1
|
Euler G, Parahuleva M. Monocytic microRNAs-Novel targets in atherosclerosis therapy. Br J Pharmacol 2025; 182:206-219. [PMID: 38575391 DOI: 10.1111/bph.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Atherosclerosis is a chronic proinflammatory disease of the vascular wall resulting in narrowing of arteries due to plaque formation, thereby causing reduced blood supply that is the leading cause for diverse end-organ damage with high mortality rates. Monocytes/macrophages, activated by elevated circulating lipoproteins, are significantly involved in the formation and development of atherosclerotic plaques. The imbalance between proinflammatory and anti-inflammatory macrophages, arising from dysregulated macrophage polarization, appears to be a driving force in this process. Proatherosclerotic processes acting on monocytes/macrophages include accumulation of cholesterol in macrophages leading to foam cell formation, as well as dysfunctional efferocytosis, all of which contribute to the formation of unstable plaques. In recent years, microRNAs (miRs) were identified as factors that could modulate monocyte/macrophage function and may therefore interfere with the atherosclerotic process. In this review, we present effects of monocyte/macrophage-derived miRs on atherosclerotic processes in order to reveal new treatment options using miRmimics or antagomiRs. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Gerhild Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Mariana Parahuleva
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, Marburg, Germany
| |
Collapse
|
2
|
Haybar H, Sarbazjoda E, Purrahman D, Mahmoudian-Sani MR, Saki N. The prognostic potential of long noncoding RNA XIST in cardiovascular diseases: a review. Per Med 2024; 21:257-269. [PMID: 38889283 DOI: 10.1080/17410541.2024.2360380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
There is a significant mortality rate associated with cardiovascular disease despite advances in treatment. long Non-coding RNAs (lncRNAs) play a critical role in many biological processes and their dysregulation is associated with a wide range of diseases in which their downstream pathways are disrupted. A lncRNA X-inactive specific transcript (XIST) is well known as a factor that regulates the physiological process of chromosome dosage compensation for females. According to recent studies, lncRNA XIST is involved in a variety of cellular processes, including apoptosis, proliferation, invasion, metastasis, oxidative stress and inflammation, through molecular networks with microRNAs and their downstream targets in neoplastic and non-neoplastic diseases. Because these cellular processes play a role in the pathogenesis of cardiovascular diseases, we aim to investigate the role that lncRNA XIST plays in this process. Additionally, we wish to determine whether it is a prognostic factor or a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ehsan Sarbazjoda
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| |
Collapse
|
3
|
Xie F, Wang D, Cheng M. CDKN2B-AS1 may act as miR-92a-3p sponge in coronary artery disease. Minerva Cardiol Angiol 2024; 72:125-133. [PMID: 38231078 DOI: 10.23736/s2724-5683.23.06441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND LncRNAs, miRNAs, and the sponge effect between them exert diverse biological influences on the pathogenesis and progression of coronary artery disease (CAD), thus necessitating an exploration of the lncRNA-miRNA-gene regulatory network in CAD. METHODS Expression profile GSE98583 was obtained from NCBI, containing the data of 12 CAD patients and 6 controls. Limma package was utilized to determine the differentially expressed genes (DEGs). Functional enrichment analysis was performed by DAVID. The CAD-related miRNA-DEG associations were retrieved via HMDD and miRTarBase, and the CAD-related lncRNA-miRNA associations were retrieved via LncRNADisease and starBase. The CAD-related lncRNA-miRNA-DEG regulatory network was constructed by combining these associations. The dual luciferase test was carried out to validate the connections among lncRNA, miRNA, and gene. RESULTS Overall, 534 DEGs were identified between CAD samples and controls, including 243 up-regulated and 291 down-regulated, and were enriched in various gene ontology biological processes and KEGG pathways. The CAD-related miRNAs targeting DEGs included hsa-miR-206, has-miR-320b, has-miR-4513, has-miR-765, and has-miR-92a-3p, and hsa-miR-92a-3p regulated the most DEGs. In the lncRNA-miRNA associations, only CDKN2B-AS1 regulated the CAD-related miRNA, hsa-miR-92a-3p, which was validated using the dual luciferase test. CONCLUSIONS CDKN2B-AS1 may act as an hsa-miR-92a-3p sponge to regulate the downstream DEGs in CAD. CDKN2B-AS1/ hsa-miR-92a-3p/GATA2 might be a novel mechanism for CAD.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan Wang
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming Cheng
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China -
| |
Collapse
|
4
|
He Y, Jiang Y, Wu F, Zhang X, Liang S, Ye Z. Platelet Microparticle-Derived MiR-320b Inhibits Hypertension with Atherosclerosis Development by Targeting ETFA. Int Heart J 2024; 65:329-338. [PMID: 38556340 DOI: 10.1536/ihj.23-365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Hypertension and atherosclerosis often occur simultaneously. This study aimed to explore the role and mechanism of platelet microparticle (PMP) -derived microRNA-320b (miR-320b) in patients with hypertension accompanied by atherosclerosis.We collected samples from 13 controls without hypertension and atherosclerosis and 20 patients who had hypertension accompanied by atherosclerosis. In vitro, platelets were activated by Thrombin receptor-activating peptide to produce PMPs. HUVECs were induced by CoCl2 to mimic a hypoxic environment in vitro. RT-qPCR was employed to detect the expression levels of CD61, miR-320b, and ETFA. The protein expression level of ETFA was evaluated via Western blotting. Furthermore, 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and wound healing assays were employed to assess the proliferation and migration of HUVECs. Enzyme-linked immunosorbent assay was used to measure the oxidative stress and inflammation-related factor expression.The expression of miR-320b was reduced in both platelets and PMPs but increased in plasma. MiR-320b promoted CoCl2-induced HUVEC viability, proliferation, and migration. The levels of the oxidative stress factors SOD and GSH as well as the inflammatory factor IL-10 were elevated in the CoCl2 + miR-320b mimics group compared with both the CoCl2 + mimics NC and CoCl2 groups. Conversely, the levels of the oxidative stress factors MDA and ROS as well as the inflammatory factors IL-6, TNF-α, and IL-1β were decreased. These results were regulated by miR-320b targeting ETFA.PMP-derived miR-320b inhibits the development of hypertension accompanied by atherosclerosis by targeting ETFA.
