1
|
Boßelmann CM, Kegele J, Zerweck L, Klose U, Ethofer S, Roder C, Grimm AM, Hauser TK. Breath-Hold-Triggered BOLD fMRI in Drug-Resistant Nonlesional Focal Epilepsy-A Pilot Study. Clin Neuroradiol 2024; 34:315-324. [PMID: 38082172 PMCID: PMC11130005 DOI: 10.1007/s00062-023-01363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/01/2023] [Indexed: 05/29/2024]
Abstract
PURPOSE Individuals with drug-resistant epilepsy may benefit from epilepsy surgery. In nonlesional cases, where no epileptogenic lesion can be detected on structural magnetic resonance imaging, multimodal neuroimaging studies are required. Breath-hold-triggered BOLD fMRI (bh-fMRI) was developed to measure cerebrovascular reactivity in stroke or angiopathy and highlights regional network dysfunction by visualizing focal impaired flow increase after vasodilatory stimulus. This regional dysfunction may correlate with the epileptogenic zone. In this prospective single-center single-blind pilot study, we aimed to establish the feasibility and safety of bh-fMRI in individuals with drug-resistant non-lesional focal epilepsy undergoing presurgical evaluation. METHODS In this prospective study, 10 consecutive individuals undergoing presurgical evaluation for drug-resistant focal epilepsy were recruited after case review at a multidisciplinary patient management conference. Electroclinical findings and results of other neuroimaging were used to establish the epileptogenic zone hypothesis. To calculate significant differences in cerebrovascular reactivity in comparison to the normal population, bh-fMRIs of 16 healthy volunteers were analyzed. The relative flow change of each volume of interest (VOI) of the atlas was then calculated compared to the flow change of the whole brain resulting in an atlas of normal cerebral reactivity. Consequently, the mean flow change of every VOI of each patient was tested against the healthy volunteers group. Areas with significant impairment of cerebrovascular reactivity had decreased flow change and were compared to the epileptogenic zone localization hypothesis in a single-blind design. RESULTS Acquisition of bh-fMRI was feasible in 9/10 cases, with one patient excluded due to noncompliance with breathing maneuvers. No adverse events were observed, and breath-hold for intermittent hypercapnia was well tolerated. On blinded review, we observed full or partial concordance of the local network dysfunction seen on bh-fMRI with the electroclinical hypothesis in 6/9 cases, including cases with extratemporal lobe epilepsy and those with nonlocalizing 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). CONCLUSION This represents the first report of bh-fMRI in individuals with epilepsy undergoing presurgical evaluation. We found bh-fMRI to be feasible and safe, with a promising agreement to electroclinical findings. Thus, bh-fMRI may represent a potential modality in the presurgical evaluation of epilepsy. Further studies are needed to establish clinical utility.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Leonie Zerweck
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Silke Ethofer
- Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Constantin Roder
- Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Alexander M Grimm
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany.
| |
Collapse
|
2
|
Kim MJ, Hwang B, Mampre D, Negoita S, Tsehay Y, Sair H, Kang JY, Anderson WS. Ablation of apparent diffusion coefficient hyperintensity clusters in mesial temporal lobe epilepsy improves seizure outcomes after laser interstitial thermal therapy. Epilepsia 2023; 64:654-666. [PMID: 36196769 DOI: 10.1111/epi.17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Laser interstitial thermal therapy (LiTT) is a minimally invasive surgical procedure for intractable mesial temporal epilepsy (mTLE). LiTT is safe and effective, but seizure outcomes are highly variable due to patient variability, suboptimal targeting, and incomplete ablation of the epileptogenic zone. Apparent diffusion coefficient (ADC) is a magnetic resonance imaging (MRI) sequence that can identify potential epileptogenic foci in the mesial temporal lobe to improve ablation and seizure outcomes. The objective of this study was to investigate whether ablation of tissue clusters with high ADC values in the mesial temporal structures is associated with seizure outcome in mTLE after LiTT. METHODS Twenty-seven patients with mTLE who underwent LiTT at our institution were analyzed. One-year seizure outcome was categorized as complete seizure freedom (International League Against Epilepsy [ILAE] Class I) and residual seizures (ILAE Class II-VI). Volumes of hippocampus and amygdala were segmented from the preoperative T1 MRI sequence. Spatially distinct hyperintensity clusters were identified in the preoperative ADC map. Proportion of cluster volume and number ablated were associated with seizure outcomes. RESULTS The mean age at surgery was 37.5 years and the mean follow-up duration was 1.9 years. Proportions of hippocampal cluster volume (p = .013) and number (p = .03) ablated were significantly higher in patients with seizure freedom. For amygdala clusters, the proportion of cluster number ablated was significantly associated with seizure outcome (p = .026). In the combined amygdalohippocampal complex, ablation of amygdalohippocampal clusters reliably predicted seizure outcome by their volume ablated (area under the curve [AUC] = 0.7670, p = .02). SIGNIFICANCE Seizure outcome after LiTT in patients with mTLE was associated significantly with the extent of cluster ablation in the amygdalohippocampal complex. The results suggest that preoperative ADC analysis may help identify high-yield pathological tissue clusters that represent epileptogenic foci. ADC-based cluster analysis can potentially assist ablation targeting and improve seizure outcome after LiTT in mTLE.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brian Hwang
