1
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
2
|
Chan AWS. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 2014; 54:211-23. [PMID: 24174443 DOI: 10.1093/ilar/ilt035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model.
Collapse
|
3
|
Sutin AR, Cutler RG, Camandola S, Uda M, Feldman NH, Cucca F, Zonderman AB, Mattson MP, Ferrucci L, Schlessinger D, Terracciano A. Impulsivity is associated with uric acid: evidence from humans and mice. Biol Psychiatry 2014; 75:31-7. [PMID: 23582268 PMCID: PMC3859133 DOI: 10.1016/j.biopsych.2013.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ability to control impulses varies greatly, and difficulty with impulse control can have severe consequences; in the extreme, it is the defining feature of many psychiatric disorders. Evidence from disparate lines of research suggests that uric acid is elevated in psychiatric disorders characterized by high impulsivity, such as attention-deficit/hyperactivity disorder and bipolar disorder. The present research tests the hypothesis that impulsivity is associated with higher uric acid in humans and mice. METHODS Using two longitudinal, nonclinical community samples (total n = 6883), we tested whether there is an association between uric acid and normal variation in trait impulsivity measured with the Revised NEO Personality Inventory. We also examined the effect of uric acid on behavior by comparing wild-type mice, which naturally have low levels of uric acid, with mice genetically modified to accumulate high levels of uric acid. RESULTS In both human samples, the emotional aspects of trait impulsivity, specifically impulsiveness and excitement seeking, were associated with higher levels of uric acid concurrently and when uric acid was measured 3 to 5 years later. Consistent with the human data, the genetically modified mice displayed significantly more exploratory and novelty-seeking behavior than the wild-type mice. CONCLUSIONS Higher uric acid was associated with impulsivity in both humans and mice. The identification of biological markers of impulsivity may lead to a better understanding of the physiological mechanisms involved in impulsivity and may suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Angelina R Sutin
- Department of Medical Humanities and Social Sciences, Florida State University College of Medicine, Tallahassee, Florida; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institute of Health, Bethesda, Maryland; Laboratory of Neuroscience, National Institute on Aging, National Institute of Health, Bethesda, Maryland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation. PLoS One 2013; 8:e74967. [PMID: 24130677 PMCID: PMC3794013 DOI: 10.1371/journal.pone.0074967] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) cause the severe neurodevelopmental Lesch Nyhan Disease (LND) are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA) and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS) cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA) multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer's and Huntington's disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.
Collapse
|
5
|
García MG, Puig JG, Torres RJ. Adenosine, dopamine and serotonin receptors imbalance in lymphocytes of Lesch-Nyhan patients. J Inherit Metab Dis 2012; 35:1129-35. [PMID: 22403020 DOI: 10.1007/s10545-012-9470-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Lesch-Nyhan disease (LND) is caused by complete deficiency of the hypoxanthine-guanine phosphoribosyltransferase enzyme. It is characterized by overproduction of uric acid, jointly with severe motor disability and self-injurious behaviour which physiopathology is unknown. These neurological manifestations suggest a dysfunction in the basal ganglia, and three neurotransmitters have been implicated in the pathogenesis of the disease: dopamine, adenosine and serotonin. All of them are implicated in motor function and behaviour, and act by binding to specific G-protein coupled receptors in the synaptic membrane where they seem to be integrated through receptor-receptor interactions. In this work we have confirmed at protein level the previously reported increased expression of DRD5 and the variably aberrant expression of ADORA2A, in LND PBL respect to control PBL. We have also described, for the first time, a decreased expression and protein level of 5-HTR1A in LND PBL respect to control PBL. If these results were confirmed in the Lesch-Nyhan patients basal ganglia cells, this would support the hypothesis that pathogenesis of neurological manifestations of Lesch-Nyhan patients may be related to an imbalance of neurotransmitters, rather than to the isolated disturbance of one of the neurotransmitters, and this fact should be taken into account in the design of pharmacologic treatment for their motor and behavioural disturbances.
Collapse
MESH Headings
- Adenosine/metabolism
- Adolescent
- Base Sequence
- Case-Control Studies
- Child
- Child, Preschool
- Dopamine/metabolism
- Humans
- Lesch-Nyhan Syndrome/etiology
- Lesch-Nyhan Syndrome/genetics
- Lesch-Nyhan Syndrome/metabolism
- Lymphocytes/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Adenosine A2A/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, Dopamine D5/metabolism
- Serotonin/metabolism
- Young Adult
Collapse
Affiliation(s)
- Marta G García
- Clinical Biochemistry Department, Metabolic Vascular Unit, IdiPaz, La Paz University Hospital, Madrid, Spain
| | | | | |
Collapse
|
6
|
Bhattacharya A, Klann E. The molecular basis of cognitive deficits in pervasive developmental disorders. Learn Mem 2012; 19:434-43. [PMID: 22904374 DOI: 10.1101/lm.025007.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Persons with pervasive developmental disorders (PDD) exhibit a range of cognitive deficits that hamper their quality of life, including difficulties involving communication, sociability, and perspective-taking. In recent years, a variety of studies in mice that model genetic syndromes with a high risk of PDD have provided insights into the underlying molecular mechanisms associated with these disorders. What is less appreciated is how the molecular anomalies affect neuronal and circuit function to give rise to the cognitive deficits associated with PDD. In this review, we describe genetic mutations that cause PDD and discuss how they alter fundamental social and cognitive processes. We then describe efforts to correct cognitive impairments associated with these disorders and identify areas of further inquiry in the search for molecular targets for therapeutics for PDD.
Collapse
Affiliation(s)
- Aditi Bhattacharya
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | |
Collapse
|
7
|
Quilter CR, Bagga M, Moinie A, Junaid F, Sargent CA. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows. BMC Neurosci 2012; 13:37. [PMID: 22471812 PMCID: PMC3350401 DOI: 10.1186/1471-2202-13-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/02/2012] [Indexed: 02/05/2023] Open
Abstract
Background The serotonin pathways have been implicated in behavioural phenotypes in a number of species, including human, rat, mouse, dog and chicken. Components of the pathways, including the receptors, are major targets for drugs used to treat a variety of physiological and psychiatric conditions in humans. In our previous studies we have identified genetic loci potentially contributing to maternal infanticide in pigs, which includes a locus on the porcine X chromosome long arm. The serotonin receptor HTR2C maps to this region, and is therefore an attractive candidate for further study based on its function and its position in the genome. Results In this paper we describe the structure of the major transcripts produced from the porcine HTR2C locus using cDNA prepared from porcine hypothalamic and pooled total brain samples. We have confirmed conservation of sites altered by RNA editing in other mammalian species, and identified polymorphisms in the gene sequence. Finally, we have analysed expression and editing of HTR2C in hypothalamus samples from infanticidal and control animals. Conclusions The results confirm that although the expression of the long transcriptional variant of HTR2C is raised in infanticidal animals, the overall patterns of editing in the hypothalamus are similar between the two states. Sequences associated with the cDNA and genomic structures of HTR2C reported in this paper are deposited in GenBank under accession numbers FR720593, FR720594 and FR744452.
Collapse
|