Collapse
Affiliation(s)
- Yongcong He
- Department of Cardiology, Guangdong Second Provincial General Hospital
| | - Yangyang Jiang
- Department of Oncology, Guangdong Second Provincial General Hospital
| | - Fan Wu
- Department of Cardiology, Guangdong Second Provincial General Hospital
| | - Xiaoxue Zhang
- Department of Cardiology, Guangdong Second Provincial General Hospital
| | - Shaolan Liang
- Department of Cardiology, Guangdong Second Provincial General Hospital
| | - Zebing Ye
- Department of Cardiology, Guangdong Second Provincial General Hospital
| |
Collapse
|
5
|
Ju HY, Tang SS, Li BJ, Luo X, Li Q. The expression levels of circulating miR-140-3p, miR-130a-3p, and miR-320b as diagnostic biomarkers in acute ischemic stroke. Kaohsiung J Med Sci 2023; 39:927-935. [PMID: 37338050 DOI: 10.1002/kjm2.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Plasma miRNAs can characterize several diseases, including acute ischemic stroke (AIS), which is noninvasive and currently affordable in most laboratories worldwide. We aimed to demonstrate plasma miR-140-3p, miR-130a-3p, and miR-320b as diagnostic biomarkers in AIS.GSE110993 and GSE86291 datasets were analyzed to obtain plasma differentially expressed miRNAs between AIS and healthy control subjects (HCs). We further applied RT-qPCR for the validation in 85 AIS patients and 85 HCs. Receiver operating characteristic (ROC) curve were conducted to evaluate their diagnostic utility in AIS. Correlation was analyzed between DEmiRNAs and clinical and laboratory parameters, as well as inflammatory markers. The plasma levels of miR-140-3p, miR-130a-3p, and miR-320b were found to be consistently altered in both GSE110993 and GSE86291 datasets. In comparison to HCs, AIS patients at admission exhibited lower levels of miR-140-3p and miR-320b and higher level of miR-130a-3p in their plasma. The ROC analysis revealed that plasma miR-140-3p, miR-130a-3p, and miR-320b had area under the curve values of 0.790, 0.831, and 0.907, respectively. When combined, these miRNAs showed superior discriminatory power with a sensitivity of 91.76% and specificity of 95.29%. Plasma miR-140-3p and miR-320b negatively correlated glucose levels and inflammatory markers (IL-6, MMP-2, MMP-9, and VEGF) in AIS patients. Conversely, plasma miR-130a-3p levels were positively associated with glucose levels and these markers. Plasma miR-140-3p, miR-130a-3p, and miR-320b levels varied significantly among AIS patients with different NIHSS scores. Plasma miR-140-3p, miR-130a-3p, and miR-320b had high diagnostic value in AIS patients, which were correlated with inflammation and severity in stroke.
Collapse
Affiliation(s)
- Hong-Yan Ju
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Shan-Shan Tang
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Bang-Jing Li
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Xi Luo
- Department of Neurology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qi Li
- Health Management Center, Sichuan Provincial People' s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Huang D, Qi H, Yang H, Chen M. Plasma exosomal microRNAs are non-invasive biomarkers of moyamoya disease: A pilot study. Clinics (Sao Paulo) 2023; 78:100247. [PMID: 37413774 DOI: 10.1016/j.clinsp.2023.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND As a progressive cerebrovascular disease, Moyamoya Disease (MMD) is a common cause of stroke in children and adults. However, the early biomarkers and pathogenesis of MMD remain poorly understood. METHODS AND MATERIAL This study was conducted using plasma exosome samples from MMD patients. Next-generation high-throughput sequencing, real-time quantitative PCR, gene ontology analysis, and Kyoto Encyclopaedia of Genes and Genomes pathway analysis of ideal exosomal miRNAs that could be used as potential biomarkers of MMD were performed. The area under the Receiver Operating Characteristic (ROC) curve was used to evaluate the sensitivity and specificity of biomarkers for predicting events. RESULTS Exosomes were successfully isolated and miRNA-sequence analysis yielded 1,002 differentially expressed miRNAs. Functional analysis revealed that they were mainly enriched in axon guidance, regulation of the actin cytoskeleton and the MAPK signaling pathway. Furthermore, 10 miRNAs (miR-1306-5p, miR-196b-5p, miR-19a-3p, miR-22-3p, miR-320b, miR-34a-5p, miR-485-3p, miR-489-3p, miR-501-3p, and miR-487-3p) were found to be associated with the most sensitive and specific pathways for MMD prediction. CONCLUSIONS Several plasma secretory miRNAs closely related to the development of MMD have been identified, which can be used as biomarkers of MMD and contribute to differentiating MMD from non-MMD patients before digital subtraction angiography.