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - David Mampre
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Serban Negoita
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yohannes Tsehay
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Haris Sair
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Li J, Bai YC, Wu LH, Zhang P, Wei XC, Ma CH, Yan MN, Wang YT, Chen B. Synthetic relaxometry combined with MUSE DWI and 3D-pCASL improves detection of hippocampal sclerosis. Eur J Radiol 2022; 157:110571. [DOI: 10.1016/j.ejrad.2022.110571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/03/2022]
|
4
|
Kim MJ, Hwang B, Mampre D, Negoita S, Tsehay Y, Sair H, Kang JY, Anderson W. Apparent diffusion coefficient is associated with seizure outcome after magnetic resonance-guided laser interstitial thermal therapy for mesial temporal lobe epilepsy. Epilepsy Res 2021; 176:106726. [PMID: 34298428 DOI: 10.1016/j.eplepsyres.2021.106726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Magnetic resonance-guided laser interstitial thermal therapy (MRgLiTT) is becoming a first-line surgical therapy for mesial temporal lobe epilepsy (mTLE) due to good seizure control and low complication risk. However, seizure outcomes after MRgLiTT remain highly variable and there is a need to improve patient selection and post-operative prognostication. In this retrospective study, we investigated whether the pre-operative MRI-derived apparent diffusion coefficient (ADC), used as a marker of tissue pathology in the mesial temporal structures could help predict seizure outcome. METHODS Thirty-five patients who underwent MRgLiTT at our institution between 2014 and 2019 were included in the study. Demographic and clinical data were retrospectively collected. Seizure outcome was defined as good (ILAE Class I-II) and poor (ILAE Class III-VI). Volumetrics were performed on pre-ablation hippocampus and amygdala. Ablation volumes, and the proportion of ablated hippocampus and amygdala calculated via their respective mean voxel-wise ADC intensities were quantified from pre-operative and intra-operative post-ablation MRIs and statistically compared between the two outcome cohorts. Univarate and multivariate regression analysis was performed to identify demographic, clinical, and radiographic predictors of seizure outcome. RESULTS Mean age at LiTT was 36 years and 14 (40 %) were female. Mean follow-up duration was 1.90 ± 0.17 years. Twenty-seven (77 %) patients had mesial temporal sclerosis. There was no significant difference in the ablation volumes and proportion of ablated volume of hippocampus and amygdala between the two outcome groups. Patients with good seizure outcome had significantly higher normalized ADC intensities in the ablated mesial temporal structures compared to those with poor outcome (0.01 ± 0.08 vs.-0.29 ± 0.06; p = 0.015). CONCLUSIONS mTLE patients with higher ADC intensities in the ablated regions of the hippocampus and the amygdala are more likely to have good seizure outcome following MRgLiTT. Our results suggest that pre-operative ADC analysis may improve both patient selection and epileptogenic zone targeting during MRgLiTT. Further investigation with large, prospective cohorts is needed to validate the clinical utility of ADC in improving seizure outcome following MRgLiTT.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| | - Brian Hwang
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| | - David Mampre
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| | - Serban Negoita
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| | - Yohannes Tsehay
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| | - Haris Sair
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| | - William Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
5
|
Tsougos I, Kousi E, Georgoulias P, Kapsalaki E, Fountas KN. Neuroimaging methods in Epilepsy of Temporal Origin. Curr Med Imaging 2018; 15:39-51. [DOI: 10.2174/1573405613666170622114920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
Abstract
Background:
Temporal Lobe Epilepsy (TLE) comprises the most common form of
symptomatic refractory focal epilepsy in adults. Accurate lateralization and localization of the
epileptogenic focus are a significant prerequisite for determining surgical candidacy once the
patient has been deemed medically intractable. Structural MR imaging, clinical,
electrophysiological, and neurophysiological data have an established role in the localization of the
epileptogenic foci. Nevertheless, hippocampal sclerosis cannot be detected on MR images in more
than 30% of patients with TLE, and the presurgical assessment remains controversial.
