1 (PD-1) pathway is essential for maintaining self-tolerance and plays an important role in autoimmunity, including rheumatoid arthritis (RA). Here, we investigated how membrane-bound and soluble (s)PD-1 influence bone homeostasis during chronic inflammation, exemplified in RA. Methods Bone mineral density and bone microstructure were examined in PD-1 and PD-L1 knockout (KO) mice and compared with wild-type (WT) mice. Receptor activator of nuclear factor kappa-B ligand (RANKL) was measured in serum, and the expression examined on activated bone marrow cells. Osteoclast formation was examined in cells from murine spleen and bone marrow and from human synovial fluid cells. sPD-1 was measured in chronic and early (e)RA patients and correlated to markers of disease activity and radiographic scores. Results PD-1 and PD-L1 KO mice showed signs of osteoporosis. This was supported by a significantly reduced trabecular bone volume fraction and deteriorated microstructure, as well as increased osteoclast formation and an increased RANKL/OPG ratio. The recombinant form of sPD-1 decreased osteoclast formation in vitro, but was closely associated with disease activity markers in eRA patients. Sustained elevated sPD-1 levels indicated ongoing inflammation and were associated with increased radiographic progression. Conclusion The PD-1 pathway is closely associated with bone homeostasis, and lacking members of this pathway causes a deteriorated bone structure. The immunological balance in the microenvironment determines how the PD-1 pathway regulates osteoclast formation. In eRA patients, sPD-1 may serve as a biomarker, reflecting residual but clinically silent disease activity and radiographic progression.
Collapse
Affiliation(s)
- Stinne R Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| | - Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| | | | - Kim Hørslev-Pedersen
- Danish Hospital for the Rheumatic Diseases , and University of Southern Denmark, Sonderborg, Denmark
| | - Merete Lund Hetland
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikkel Østergaard
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Ørnbjerg
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine , Aarhus University, Aarhus, Denmark
| | | | - Ellen Margrethe Hauge
- Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine , Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Machnicki AL, White CA, Meadows CA, McCloud D, Evans S, Thomas D, Hurley JD, Crow D, Chirchir H, Serrat MA. Altered IGF-I activity and accelerated bone elongation in growth plates precede excess weight gain in a mouse model of juvenile obesity. J Appl Physiol (1985) 2022; 132:511-526. [PMID: 34989650 PMCID: PMC8836718 DOI: 10.1152/japplphysiol.00431.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nearly one-third of children in the United States are overweight or obese by their preteens. Tall stature and accelerated bone elongation are characteristic features of childhood obesity, which cooccur with conditions such as limb bowing, slipped epiphyses, and fractures. Children with obesity paradoxically have normal circulating IGF-I, the major growth-stimulating hormone. Here, we describe and validate a mouse model of excess dietary fat to examine mechanisms of growth acceleration in obesity. We used in vivo multiphoton imaging and immunostaining to test the hypothesis that high-fat diet increases IGF-I activity and alters growth plate structure before the onset of obesity. We tracked bone and body growth in male and female C57BL/6 mice (n = 114) on high-fat (60% kcal fat) or control (10% kcal fat) diets from weaning (3 wk) to skeletal maturity (12 wk). Tibial and tail elongation rates increased after brief (1-2 wk) high-fat diet exposure without altering serum IGF-I. Femoral bone density and growth plate size were increased, but growth plates were disorganized in not-yet-obese high-fat diet mice. Multiphoton imaging revealed more IGF-I in the vasculature surrounding growth plates of high-fat diet mice and increased uptake when vascular levels peaked. High-fat diet growth plates had more activated IGF-I receptors and fewer inhibitory binding proteins, suggesting increased IGF-I bioavailability in growth plates. These results, which parallel pediatric growth patterns, highlight the fundamental role of diet in the earliest stages of developing obesity-related skeletal complications and validate the utility of the model for future studies aimed at determining mechanisms of diet-enhanced bone lengthening.NEW & NOTEWORTHY This paper validates a mouse model of linear growth acceleration in juvenile obesity. We demonstrate that high-fat diet induces rapid increases in bone elongation rate that precede excess weight gain and parallel pediatric growth. By imaging IGF-I delivery to growth plates in vivo, we reveal novel diet-induced changes in IGF-I uptake and activity. These results are important for understanding the sequelae of musculoskeletal complications that accompany advanced bone age and obesity in children.