Collapse
Affiliation(s)
- Da Huang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Hui Qi
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hongchun Yang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Meng Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Aas V, Øvstebø R, Brusletto BS, Aspelin T, Trøseid AMS, Qureshi S, Eid DSO, Olstad OK, Nyman TA, Haug KBF. Distinct microRNA and protein profiles of extracellular vesicles secreted from myotubes from morbidly obese donors with type 2 diabetes in response to electrical pulse stimulation. Front Physiol 2023; 14:1143966. [PMID: 37064893 PMCID: PMC10098097 DOI: 10.3389/fphys.2023.1143966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Lifestyle disorders like obesity, type 2 diabetes (T2D), and cardiovascular diseases can be prevented and treated by regular physical activity. During exercise, skeletal muscles release signaling factors that communicate with other organs and mediate beneficial effects of exercise. These factors include myokines, metabolites, and extracellular vesicles (EVs). In the present study, we have examined how electrical pulse stimulation (EPS) of myotubes, a model of exercise, affects the cargo of released EVs. Chronic low frequency EPS was applied for 24 h to human myotubes isolated and differentiated from biopsy samples from six morbidly obese females with T2D, and EVs, both exosomes and microvesicles (MV), were isolated from cell media 24 h thereafter. Size and concentration of EV subtypes were characterized by nanoparticle tracking analysis, surface markers were examined by flow cytometry and Western blotting, and morphology was confirmed by transmission electron microscopy. Protein content was assessed by high-resolution proteomic analysis (LC-MS/MS), non-coding RNA was quantified by Affymetrix microarray, and selected microRNAs (miRs) validated by real time RT-qPCR. The size and concentration of exosomes and MV were unaffected by EPS. Of the 400 miRs identified in the EVs, EPS significantly changed the level of 15 exosome miRs, of which miR-1233-5p showed the highest fold change. The miR pattern of MV was unaffected by EPS. Totally, about 1000 proteins were identified in exosomes and 2000 in MV. EPS changed the content of 73 proteins in exosomes, 97 in MVs, and of these four were changed in both exosomes and MV (GANAB, HSPA9, CNDP2, and ATP5B). By matching the EPS-changed miRs and proteins in exosomes, 31 targets were identified, and among these several promising signaling factors. Of particular interest were CNDP2, an enzyme that generates the appetite regulatory metabolite Lac-Phe, and miR-4433b-3p, which targets CNDP2. Several of the regulated miRs, such as miR-92b-5p, miR-320b, and miR-1233-5p might also mediate interesting signaling functions. In conclusion, we have used a combined transcriptome-proteome approach to describe how EPS affected the cargo of EVs derived from myotubes from morbidly obese patients with T2D, and revealed several new factors, both miRs and proteins, that might act as exercise factors.
Collapse
Affiliation(s)
- Vigdis Aas
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
- *Correspondence: Vigdis Aas, ; Kari Bente Foss Haug,
| | - Reidun Øvstebø
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Trude Aspelin
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Saba Qureshi
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | | | | | - Tuula A. Nyman
- Department of Immunology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kari Bente Foss Haug
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- *Correspondence: Vigdis Aas, ; Kari Bente Foss Haug,
| |
Collapse
|
8
|
Teixeira AR, Ferreira VV, Pereira-da-Silva T, Ferreira RC. The role of miRNAs in the diagnosis of stable atherosclerosis of different arterial territories: A critical review. Front Cardiovasc Med 2022; 9:1040971. [PMID: 36505351 PMCID: PMC9733725 DOI: 10.3389/fcvm.2022.1040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerotic disease is a major cause of morbidity and mortality worldwide. Atherosclerosis may be present in different arterial territories and as a single- or multi-territorial disease. The different phenotypes of atherosclerosis are attributable only in part to acquired cardiovascular risk factors and genetic Mendelian inheritance. miRNAs, which regulate the gene expression at the post-transcriptional level, may also contribute to such heterogeneity. Numerous miRNAs participate in the pathophysiology of atherosclerosis by modulating endothelial function, smooth vascular cell function, vascular inflammation, and cholesterol homeostasis in the vessel, among other biological processes. Moreover, miRNAs are present in peripheral blood with high stability and have the potential to be used as non-invasive biomarkers for the diagnosis of atherosclerosis. However, the circulating miRNA profile may vary according to the involved arterial territory, considering that atherosclerosis expression, including the associated molecular phenotype, varies according to the affected arterial territory. In this review, we discuss the specific circulating miRNA profiles associated with atherosclerosis of different arterial territories, the common circulating miRNA profile of stable atherosclerosis irrespective of the involved arterial territory, and the circulating miRNA signature of multi-territorial atherosclerosis. miRNAs may consist of a simple non-invasive method for discriminating atherosclerosis of different arterial sites. The limitations of miRNA profiling for such clinical application are also discussed.