</P><P>
Discussion: In the last years, advanced MR imaging techniques, such as 1H-MRS, DWI, DTI,
DSCI, and fMRI, may provide valuable additional information regarding the physiological and
metabolic characterization of brain tissue. MR imaging has shifted towards functional and
molecular imaging, thus, promising to improve the accuracy regarding the lateralization and the
localization of the epileptogenic focus. Additionally, nuclear medicine studies, such as SPECT and
PET imaging modalities, have become an asset for the decoding of brain function and activity, and
can be diagnostically helpful as well, since they provide valuable data regarding the altered
metabolic activity of the seizure foci.
Conclusion:
Overall, advanced MRI, SPECT, and PET imaging techniques are increasingly
becoming an essential part of TLE diagnostics, when the epileptogenic area is not identified on
structural MRI or when structural MRI, clinical, and electrophysiological findings are not in
concordance.
Collapse
Affiliation(s)
- Ioannis Tsougos
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Evanthia Kousi
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Panagiotis Georgoulias
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Eftychia Kapsalaki
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Kostas N. Fountas
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| |
Collapse
|
6
|
Changes in the interictal and early postictal diffusion and perfusion magnetic resonance parameters in familial spontaneous epileptic cats. Epilepsy Res 2017; 133:76-82. [DOI: 10.1016/j.eplepsyres.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 11/23/2022]
|
7
|
Mizoguchi S, Hasegawa D, Hamamoto Y, Yu Y, Kuwabara T, Fujiwara-Igarashi A, Fujita M. Interictal diffusion and perfusion magnetic resonance imaging features of cats with familial spontaneous epilepsy. Am J Vet Res 2017; 78:305-310. [PMID: 28240946 DOI: 10.2460/ajvr.78.3.305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the usefulness of diffusion and perfusion MRI of the cerebrum in cats with familial spontaneous epilepsy (FSECs) and identify microstructural and functional deficit zones in affected cats. ANIMALS 19 FSECs and 12 healthy cats. PROCEDURES Diffusion-weighted, diffusion tensor, and perfusion-weighted MRI of the cerebrum were performed during interictal periods in FSECs. Imaging findings were compared between FSECs and control cats. Diffusion (apparent diffusion coefficient and fractional anisotropy) and perfusion (relative cerebral blood volume [rCBV], relative cerebral blood flow [rCBF], and mean transit time) variables were measured bilaterally in the hippocampus, amygdala, thalamus, parietal cortex gray matter, and subcortical white matter. Asymmetry of these variables in each region was also evaluated and compared between FSECs and control cats. RESULTS The apparent diffusion coefficient of the total amygdala of FSECs was significantly higher, compared with that of control cats. The fractional anisotropy of the right side and total hippocampus of FSECs was significantly lower, compared with that of control cats. The left and right sides and total hippocampal rCBV and rCBF were significantly lower in FSECs than in control cats. The rCBV and rCBF of the parietal cortex gray matter in FSECs were significantly lower than in control cats. CONCLUSIONS AND CLINICAL RELEVANCE In FSECs, diffusion and perfusion MRI detected microstructural changes and hypoperfusion (lowered function) in the cerebrum during interictal periods from that of healthy cats. These findings indicated that diffusion and perfusion MRI may be useful for noninvasive evaluation of epileptogenic foci in cats.