Collapse
Affiliation(s)
- Allison L. Machnicki
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Cassaundra A. White
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chad A. Meadows
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Darby McCloud
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Sarah Evans
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Dominic Thomas
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - John D. Hurley
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Daniel Crow
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Habiba Chirchir
- 2Department of Biological Sciences, Marshall University, Huntington, West Virginia,3Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Maria A. Serrat
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
5
|
Wilson BM, Witkiewics BR, Voigt RM, Forysth CB, Keshavarzian A, Ko FC, Virdi AS, Sumner DR. Alcohol and Circadian Disruption Minimally Impact Bone Properties in Two Cohorts of Male Mice While Between‐Cohort Differences Predominate: Association With Season of Birth? JBMR Plus 2022; 6:e10591. [PMID: 35309863 PMCID: PMC8914150 DOI: 10.1002/jbm4.10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Brittany M Wilson
- Department of Anatomy and Cell Biology Rush University Medical Center Chicago IL USA
- Department of Orthopedic Surgery Rush University Medical Center Chicago IL USA
| | - Brittany R Witkiewics
- Department of Anatomy and Cell Biology Rush University Medical Center Chicago IL USA
| | - Robin M Voigt
- Department of Internal Medicine Rush University Medical Center Chicago IL USA
- Center for Integrated Microbiome and Chronobiology Research Rush University Medical Center Chicago IL USA
| | - Christopher B Forysth
- Department of Internal Medicine Rush University Medical Center Chicago IL USA
- Center for Integrated Microbiome and Chronobiology Research Rush University Medical Center Chicago IL USA
| | - Ali Keshavarzian
- Department of Internal Medicine Rush University Medical Center Chicago IL USA
- Center for Integrated Microbiome and Chronobiology Research Rush University Medical Center Chicago IL USA
| | - Frank C Ko
- Department of Anatomy and Cell Biology Rush University Medical Center Chicago IL USA
- Department of Orthopedic Surgery Rush University Medical Center Chicago IL USA
| | - Amarjit S Virdi
- Department of Anatomy and Cell Biology Rush University Medical Center Chicago IL USA
- Department of Orthopedic Surgery Rush University Medical Center Chicago IL USA
| | - D Rick Sumner
- Department of Anatomy and Cell Biology Rush University Medical Center Chicago IL USA
- Department of Orthopedic Surgery Rush University Medical Center Chicago IL USA
| |
Collapse
|
6
|
Nelson AJ, Roy SK, Warren K, Janike K, Thiele GM, Mikuls TR, Romberger DJ, Wang D, Swanson B, Poole JA. Sex differences impact the lung-bone inflammatory response to repetitive inhalant lipopolysaccharide exposures in mice. J Immunotoxicol 2018; 15:73-81. [PMID: 29648480 DOI: 10.1080/1547691x.2018.1460425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skeletal health consequences associated with inflammatory diseases of the airways significantly contribute to morbidity. Sex differences have been described independently for lung and bone diseases. Repetitive inhalant exposure to lipopolysaccharide (LPS) induces bone loss and deterioration in male mice, but comparison effects in females are unknown. Using an intranasal inhalation exposure model, 8-week-old C57BL/6 male and female mice were treated daily with LPS (100 ng) or saline for 3 weeks. Bronchoalveolar lavage fluids, lung tissues, tibias, bone marrow cells, and blood were collected. LPS-induced airway neutrophil influx, interleukin (IL)-6 and neutrophil chemoattractant levels, and bronchiolar inflammation were exaggerated in male animals as compared to female mice. Trabecular bone micro-CT imaging and analysis of the proximal tibia were conducted. Inhalant LPS exposures lead to deterioration of bone quality only in male mice (not females) marked by decreased bone mineral density, bone volume/tissue volume ratio, trabecular thickness and number, and increased bone surface-to-bone volume ratio. Serum pentraxin-2 levels were modulated by sex differences and LPS exposure. In proof-of-concept studies, ovarectomized female mice demonstrated LPS-induced bone deterioration, and estradiol supplementation of ovarectomized female mice and control male mice protected against LPS-induced bone deterioration findings. Collectively, sex-specific differences exist in LPS-induced airway inflammatory consequences with significant differences found in bone quantity and quality parameters. Male mice demonstrated susceptibility to bone loss and female animals were protected, which was modulated by estrogen. Therefore, sex differences influence the biologic response in the lung-bone inflammatory axis in response to inhalant LPS exposures.