Collapse
Affiliation(s)
- Ana Rita Teixeira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- *Correspondence: Ana Rita Teixeira
| | - Vera Vaz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| |
Collapse
|
9
|
Xu W, Deng M, Meng X, Sun X, Tao X, Wang D, Zhang S, Zhen Y, Liu X, Liu M. The alterations in molecular markers and signaling pathways in chronic thromboembolic pulmonary hypertension, a study with transcriptome sequencing and bioinformatic analysis. Front Cardiovasc Med 2022; 9:961305. [PMID: 35958401 PMCID: PMC9362860 DOI: 10.3389/fcvm.2022.961305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Background At present, the alterations in molecular markers and signaling pathways in chronic thromboembolic pulmonary hypertension (CTEPH) remain unclear. We aimed to compare the difference of molecular markers and signaling pathways in patients with CTEPH and healthy people with transcriptome sequencing and bioinformatic analysis. Methods We prospectively included 26 patients with CTEPH and 35 sex- and age-matched healthy volunteers as control. We extracted RNA from whole blood samples to construct the library. Then, qualified libraries were sequenced using PE100 strategy on BGIseq platform. Subsequently, the DESeq2 package in R was used to screen differentially expressed mRNAs (DEmRNAs) and differentially expressed long non-coding RNAs (DElncRNAs) of 7 patients with CTEPH and 5 healthy volunteers. Afterwards, we performed functional enrichment and protein–protein interaction analysis of DEmRNAs. We also performed lncRNA-mRNA co-expression analysis and lncRNA-miRNA-mRNA network construction. In addition, we performed diagnostic analysis on the GSE130391 dataset. Finally, we performed reverse transcription polymerase chain reaction (RT-PCR) of genes in 19 patients with CTEPH and 30 healthy volunteers. Results Gender and age between patients with CTEPH and healthy controls, between sequencing group and in vitro validation group, were comparable. A total of 437 DEmRNAs and 192 DElncRNAs were obtained. Subsequently, 205 pairs of interacting DEmRNAs and 232 pairs of lncRNA-mRNA relationship were obtained. DEmRNAs were significantly enriched in chemokine signaling pathway, metabolic pathways, arachidonic acid metabolism, and MAPK signaling pathway. Only one regulation pathway of SOBP-hsa-miR-320b-LINC00472 was found through ceRNA network construction. In diagnostic analysis, the area under curve (AUC) values of LINC00472, PIK3R6, SCN3A, and TCL6, respectively, were 0.964, 0.893, 0.750, and 0.732. Conclusion The identification of alterations in molecules and pathways may provide further research directions on pathogenesis of CTEPH. Additionally, LINC00472, PIK3R6, SCN3A, and TCL6 may act as the potential gene markers in CTEPH.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mei Deng
- Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiapei Meng
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xuebiao Sun
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dingyi Wang
- Institute of Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuai Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Min Liu
| |
Collapse
|
10
|
Carballo-Perich L, Puigoriol-Illamola D, Bashir S, Terceño M, Silva Y, Gubern-Mérida C, Serena J. Clinical Parameters and Epigenetic Biomarkers of Plaque Vulnerability in Patients with Carotid Stenosis. Int J Mol Sci 2022; 23:5149. [PMID: 35563540 PMCID: PMC9101730 DOI: 10.3390/ijms23095149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Atheromatous disease is the first cause of death and dependency in developed countries and carotid artery atherosclerosis is one of the main causes of severe ischaemic strokes. Current management strategies are mainly based on the degree of stenosis and patient selection has limited accuracy. This information could be complemented by the identification of biomarkers of plaque vulnerability, which would permit patients at greater and lesser risk of stroke to be distinguished, thus enabling a better selection of patients for surgical or intensive medical treatment. Although several circulating protein-based biomarkers with significance for both the diagnosis of carotid artery disease and its prognosis have been identified, at present, none have been clinically implemented. This review focuses especially on the most relevant clinical parameters to take into account in routine clinical practice and summarises the most up-to-date data on epigenetic biomarkers of carotid atherosclerosis and plaque vulnerability.
Collapse
Affiliation(s)
- Laia Carballo-Perich
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Dolors Puigoriol-Illamola
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Saima Bashir
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Mikel Terceño
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Yolanda Silva
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Carme Gubern-Mérida
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Joaquín Serena
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| |
Collapse
|
11
|
RBM38 is negatively regulated by miR-320b and enhances Adriamycin resistance in breast cancer cells. Oncol Lett 2021; 23:27. [PMID: 34868364 PMCID: PMC8630814 DOI: 10.3892/ol.2021.13145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is a common type of malignant tumor that is frequently accompanied by drug resistance, which is a significant challenge in the treatment of BC. Adriamycin (ADM) is a commonly used drug for the treatment of BC. The aim of the present study was to demonstrate the association between RNA binding motif protein 38 (RBM38) and ADM resistance in BC. The results revealed that the expression levels of RBM38 were significantly upregulated in ADM-resistant BC tissues and the ADM-resistant cell line, MCF-7/A, as demonstrated using reverse transcription-quantitative PCR and western blotting. In addition, the results of the MTT assay revealed that the overexpression of RBM38 enhanced the resistance of MCF-7/A cells to ADM, promoted invasiveness, as determined using a Transwell assay, inhibited the apoptosis of resistant cells, as determined using flow cytometry, and accelerated cell cycle progression from the G0 to the S phase. The results of the dual luciferase reporter assay demonstrated the binding relationship between microRNA (miR)-320b and RBM38, and the expression levels of miR-320b were significantly downregulated in ADM-resistant BC tissues and MCF-7/A cells. Overexpression of miR-320b reversed ADM resistance, suppressed invasiveness, promoted apoptosis and arrested MCF-7/A cells in the G0 phase. In addition, RBM38 was discovered to be negatively regulated by miR-320b, which was able to restore the sensitivity of BC cells to ADM by downregulating RBM38. Further exploration of the underlying regulatory mechanism revealed that the miR-320b/RBM38 signaling axis mediated the development of ADM resistance in BC by altering the expression of cell cycle-, drug resistance- and PI3K/AKT signaling pathway-related proteins. In conclusion, the results of the present study suggested that RBM38 may be negatively regulated by miR-320b, which accelerates drug resistance in BC.