Collapse
|
8
|
Stadler KL, Pease AP, Ballegeer EA. Dynamic Susceptibility Contrast Magnetic Resonance Imaging Protocol of the Normal Canine Brain. Front Vet Sci 2017; 4:41. [PMID: 28377923 PMCID: PMC5359224 DOI: 10.3389/fvets.2017.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/07/2017] [Indexed: 01/06/2023] Open
Abstract
Perfusion magnetic resonance imaging (MRI), specifically dynamic susceptibility MRI (DSC-MRI) is routinely performed as a supplement to conventional MRI in human medicine for patients with intracranial neoplasia and cerebrovascular events. There is minimal data on the use of DSC-MRI in veterinary patients and a DSC-MRI protocol in the veterinary patient has not been described. Sixteen normal dogs, 6 years or older were recruited for this study. The sample population included 11 large dogs (>11 kg) and 5 small dogs (<11 kg). DSC-MRI was performed on a 1.5-T MRI using an adjusted protocol inherent to the MRI. Contrast media was injected using an automatic power injector. Injections were made after five MR measurements were obtained. Following image acquisition, an arterial input function (AIF) graph mapping the transit time of contrast within the cerebral arteries was generated. The manually selected time points along this graph were used to compute perfusion maps. A dose and rate of 0.1 mmol/kg gadolinium-based contrast media at 3 ml/s followed by 10 ml saline flush at 3 ml/s was used in all dogs greater than 11 kg. In all dogs >11 kg, a useable AIF and perfusion map was generated. One dog less than 11 kg received the same contrast dose and rate. In this patient, the protocol did not generate a useable AIF. The remainder of the dogs less than 11 kg followed a protocol of 0.2 mmol/kg gadolinium-based contrast media at 1.5 ml/s with a 10 ml saline flush at 1.5 ml/s. A useable AIF and perfusion map was generated in the remaining dogs <11 kg using the higher contrast dose and slower rate protocol. This study establishes a contrast dose and administration rate for canine DSC-MRI imaging that is different in dogs greater than 11 kg compared to dogs less than 11 kg. These protocols may be used for future applications to evaluate hemodynamic disturbances in canine intracranial pathology.
Collapse
Affiliation(s)
- Krystina L Stadler
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine , East Lansing, MI , USA
| | - Anthony P Pease
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine , East Lansing, MI , USA
| | - Elizabeth A Ballegeer
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine , East Lansing, MI , USA
| |
Collapse
|
9
|
Diagnostic techniques to detect the epileptogenic zone: Pathophysiological and presurgical analysis of epilepsy in dogs and cats. Vet J 2016; 215:64-75. [DOI: 10.1016/j.tvjl.2016.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 12/17/2022]
|
10
|
Eryurt B, Oner AY, Ucar M, Capraz I, Kurt G, Bilir E, Tali ET. Presurgical evaluation of mesial temporal lobe epilepsy with multiple advanced MR techniques at 3T. J Neuroradiol 2015; 42:283-90. [PMID: 26024772 DOI: 10.1016/j.neurad.2015.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE Accurate localization of the epileptogenic zone is essential for successful surgical treatment of mesial temporal lobe epilepsy (MTLE). The aim of this study was to analyze and compare the hippocampal volumetry (HV), MR spectroscopy (MRS), Dynamic susceptibility contrast (DSC) and pulsed arterial spin labeling (pASL) perfusion techniques in a large sample size of refractory MTLE patients. MATERIALS AND METHODS Forty-two patients with medically refractory MTLE who underwent preoperative evaluation and eleven normal controls were studied. Pathologic and control hippocampi were compared in terms of hippocampal volume, metabolite ratios and relative hippocampal perfusion values. By using cut-off points and asymmetry indexes, percentages of performance indicators for each technique were calculated in groups of MR (+), MR (-) and bilateral MTLE. RESULTS For all techniques, a statistically significant difference was found between the pathologic and control hippocampus groups (P<0.001). Also, all of them except HV had diagnostic value in groups of MR (-) and bilateral MTLE. CONCLUSION HV, MRS, DSC and pASL have achieved comparable performance and each of them provides important information about the lateralization of epileptogenic focus. Among those, pASL and MRS may easily be used as an adjunct to conventional MR.