Collapse
Affiliation(s)
- Amy J Nelson
- a Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Shyamal K Roy
- b Obstetrics and Gynecology Department , University of Nebraska Medical Center , Omaha , NE , USA
| | - Kristi Warren
- a Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Katherine Janike
- a Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA.,c Rheumatology Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Geoffrey M Thiele
- c Rheumatology Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA.,d Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha , NE , USA
| | - Ted R Mikuls
- c Rheumatology Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA.,d Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha , NE , USA
| | - Debra J Romberger
- a Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA.,d Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha , NE , USA
| | - Dong Wang
- e Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , NE , USA
| | - Benjamin Swanson
- f Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Jill A Poole
- a Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
7
|
André V, Gau C, Scheideler A, Aguilar-Pimentel JA, Amarie OV, Becker L, Garrett L, Hans W, Hölter SM, Janik D, Moreth K, Neff F, Östereicher M, Racz I, Rathkolb B, Rozman J, Bekeredjian R, Graw J, Klingenspor M, Klopstock T, Ollert M, Schmidt-Weber C, Wolf E, Wurst W, Gailus-Durner V, Brielmeier M, Fuchs H, Hrabé de Angelis M. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol 2018; 16:e2005019. [PMID: 29659570 PMCID: PMC5922977 DOI: 10.1371/journal.pbio.2005019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/27/2018] [Accepted: 03/09/2018] [Indexed: 01/03/2023] Open
Abstract
Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a “barren” regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl) and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions. Adequate housing of laboratory animals is essential to guarantee their well-being. From a scientific perspective, physically and mentally healthy animals also contribute to increased validity and reproducibility of experimental results. The choice of nesting material or shelter type, referred to as environmental enrichment, may influence how laboratory animals perform species-specific behaviors. Consequently, changes in these nesting and shelter materials could influence scientific results by, for example, increasing variability in measured characteristics. Whether studies using different environmental enrichment materials can be compared is currently questioned. Our study shows that simple, species-specific environmental enrichment in the form of nesting material alone or in combination with a shelter did not consistently increase variability of physiological parameters in mice. Differences in parameter average values appeared to be of minor biological relevance when compared to the effects of other environmental factors. These simple environmental enrichment devices may therefore be applied to improve the housing environment of laboratory mice without compromising data validity or comparability.