Collapse
|
12
|
Hildebrandt A, Kirchner B, Meidert AS, Brandes F, Lindemann A, Doose G, Doege A, Weidenhagen R, Reithmair M, Schelling G, Pfaffl MW. Detection of Atherosclerosis by Small RNA-Sequencing Analysis of Extracellular Vesicle Enriched Serum Samples. Front Cell Dev Biol 2021; 9:729061. [PMID: 34712662 PMCID: PMC8546328 DOI: 10.3389/fcell.2021.729061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Atherosclerosis can occur throughout the arterial vascular system and lead to various diseases. Early diagnosis of atherosclerotic processes and of individual disease patterns would be more likely to be successful if targeted therapies were available. For this, it is important to find reliable biomarkers that are easily accessible and with little inconvenience for patients. There are many cell culture, animal model or tissue studies that found biomarkers at the microRNA (miRNA) and mRNA level describing atherosclerotic processes. However, little is known about their potential as circulating and liquid biopsy markers in patients. In this study, we examined serum-derived miRNA - profiles from 129 patients and 28 volunteers to identify potential biomarkers. The patients had four different atherosclerotic manifestations: abdominal aneurysm (n = 35), coronary heart disease (n = 34), carotid artery stenosis (n = 24) and peripheral arterial disease (n = 36). The samples were processed with an extracellular vesicle enrichment protocol, total-RNA extraction and small RNA-sequencing were performed. A differential expression analysis was performed bioinformatically to find potentially regulated miRNA biomarkers. Resulting miRNA candidates served as a starting point for an overrepresentation analysis in which relevant target mRNAs were identified. The Gene Ontology database revealed relevant biological functions in relation to atherosclerotic processes. In patients, expression of specific miRNAs changed significantly compared to healthy volunteers; 27 differentially expressed miRNAs were identified. We were able to detect a group-specific miRNA fingerprint: miR-122-5p, miR-2110 and miR-483-5p for abdominal aortic aneurysm, miR-370-3p and miR-409-3p for coronary heart disease, miR-335-3p, miR-381-3p, miR493-5p and miR654-3p for carotid artery stenosis, miR-199a-5p, miR-215-5p, miR-3168, miR-582-3p and miR-769-5p for peripheral arterial disease. The results of the study show that some of the identified miRNAs have already been associated with atherosclerosis in previous studies. Overrepresentation analysis on this data detected biological processes that are clearly relevant for atherosclerosis, its development and progression showing the potential of these miRNAs as biomarker candidates. In a next step, the relevance of these findings on the mRNA level is to be investigated and substantiated.
Collapse
Affiliation(s)
- Alex Hildebrandt
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Agnes S Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anja Lindemann
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gero Doose
- ecSeq Bioinformatics GmbH, Leipzig, Germany
| | - Alexander Doege
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rolf Weidenhagen
- Department of Vascular Surgery, Klinikum Neuperlach, Muenchen-Kliniken, Munich, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Kianmehr A, Qujeq D, Bagheri A, Mahrooz A. Oxidized LDL-regulated microRNAs for evaluating vascular endothelial function: molecular mechanisms and potential biomarker roles in atherosclerosis. Crit Rev Clin Lab Sci 2021; 59:40-53. [PMID: 34523391 DOI: 10.1080/10408363.2021.1974334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a simple monolayer, vascular endothelial cells can respond to physicochemical stimuli. In addition to promoting the formation of foam cells, oxidized low-density lipoprotein (ox-LDL) contributes to the atherosclerotic process through different mechanisms, including endothelial cell dysfunction. As conserved noncoding RNAs, microRNAs (miRNAs) naturally lie in different genomic positions and post-transcriptionally regulate the expression of many genes. They participate in integrated networks formed under stress to maintain cellular homeostasis, vascular inflammation, and metabolism. These small RNAs constitute therapeutic targets in different diseases, including atherosclerosis, and their role as biomarkers is crucial given their detectability even years before the emergence of diseases. This review was performed to investigate the role of ox-LDL-regulated miRNAs in atherosclerosis, their molecular mechanisms, and their application as biomarkers of vascular endothelial cell dysfunction.
Collapse
Affiliation(s)
- Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Cao Z, Wang H, Zhu X. The Role of Serum miR-497 on the Predictive Index of Early Diagnosis and Poor Prognosis of Atherosclerosis Cerebral Infarction. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:927-937. [PMID: 34183951 PMCID: PMC8223575 DOI: 10.18502/ijph.v50i5.6110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Serum miR-497 can be used as a predictive index of the early diagnosis and poor prognosis of atherosclerosis cerebral infarction (ATCI). Methods: Overall, 135 ATCI patients, treated in The Second Affiliated Hospital of Nantong University, Nantong 226001, P.R.China from Apr 2012 to Jan 2015, were included in ATCI group. Whereas, 77 patients with non-atherosclerosis cerebral infarction were put in the control group. RT-qPCR was performed for detecting serum miR-497 expression, whose relationship with the patients’ clinicopathological parameters was analyzed. Receiver operating characteristic (ROC) curves were plotted to evaluate values of serum miR-497 for diagnosing ATCI patients and their 3-year and 5-year overall survival rates (OSRs). Cox regression analysis was conducted on prognostic factors of ATCI patients. Results: miR-497 remarkably rose in the serum of ATCI patients, and was correlated with histories of hypertension, smoking and diabetes mellitus (DM). Its areas under curves (AUCs) for diagnosing these pathological parameters were 0.803, 0.817 and 0.819, respectively. Its expression was higher in the serum of the patients with recurrence and poor prognoses. Its AUCs for predicting the two conditions were 0.924 and 0.937, respectively. The 3- and 5-year OSRs of patients with low expression were remarkably higher than those of patients with high expression. Conclusion: miR-497 and histories of hypertension, smoking and DM were independent prognostic factors affecting the 3-year OSR of ATCI patients. miR-497 expression rises in ATCI patients, so this miR is expected to become a serum diagnostic marker for ATCI.