Collapse
Affiliation(s)
- Bulent Eryurt
- Department of Radiology, Gazi University School of Medicine, 06560 Ankara, Turkey.
| | - A Yusuf Oner
- Department of Radiology, Gazi University School of Medicine, 06560 Ankara, Turkey
| | - Murat Ucar
- Department of Radiology, Gazi University School of Medicine, 06560 Ankara, Turkey
| | - Irem Capraz
- Department of Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - Gokhan Kurt
- Department of Neurosurgery, Gazi University School of Medicine, Ankara, Turkey
| | - Erhan Bilir
- Department of Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - E Turgut Tali
- Department of Radiology, Gazi University School of Medicine, 06560 Ankara, Turkey
| |
Collapse
|
11
|
Oner AY, Eryurt B, Ucar M, Capraz I, Kurt G, Bilir E, Tali T. pASL versus DSC perfusion MRI in lateralizing temporal lobe epilepsy. Acta Radiol 2015; 56:477-81. [PMID: 24782571 DOI: 10.1177/0284185114531128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accurate lateralization of the epileptogenic focus in temporal lobe epilepsy (TLE) is crucial. Pulsed arterial spin labeling (pASL) has the capability of quantifying local relative cerebral blood flow (rCBF) by measuring the inflow of electromagnetically labeled arterial blood into the target area, and can be used in the presurgical workup of refractory TLE. PURPOSE To evaluate pASL in detecting mesial temporal lobe (mTL) perfusion asymmetry for the lateralization of the epileptogenic focus in patients with refractory TLE and to compare it with dynamic susceptibility contrast enhanced (DSC) magnetic resonance imaging (MRI) technique. MATERIAL AND METHODS This study was approved by the local ethical committee, and written informed consent was obtained in each patient. Thirty-six patients with medically refractory TLE and 11 healthy volunteer was enrolled in this study. Following brain MRI, pASL and DSC perfusion were performed in all subjects at 3T. rCBF measurements with two different perfusion MRI technique were compared between the patient and healthy volunteers. Lateralization based on perfusion asymmetry index (AI) were also evaluated and compared with clinical lateralization. RESULTS rCBF ratios measured in healthy volunteers by two different perfusion technique did not show any statistically significant difference. In TLE patients rCBF ratio of the ipsilateral (affected) side was found to be significantly lower than the contralateral (unaffected) side with both technique. The AI in the patient group was 8.86 ± 3.88 with pASL and 8.39 ± 4.06 with DSC. Correlation coefficient between clinical laterality and perfusion AI were 0.86 for pASL and 0.83 for DSC. CONCLUSION pASL can successfully detect interictal asymmetry in patients with TLE and can readily be combined with routine structural assessment for lateralization, providing an alternative to DSC perfusion.
Collapse
Affiliation(s)
- A Yusuf Oner
- Department of Radiology, Gazi University School of Medicine, Ankara, Turkey
| | - Bulent Eryurt
- Department of Radiology, Gazi University School of Medicine, Ankara, Turkey
| | - Murat Ucar
- Department of Radiology, Gazi University School of Medicine, Ankara, Turkey
| | - Irem Capraz
- Department of Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - Gokhan Kurt
- Department of Neurosurgery, Gazi University School of Medicine, Ankara, Turkey
| | - Erhan Bilir
- Department of Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - Turgut Tali
- Department of Radiology, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Lateralization of Epileptic Foci Through Causal Analysis of Scalp-EEG Interictal Spike Activity. J Clin Neurophysiol 2015; 32:57-65. [DOI: 10.1097/wnp.0000000000000120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Memarian N, Thompson PM, Engel J, Staba RJ. Quantitative analysis of structural neuroimaging of mesial temporal lobe epilepsy. ACTA ACUST UNITED AC 2013; 5. [PMID: 24319498 DOI: 10.2217/iim.13.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common of the surgically remediable drug-resistant epilepsies. MRI is the primary diagnostic tool to detect anatomical abnormalities and, when combined with EEG, can more accurately identify an epileptogenic lesion, which is often hippocampal sclerosis in cases of MTLE. As structural imaging technology has advanced the surgical treatment of MTLE and other lesional epilepsies, so too have the analysis techniques that are used to measure different structural attributes of the brain. These techniques, which are reviewed here and have been used chiefly in basic research of epilepsy and in studies of MTLE, have identified different types and the extent of anatomical abnormalities that can extend beyond the affected hippocampus. These results suggest that structural imaging and sophisticated imaging analysis could provide important information to identify networks capable of generating spontaneous seizures and ultimately help guide surgical therapy that improves postsurgical seizure-freedom outcomes.