Collapse
Affiliation(s)
- Viola André
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- * E-mail:
| | - Christine Gau
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angelika Scheideler
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Juan A. Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oana V. Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M. Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dirk Janik
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela Östereicher
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ildiko Racz
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Freising-Weihenstephan, Germany
- ZIEL—Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Ollert
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University hospital, University of Southern Denmark, Odense C, Denmark
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München and Helmholtz Zentrum München, Munich, Germany and Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
- Technische Universität München, Freising-Weihenstephan, Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Neuherberg, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
8
|
Seldeen KL, Halley PG, Volmar CH, Rodríguez MA, Hernandez M, Pang M, Carlsson SK, Suva LJ, Wahlestedt C, Troen BR, Brothers SP. Neuropeptide Y Y2 antagonist treated ovariectomized mice exhibit greater bone mineral density. Neuropeptides 2018; 67:45-55. [PMID: 29129406 PMCID: PMC5805636 DOI: 10.1016/j.npep.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
Abstract
Osteoporosis, a disease characterized by progressive bone loss and increased risk of fracture, often results from menopausal loss of estrogen in women. Neuropeptide Y has been shown to negatively regulate bone formation, with amygdala specific deletion of the Y2 receptor resulting in increased bone mass in mice. In this study, ovariectomized (OVX) mice were injected once daily with JNJ-31020028, a brain penetrant Y2 receptor small molecule antagonist to determine the effects on bone formation. Antagonist treated mice had reduced weight and showed increased whole-body bone mineral density compared to vehicle-injected mice. Micro computerized tomography (micro-CT) demonstrated increased vertebral trabecular bone volume, connectivity density and trabecular thickness. Femoral micro-CT analysis revealed increased bone volume within trabecular regions and greater trabecular number, without significant difference in other parameters or within cortical regions. A decrease was seen in serum P1NP, a measure used to confirm positive treatment outcomes in bisphosphonate treated patients. C-terminal telopeptide 1 (CTX-1), a blood biomarker of bone resorption, was decreased in treated animals. The higher bone mineral density observed following Y2 antagonist treatment, as determined by whole-body DEXA scanning, is indicative of either enhanced mineralization or reduced bone loss. Additionally, our findings that ex vivo treatment of bone marrow cells with the Y2 antagonist did not affect osteoblast and osteoclast formation suggests the inhibitor is not affecting these cells directly, and suggests a central role for compound action in this system. Our results support the involvement of Y2R signalling in bone metabolism and give credence to the hypothesis that selective pharmacological manipulation of Y2R may provide anabolic benefits for treating osteoporosis.
Collapse
Affiliation(s)
- K L Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - P G Halley
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C H Volmar
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M A Rodríguez
- Bruce W. Carter VA Geriatric Research Education and Clinical Center (GRECC), Miami, FL, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Hernandez
- Bruce W. Carter VA Geriatric Research Education and Clinical Center (GRECC), Miami, FL, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - S K Carlsson
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - L J Suva
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, University of Arkansas Medical School, Little Rock, AR, USA
| | - C Wahlestedt
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - B R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - S P Brothers
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Abstract
Bone is an essential organ that not only confers structural stability to the organism, but also serves as a reservoir for hematopoietic elements and is thought to affect systemic homeostasis through the release of endocrine factors as well as calcium. The loss of bone mass due to an uncoupling of bone formation and bone resorption leads to increased fragility that can result in devastating fractures. Further understanding of the effects of environmental stimuli on the development of bone disease in humans is needed, and can be studied using animal models. In this chapter, we present established and novel methods for the induction of bone loss in mice, including manipulation of diet and environment, drug administration, irradiation, and hormone deficiency. All of these models are directly related to human cases, and can thus be used to investigate the causes of bone loss resulting from these interventions.