Collapse
Affiliation(s)
- Zhiyong Cao
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong 226001, P.R.China
| | - Han Wang
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong 226001, P.R.China
| | - Xiangyang Zhu
- Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong 226001, P.R.China
| |
Collapse
|
15
|
Recent Highlights of Research on miRNAs as Early Potential Biomarkers for Cardiovascular Complications of Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22063153. [PMID: 33808800 PMCID: PMC8003798 DOI: 10.3390/ijms22063153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its complications pose a serious threat to the life and health of patients around the world. The most dangerous complications of this disease are vascular complications. Microvascular complications of T2DM include retinopathy, nephropathy, and neuropathy. In turn, macrovascular complications include coronary artery disease, peripheral artery disease, and cerebrovascular disease. The currently used diagnostic methods do not ensure detection of the disease at an early stage, and they also do not predict the risk of developing specific complications. MicroRNAs (miRNAs) are small, endogenous, noncoding molecules that are involved in key processes, such as cell proliferation, differentiation, and apoptosis. Recent research has assigned them an important role as potential biomarkers for detecting complications related to diabetes. We suggest that utilizing miRNAs can be a routine approach for early diagnosis and prognosis of diseases and may enable the development of better therapeutic approaches. In this paper, we conduct a review of the latest reports demonstrating the usefulness of miRNAs as biomarkers in the vascular complications of T2DM.
Collapse
|
16
|
Lu X, Yang B, Yang H, Wang L, Li H, Chen S, Lu X, Gu D. MicroRNA-320b Modulates Cholesterol Efflux and Atherosclerosis. J Atheroscler Thromb 2021; 29:200-220. [PMID: 33536383 PMCID: PMC8803562 DOI: 10.5551/jat.57125] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim:
ATP-binding cassette (ABC) transporters and endonuclease-exonuclease-phosphatase family domain containing 1 (EEPD1) are reported to regulate cellular cholesterol efflux in macrophages. Bioinformatics analysis has revealed that ABCG1 and EEPD1 might be potential targets of microRNA (miR)-320b. This study aimed to elucidate the roles of miR-320b in cholesterol efflux from macrophages and the pathogenesis of atherosclerosis.
Methods:
Microarray was conducted to profile microRNA (miRNA) expression, and quantitative real-time PCR (qPCR) was used to validate the differentially expressed miRNAs in peripheral blood mononuclear cells of coronary artery disease (CAD) patients and healthy controls. Luciferase assay was conducted to evaluate the activity of reporter construct containing the 3´-untranslated region (3´-UTR) of target genes. Besides, NBD-cholesterol efflux induced by high-density lipoprotein (HDL) and lipid-free apolipoprotein A1 (apoA1) was detected using fluorescence intensity, respectively.
Apoe−/−
mice were injected with adeno-associated virus (AAV)2-miR-320b or control via tail vein, thereafter fed with 14 week atherogenic diet to study the roles of miR-320b
in vivo
.
Results:
MiR-320b was highly expressed in CAD patients compared with that in the healthy controls in both the microarray analysis and qPCR analysis.
In vitro
study showed that miR-320b decreased HDL- and apoA1-mediated cholesterol efflux from macrophages partly by directly targeting
ABCG1
and
EEPD1
genes and partly via suppressing the LXRα-ABCA1/G1 pathway. Consistently,
in vivo
administration of AAV2-miR-320b into
Apoe−/−
mice attenuated cholesterol efflux from peritoneal macrophages, which showed reduced expression of ABCA1/G1 and EEPD1, and increased lipid LDL-C level, with a down-regulation of hepatic LDLR and ABCA1. AAV2-miR-320b treatment also increased atherosclerotic plaque size and lesional macrophage content and enhanced pro-inflammatory cytokines levels through the elevated phosphorylation level of nuclear factor-κB p65 in macrophages.