Collapse
Affiliation(s)
- Negar Memarian
- Department of Neurology, Reed, Neurological Research Center, Suite, 2155, University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
14
|
Xing W, Wang X, Xie F, Liao W. Application of dynamic susceptibility contrast-enhanced perfusion in temporal lobe epilepsy. Acta Radiol 2013; 54:107-12. [PMID: 23117196 DOI: 10.1258/ar.2012.110658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Accurately locating the epileptogenic focus in temporal lobe epilepsy (TLE) is important in clinical practice. Single-photon emission computed tomography (SPECT) and positron-emission tomography (PET) have been widely used in the lateralization of TLE, but both have limitations. Magnetic resonance perfusion imaging can accurately and reliably reflect differences in cerebral blood flow and volume. PURPOSE To investigate the diagnostic value of dynamic susceptibility contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) in the lateralization of the epileptogenic focus in TLE. MATERIAL AND METHODS Conventional MRI and DSC-MRI scanning was performed in 20 interictal cases of TLE and 20 healthy volunteers. The relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) of the bilateral mesial temporal lobes of the TLE cases and healthy control groups were calculated. The differences in the perfusion asymmetry indices (AIs), derived from the rCBV and rCBF of the bilateral mesial temporal lobes, were compared between the two groups. RESULTS In the control group, there were no statistically significant differences between the left and right sides in terms of rCBV (left 1.55 ± 0.32, right 1.57 ± 0.28) or rCBF (left 99.00 ± 24.61, right 100.38 ± 23.46) of the bilateral mesial temporal lobes. However, in the case group the ipsilateral rCBV and rCBF values (1.75 ± 0.64 and 96.35 ± 22.63, respectively) were markedly lower than those of the contralateral side (2.01 ± 0.79 and 108.56 ± 26.92; P < 0.05). Both the AI of the rCBV (AI(rCBV); 13.03 ± 10.33) and the AI of the rCBF (AI(rCBF); 11.24 ± 8.70) of the case group were significantly higher than that of the control group (AI(rCBV) 5.55 ± 3.74, AI(rCBF) 5.12 ± 3.48; P < 0.05). The epileptogenic foci of nine patients were correctly lateralized using the 95th percentile of the AI(rCBV) and AI(rCBF) of the control group as the normal upper limits. CONCLUSION In patients with TLE interictal, both rCBV and rCBF of the ipsilateral mesial temporal lobe were markedly lower than that of healthy control subjects. DSC-MRI can provide lateralization for TLE.
Collapse
Affiliation(s)
- Wu Xing
- Department of Radiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiaoyi Wang
- Department of Radiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Fangfang Xie
- Department of Radiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
15
|
Elisevich K, Shukla N, Moran JE, Smith B, Schultz L, Mason K, Barkley GL, Tepley N, Gumenyuk V, Bowyer SM. An assessment of MEG coherence imaging in the study of temporal lobe epilepsy. Epilepsia 2011; 52:1110-9. [PMID: 21366556 PMCID: PMC3116050 DOI: 10.1111/j.1528-1167.2011.02990.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE This study examines whether magnetoencephalographic (MEG) coherence imaging is more sensitive than the standard single equivalent dipole (ECD) model in lateralizing the site of epileptogenicity in patients with drug-resistant temporal lobe epilepsy (TLE). METHODS An archival review of ECD MEG analyses of 30 presurgical patients with TLE was undertaken with data extracted subsequently for coherence analysis by a blinded reviewer for comparison of accuracy of lateralization. Postoperative outcome was assessed by Engel classification. MEG coherence images were generated from 10 min of spontaneous brain activity and compared to surgically resected brain areas outlined on each subject's magnetic resonance image (MRI). Coherence values were averaged independently for each hemisphere to ascertain the laterality of the epileptic network. Reliability between runs was established by calculating the correlation between epochs. Match rates compared the results of each of the two MEG analyses with optimal postoperative outcome. KEY FINDINGS The ECD method provided an overall match rate of 50% (13/16 cases) for Engel class I outcomes, with 37% (11/30 cases) found to be indeterminate (i.e., no spikes identified on MEG). Coherence analysis provided an overall match rate of 77% (20/26 cases). Of 19 cases without evidence of mesial temporal sclerosis, coherence analysis correctly lateralized the side of TLE in 11 cases (58%). Sensitivity of the ECD method was 41% (indeterminate cases included) and that of the coherence method 73%, with a positive predictive value of 70% for an Engel class Ia outcome. Intrasubject coherence imaging reliability was consistent from run-to-run (correlation > 0.90) using three 10-min epochs. SIGNIFICANCE MEG coherence analysis has greater sensitivity than the ECD method for lateralizing TLE and demonstrates reliable stability from run-to-run. It, therefore, improves upon the capability of MEG in providing further information of use in clinical decision-making where the laterality of TLE is questioned.