Collapse
Affiliation(s)
- Casey R Doucette
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough ME 04074, Tel: (207) 396-8003,
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough ME 04074, Tel: (207) 396-8228, ,
| |
Collapse
|
10
|
Worth AJ, Bridges JP, Cave NJ, Jones G. Seasonal variation in the hip score of dogs as assessed by the New Zealand Veterinary Association hip dysplasia scheme. N Z Vet J 2011; 60:110-4. [PMID: 22191435 DOI: 10.1080/00480169.2011.636730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AIM To determine whether there is a seasonal variation in the phenotypic hip score of dogs born in New Zealand as assessed by the New Zealand Veterinary Association (NZVA) canine hip dysplasia (CHD) scheme. METHODS Data from dogs born in New Zealand between 1988 and 2009 that have been scored for CHD were retrospectively evaluated for the effect of month of birth on radiographic phenotype. Data included both the total score and the subtotal score, comprising Norberg's angle, the subluxation score and changes to the cranial acetabular edge, for each dog. Datasets were created for all breeds combined and for the four most populous breeds using the scheme (German Shepherd dog, Labrador Retriever, Golden Retriever and Rottweiler) and stratified according to month of birth and season. Due to the skewed nature of the data, a Kruskal-Wallis Rank Sum test was used to test for statistical significance. Additionally, χ² analysis was performed using the median of each dataset (proportion above/below the median). The null hypothesis was that there would be no effect of month of birth, and hence seasonality, on hip phenotype for dogs born and scored in New Zealand by the NZVA. RESULTS For all breeds combined, month of birth had an effect on total and subtotal NZVA CHD scores (p<0.001) with a lower total hip score in the autumn months of March and April than other months. When individual large breed data were analysed, there was an effect of month of birth on total and subtotal scores for the Labrador Retriever and the Rottweiler (p ≤ 0.05), but not the German Shepherd dog or Golden Retriever breeds. CONCLUSIONS Being born in the autumn was associated with a protective effect on hip phenotype in some breeds. These results suggest that weather and/or another seasonal factor may have a significant environmental effect on the phenotype of the coxofemoral joint. CLINICAL RELEVANCE The protective effect of being born in autumn suggests that a decreased level of exercise during subsequent development over winter may positively impact on final coxofemoral joint conformation. Whilst statistically significant, the magnitude of the sparing effect is not likely to be clinically relevant. However, this study, in concert with other studies, may suggest that the effects of exercise can be manipulated to improve hip phenotype.
Collapse
Affiliation(s)
- A J Worth
- Massey University Veterinary Teaching Hospital, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | | | | | | |
Collapse
|
11
|
de Paula FJA, Rosen CJ. Vitamin D safety and requirements. Arch Biochem Biophys 2011; 523:64-72. [PMID: 22179017 DOI: 10.1016/j.abb.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/22/2022]
Abstract
Vitamin D an ancient secosteroid is essential for mineral homeostasis, bone remodeling, immune modulation, and energy metabolism. Recently, debates have emerged about the daily vitamin D requirements for healthy and elderly adults, the safety and efficacy of long term supplementation and the role of vitamin D deficiency in several chronic disease states. Since this molecule acts as both a vitamin and a hormone, it should not be surprising that the effects of supplementation are multi-faceted and complex. Yet despite significant progress in the last decade, our understanding of vitamin D physiology and the clinical relevance of low circulating levels of this vitamin remains incomplete. The present review provides the reader with a comprehensive and up-to-date understanding of vitamin D requirements and safety. It also raises some provocative research questions.
Collapse
Affiliation(s)
- Francisco J A de Paula
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900 SP, Brazil.
| | | |
Collapse
|
12
|
Serrat MA, Williams RM, Farnum CE. Exercise mitigates the stunting effect of cold temperature on limb elongation in mice by increasing solute delivery to the growth plate. J Appl Physiol (1985) 2010; 109:1869-79. [PMID: 20930127 DOI: 10.1152/japplphysiol.01022.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ambient temperature and physical activity modulate bone elongation in mammals, but mechanisms underlying this plasticity are a century-old enigma. Longitudinal bone growth occurs in cartilaginous plates, which receive nutritional support via delivery of solutes from the vasculature. We tested the hypothesis that chronic exercise and warm temperature promote bone lengthening by increasing solute delivery to the growth plate, measured in real time using in vivo multiphoton microscopy. We housed 68 weanling female mice at cold (16°C) or warm (25°C) temperatures and allowed some groups voluntary access to a running wheel. We show that exercise mitigates the stunting effect of cold temperature on limb elongation after 11 days of wheel running. All runners had significantly lengthened limbs, regardless of temperature, while nonrunning mice had shorter limbs that correlated with housing temperature. Tail length was impacted only by temperature, indicating that the exercise effect was localized to limb bones and was not a systemic endocrine reaction. In vivo multiphoton imaging of fluoresceinated tracers revealed enhanced solute delivery to tibial growth plates in wheel-running mice, measured under anesthesia at rest. There was a minimal effect of rearing temperature on solute delivery when measured at an intermediate room temperature (20°C), suggesting that a lasting increase in solute delivery is an important factor in exercise-mediated limb lengthening but may not play a role in temperature-mediated limb lengthening. These results are relevant to the study of skeletal evolution in mammals from varying environments and have the potential to fundamentally advance our understanding of bone elongation processes.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, 1542 Spring Valley Dr., Huntington, WV 25704, USA.