Conclusion:
We identify miR-320b as a novel modulator of macrophage cholesterol efflux and that it might be a promising therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xiaomei Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Bin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Huijun Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Hongfan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shufeng Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
17
|
Eyileten C, Sharif L, Wicik Z, Jakubik D, Jarosz-Popek J, Soplinska A, Postula M, Czlonkowska A, Kaplon-Cieslicka A, Mirowska-Guzel D. The Relation of the Brain-Derived Neurotrophic Factor with MicroRNAs in Neurodegenerative Diseases and Ischemic Stroke. Mol Neurobiol 2021; 58:329-347. [PMID: 32944919 PMCID: PMC7695657 DOI: 10.1007/s12035-020-02101-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/25/2020] [Indexed: 03/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that plays a crucial role in the development of the nervous system while supporting the survival of existing neurons and instigating neurogenesis. Altered levels of BDNF, both in the circulation and in the central nervous system (CNS), have been reported to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), multiple sclerosis (MS), and ischemic stroke. MicroRNAs (miRNAs) are a class of non-coding RNAs found in body fluids such as peripheral blood and cerebrospinal fluid. Several different miRNAs, and their target genes, are recognized to be involved in the pathophysiology of neurodegenerative and neurovascular diseases. Thus, they present as promising biomarkers and a novel treatment approach for CNS disorders. Currently, limited studies provide viable evidence of miRNA-mediated post-transcriptional regulation of BDNF. The aim of this review is to provide a comprehensive assessment of the current knowledge regarding the potential diagnostic and prognostic values of miRNAs affecting BDNF expression and its role as a CNS disorders and neurovascular disease biomarker. Moreover, a novel therapeutic approach in neurodegenerative diseases and ischemic stroke targeting miRNAs associated with BDNF will be discussed.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Lucia Sharif
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Aleksandra Soplinska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Anna Czlonkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| |
Collapse
|
18
|
Liu C, Lai Y, Ying S, Zhan J, Shen Y. Plasma exosome-derived microRNAs expression profiling and bioinformatics analysis under cross-talk between increased low-density lipoprotein cholesterol level and ATP-sensitive potassium channels variant rs1799858. J Transl Med 2020; 18:459. [PMID: 33272292 PMCID: PMC7713329 DOI: 10.1186/s12967-020-02639-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Exosome-derived microRNAs (exo-miRs) as messengers play important roles, in the cross-talk between genetic [ATP-sensitive potassium channels (KATP) genetic variant rs1799858] and environmental [elevated serum low-density lipoprotein cholesterol (LDL-C) level] factors, but the plasma exo-miRs expression profile and its role in biological processes from genotype to phenotype remain unclear. Methods A total of 14 subjects with increased LDL-C serum levels (≥ 1.8 mmol/L) were enrolled in the study. The KATP rs1799858 was genotyped by the Sequenom MassARRAY system. The plasma exo-miRs expression profile was identified by next-generation sequencing. Results 64 exo-miRs were significantly differentially expressed (DE), among which 44 exo-miRs were up-regulated and 20 exo-miRs were down-regulated in those subjects carrying T-allele (TT + CT) of rs1799858 compared to those carrying CC genotype. The top 20 up-regulated DE-exo-miRs were miR-378 family, miR-320 family, miR-208 family, miR-483-5p, miR-22-3p, miR-490-3p, miR-6515-5p, miR-31-5p, miR-210-3p, miR-17-3p, miR-6807-5p, miR-497-5p, miR-33a-5p, miR-3611 and miR-126-5p. The top 20 down-regulated DE-exo-miRs were let-7 family, miR-221/222 family, miR-619-5p, miR-6780a-5p, miR-641, miR-200a-5p, miR-581, miR-605-3p, miR-548ar-3p, miR-135a-3p, miR-451b, miR-509-3-5p, miR-4664-3p and miR-224-5p. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were subsequently implemented to identify the top 10 DE-exo-miRs related specific target genes and signaling pathways. Only 5 DE-exo-miRs were validated by qRT-PCR as follows: miR-31-5p, miR-378d, miR-619-5p, miR-320a-3p and let-7a-5p (all P < 0.05). Conclusion These results firstly indicated the plasma exo-miRs expression profile bridging the link between genotype (KATP rs1799858) and phenotype (higher LDL-C serum level), these 5 DE-exo-miRs may be potential target intermediates for molecular intervention points.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, 1 Panfu Road, Guangzhou, 510180, China.
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, 1 Panfu Road, Guangzhou, 510180, China
| | - Songsong Ying
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Junfang Zhan
- Department of Health Management Center, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, 1 Panfu Road, Guangzhou, 510180, China
| |
Collapse
|
19
|
Search for Reliable Circulating Biomarkers to Predict Carotid Plaque Vulnerability. Int J Mol Sci 2020; 21:ijms21218236. [PMID: 33153204 PMCID: PMC7662861 DOI: 10.3390/ijms21218236] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is responsible for 20% of ischemic strokes, and the plaques from the internal carotid artery the most frequently involved. Lipoproteins play a key role in carotid atherosclerosis since lipid accumulation contributes to plaque progression and chronic inflammation, both factors leading to plaque vulnerability. Carotid revascularization to prevent future vascular events is reasonable in some patients with high-grade carotid stenosis. However, the degree of stenosis alone is not sufficient to decide upon the best clinical management in some situations. In this context, it is essential to further characterize plaque vulnerability, according to specific characteristics (lipid-rich core, fibrous cap thinning, intraplaque hemorrhage). Although these features can be partly detected by imaging techniques, identifying carotid plaque vulnerability is still challenging. Therefore, the study of circulating biomarkers could provide adjunctive criteria to predict the risk of atherothrombotic stroke. In this regard, several molecules have been found altered, but reliable biomarkers have not been clearly established yet. The current review discusses the concept of vulnerable carotid plaque, and collects existing information about putative circulating biomarkers, being particularly focused on lipid-related and inflammatory molecules.