Collapse
Affiliation(s)
- Kost Elisevich
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Magnetic resonance imaging (MRI) has been shown to improve the diagnosis and management of patients with brain disorders. Multiparametric MRI offers the possibility of noninvasively assessing multiple facets of pathophysiological processes that exist simultaneously, thereby further assisting in patient treatment management. Voxel-based analysis approaches, such as tissue theme mapping, have the benefit over volumetric approaches in being able to identify spatially heterogeneous colocalized changes on multiple parametric MR images that are not readily discernible. Tissue theme maps seem to be a promising tool for integrating the plethora of novel imaging contrasts that are being developed for the noninvasive investigation of the different stages of disease progression into easily interpretable maps of brain injury. We describe here various implementations for combining multiparametric imaging and their merits in the evaluation of brain diseases.
Collapse
Affiliation(s)
- Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
17
|
Jafari-Khouzani K, Elisevich K, Patel S, Smith B, Soltanian-Zadeh H. FLAIR signal and texture analysis for lateralizing mesial temporal lobe epilepsy. Neuroimage 2009; 49:1559-71. [PMID: 19744564 DOI: 10.1016/j.neuroimage.2009.08.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/25/2009] [Accepted: 08/31/2009] [Indexed: 11/28/2022] Open
Abstract
Standard magnetic resonance (MR) imaging analysis in several cases of mesial temporal lobe epilepsy (mTLE) either fail to show an identifiable hippocampal asymmetry or provide only subtle distinguishing features that remain inconclusive. A retrospective analysis of hippocampal fluid-attenuated inversion recovery (FLAIR) MR images was performed in cases of mTLE addressing, particularly, the mean and standard deviation of the signal and its texture. Preoperative T1-weighted and FLAIR MR images of 25 nonepileptic control subjects and 36 mTLE patients with Engel class Ia outcomes were analyzed. Patients requiring extraoperative electrocorticography (ECoG) with intracranial electrodes and thus judged to be more challenging were studied as a separate cohort. Hippocampi were manually segmented on T1-weighted images and their outlines were transposed onto FLAIR studies using an affine registration. Image intensity features including mean and standard deviation and wavelet-based texture features were determined for the hippocampal body. The right/left ratios of these features were used with a linear classifier to establish laterality. Whole hippocampal within-subject volume ratios were assessed for comparison. Mean and standard deviation of FLAIR signal intensities lateralized the site of epileptogenicity in 98% of all cases, whereas analysis of wavelet texture features and hippocampal volumetry each yielded correct lateralization in 94% and 83% of cases, respectively. Of patients requiring more intensive study with extraoperative ECoG, 17/18 were lateralized effectively by the combination of mean and standard deviation ratios despite a ratio of mean signal intensity near one in some. The analysis of mean and standard deviation of FLAIR signal intensities provides a highly sensitive method for lateralizing the epileptic focus in mTLE over that of volumetry or texture analysis of the hippocampal body.