| | | | | |
Collapse
|
13
|
Murray SA, Morgan JL, Kane C, Sharma Y, Heffner CS, Lake J, Donahue LR. Mouse gestation length is genetically determined. PLoS One 2010; 5:e12418. [PMID: 20811634 PMCID: PMC2928290 DOI: 10.1371/journal.pone.0012418] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 07/14/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Preterm birth is an enormous public health problem, affecting over 12% of live births and costing over $26 billion in the United States alone. The causes are complex, but twin studies support the role of genetics in determining gestation length. Despite widespread use of the mouse in studies of the genetics of preterm birth, there have been few studies that actually address the precise natural gestation length of the mouse, and to what degree the timing of labor and birth is genetically determined. METHODOLOGY/PRINCIPAL FINDINGS To further develop the mouse as a genetic model of preterm birth, we developed a high-throughput monitoring system and measured the gestation length in 15 inbred strains. Our results show an unexpectedly wide variation in overall gestation length between strains that approaches two full days, while intra-strain variation is quite low. Although litter size shows a strong inverse correlation with gestation length, genetic difference alone accounts for a significant portion of the variation. In addition, ovarian transplant experiments support a primary role of maternal genetics in the determination of gestation length. Preliminary analysis of gestation length in the C57BL/6J-Chr#(A/J)/NaJ chromosome substitution strain (B.A CSS) panel suggests complex genetic control of gestation length. CONCLUSIONS/SIGNIFICANCE Together, these data support the role of genetics in regulating gestation length and present the mouse as an important tool for the discovery of genes governing preterm birth.
Collapse
Affiliation(s)
| | - Judith L. Morgan
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Coleen Kane
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Yashoda Sharma
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Caleb S. Heffner
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jeffrey Lake
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Leah Rae Donahue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
Bone remodeling is necessary to avoid microdamage accumulation, which could lead to whole-bone failure. Previous studies have shown that this bone-repair mechanism is triggered by osteocyte apoptosis. Through the use of a rodent hindlimb suspension model and tibial four-point bending model, the effects of disuse on microdamage remodeling was examined. At day 0, male rats were assigned to one of three groups: weight bearing (WB), hindlimb suspension (HS), or hindlimb suspension with daily intermittent weight bearing following damage-inducing loading (HW). Within each group, the rats were further divided into subgroups corresponding to three sacrifice time points [day 14 (WB and HS only), day 18, or day 35]. At day 14, animals were anesthetized, and their left tibiae underwent cyclic four-point bending to produce fatigue-induced microdamage. At sacrifice, the tibiae were examined using 3D micro-computed tomography (microCT), flow cytometry, and histologic and immunohistochemical stains. The results indicate that only the WB and HW groups had a significant increase in intracortical TRAP-positive resorption pits following damage induction, which was paralleled by a significant decrease in microdamage over time in combination with a shift in the osteoclast lineage owing to a decrease in monocytes. These results demonstrate that osteocyte apoptosis may be insufficient for repair of microdamage without the stimulation provided through physiologic loading. In addition, this potentially could have clinical implications for the current therapeutic paradigm for treating stress fractures, where extended non-weight bearing is employed.
Collapse
|