Collapse
|
18
|
Leliefeld PH, Gooskens RHJM, Braun KPJ, Ramos LMP, Uiterwaal CSPM, Regli LPE, Tulleken CAF, Kappelle LJ, Hanlo PW. Longitudinal diffusion-weighted imaging in infants with hydrocephalus: decrease in tissue water diffusion after cerebrospinal fluid diversion. J Neurosurg Pediatr 2009; 4:56-63. [PMID: 19569912 DOI: 10.3171/2009.3.peds08337] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Progressive hydrocephalus may lead to edema of the periventricular white matter and to damage of the brain parenchyma because of compression, stretching, and ischemia. The aim of the present study was to investigate whether cerebral edema can be quantified using diffusion-weighted imaging in infants with hydrocephalus and whether CSF diversion could decrease cerebral edema. METHODS Diffusion-weighted MR imaging was performed in 24 infants with progressive hydrocephalus before and after CSF diversion. Parametric images of the trace apparent diffusion coefficients (ADCs) were obtained. The ADCs of 5 different cortical and subcortical regions of interest were calculated pre- and postoperatively in each patient. The ADC values were compared with age-related normal values. Mean arterial blood pressure and anterior fontanel pressure were measured immediately after each MR imaging study. RESULTS After CSF diversion, the mean ADC decreased from a preoperative value of 1209 +/- 116 x 10(-6) mm(2)/second to a postoperative value of 928 +/- 64 x 10(-6) mm(2)/second (p < 0.005). Differences between pre- and postoperative ADC values were most prominent in the periventricular white matter, supporting the existence of preoperative periventricular edema. Compared with age-related normal values, the preoperative ADC values were higher and the postoperative ADC values were lower, although within normal range. The decrease in ADC after CSF drainage was more rapid than the more gradual physiological decrease that is related to age. The preoperative ICP was elevated in all patients. After CSF diversion the ICP decreased significantly to within the normal range. A linear correlation between ADC values and ICP was found (correlation coefficient 0.496, p < 0.001). In all patients the mean arterial blood pressure was within physiological limits both pre- and postoperatively. CONCLUSIONS This study shows a rapid and more extensive decrease in ADC values after CSF diversion than is to be expected from physiological ADC decrease solely due to increasing patient age. The preoperative ADC increase can be explained by interstitial edema caused by transependymal CSF leakage or by vasogenic edema caused by capillary compression and stretching of the brain parenchyma. This study population of infants with (early recognized) hydrocephalus did not suffer from cytotoxic edema. These findings may help to detect patients at risk for cerebral damage by differentiating between progressive and compensated hydrocephalus.
Collapse
Affiliation(s)
- Paul H Leliefeld
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lim YM, Cho YW, Shamim S, Solomon J, Birn R, Luh WM, Gaillard WD, Ritzl EK, Theodore WH. Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res 2009; 82:183-9. [PMID: 19041041 DOI: 10.1016/j.eplepsyres.2008.08.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 06/06/2008] [Accepted: 08/11/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE Arterial spin labeling (ASL) is a developing magnetic resonance imaging (MRI) method for noninvasive measurement of cerebral blood flow (CBF). The purpose of this study was to evaluate the usefulness of ASL for detecting interictal temporal hypoperfusion in temporal lobe epilepsy (TLE). ASL-derived CBF measurements were compared with those derived from H(2)(15)O positron emission tomography (PET). METHODS 11 normal controls and 10 patients with medically intractable TLE were studied. Pulsed ASL (PASL) with quantitative imaging of perfusion using a single subtraction, second version (QUIPSS II) was performed in all subjects and H(2)(15)O PET was performed in patients. Regional CBF values in the mesial and lateral temporal lobes were measured utilizing quantitative analysis of perfusion images. A perfusion asymmetry index (AI) was calculated for each region. RESULTS In patients, mean CBF in the mesial temporal lobe was not significantly different between PASL and H(2)(15)O PET, and ipsilateral mesial temporal CBF was lower than contralateral CBF with both techniques. PASL detected significant mesial temporal perfusion asymmetry agreeing with EEG laterality in four patients. H(2)(15)O PET found ipsilateral interictal hypoperfusion in three. Both scans found unilateral hypoperfusion in one patient with bilateral EEG discharges. CONCLUSIONS Pulsed ASL may be a promising approach to detecting interictal hypoperfusion in TLE. This method has potential as a clinical alternative to H(2)(15)O PET due to noninvasiveness and easy accessibility.
Collapse
Affiliation(s)
- Young-Min Lim
- Clinical Epilepsy Section, NINDS, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|