Collapse
|
20
|
The carotid plaque as paradigmatic case of site-specific acceleration of aging process: The microRNAs and the inflammaging contribution. Ageing Res Rev 2020; 61:101090. [PMID: 32474155 DOI: 10.1016/j.arr.2020.101090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is considered a chronic inflammatory disease of arteries associated with the aging process. Many risk factors have been identified and they are mainly related to life-styles, gene-environment interactions and socioeconomic status. Carotid and coronary artery diseases are the two major atherosclerotic conditions, being the primary cause of stroke and heart attack, respectively. Nevertheless, carotid plaque assumes particular aspects not only for the specific molecular mechanisms, but also for the types of atheroma which may be associated with a better or a worst prognosis. The identification of circulating blood biomarkers able to distinguish carotid plaque types (stable or vulnerable) is a crucial step for the improvement of adequate therapeutic approaches avoiding or delaying endarterectomy in the oldest old individuals (> 80 years), a population predicted to growth in the next years. The review highlights the most recent knowledge on carotid plaque molecular mechanisms, focusing on microRNAs (miRs), as a site-specific accelerated aging within the conceptual framework of Geroscience for new affordable therapies.
Collapse
|
21
|
MicroRNAs as sentinels and protagonists of carotid artery thromboembolism. Clin Sci (Lond) 2020; 134:169-192. [PMID: 31971230 DOI: 10.1042/cs20190651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Stroke is the leading cause of serious disability in the world and a large number of ischemic strokes are due to thromboembolism from unstable carotid artery atherosclerotic plaque. As it is difficult to predict plaque rupture and surgical treatment of asymptomatic disease carries a risk of stroke, carotid disease continues to present major challenges with regard to clinical decision-making and revascularization. There is therefore an imminent need to better understand the molecular mechanisms governing plaque instability and rupture, as this would allow for the development of biomarkers to identify at-risk asymptomatic carotid plaque prior to disease progression and stroke. Further, it would aid in creation of therapeutics to stabilize carotid plaque. MicroRNAs (miRNAs) have been implicated as key protagonists in various stages of atherosclerotic plaque initiation, development and rupture. Notably, they appear to play a crucial role in carotid artery thromboembolism. As the molecular pathways governing the role of miRNAs are being uncovered, we are learning that their involvement is complex, tissue- and stage-specific, and highly selective. Notably, miRNAs can be packaged and secreted in extracellular vesicles (EVs), where they participate in cell-cell communication. The measurement of EV-encapsulated miRNAs in the circulation may inform disease mechanisms occurring in the plaque itself, and therefore may serve as sentinels of unstable plaque as well as therapeutic targets.
Collapse
|
22
|
Gigante B, Papa L, Bye A, Kunderfranco P, Viviani C, Roncarati R, Briguori C, de Faire U, Bottai M, Condorelli G. MicroRNA signatures predict early major coronary events in middle-aged men and women. Cell Death Dis 2020; 11:74. [PMID: 32001669 PMCID: PMC6992779 DOI: 10.1038/s41419-020-2291-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 10/30/2022]
Affiliation(s)
- Bruna Gigante
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Laura Papa
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Anja Bye
- Department of Cardiology, St. Olavs Hospital, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paolo Kunderfranco
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Chiara Viviani
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Roberta Roncarati
- Institute of Genetics and Biomedical Research, National Research Council of Italy, Rozzano, Milan, Italy
| | - Carlo Briguori
- Interventional Cardiology Unit, Mediterranea Cardiocentro, Naples, Italy
| | - Ulf de Faire
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine (IMM), Karolinska Institutet and Tema Coronary and Valvular Disease and Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, IMM, Karolinska Institutet, Stockholm, Sweden
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy. .,Institute of Genetics and Biomedical Research, National Research Council of Italy, Rozzano, Milan, Italy. .,Humanitas University, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
23
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
24
|
Yang X, Niu X, Xiao Y, Lin K, Chen X. MiRNA expression profiles in healthy OSAHS and OSAHS with arterial hypertension: potential diagnostic and early warning markers. Respir Res 2018; 19:194. [PMID: 30285853 PMCID: PMC6167890 DOI: 10.1186/s12931-018-0894-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Background Obstructive sleep apnea-hypopnea syndrome (OSAHS) is prone to being complicated with various cardiovascular, cerebrovascular and metabolic conditions. OSAHS, due to its multifactorial nature, entails individualized and comprehensive treatment. So far, no well-established diagnostic criteria for the disease are available. In recent years, miRNA has been shown to be a sensitive biomarker suggestive of the progression and prognosis of many diseases. In this study, we examined some serum miRNAs in healthy OSAHS (OSAHS patients without complication) and OSAHS with arterial hypertension, with an attempt to understand the potential effects on the disease, improve the diagnosis of OSAHS and find OSAHS-related diagnostic markers. Methods Against various diagnostic criteria, participants were divided into three groups: healthy OSAHS, OSAHS with arterial hypertension and healthy controls. Their serum miRNA profiles were assessed by microarray technology, and then differentially expressed miRNAs were verified by quantitative real-time PCR (qRT-PCR). The receiver operating characteristic (ROC) curves of miRNAs were constructed and the areas under the curve (AUC) were calculated. Meanwhile, the miRNAs were subjected to logistic regression analysis. The target genes were bioinformatically assessed, their functions and signaling pathways further determined and eventually an miRNA-gene network was established. Results Analysis with the miRNA array exhibited that, compared with the control group, 12 differentially expressed miRNAs were found in healthy OSAHS, and 33 were found in OSAHS with arterial hypertension. The expression of miR-126-3p, let-7d-5p, miR-7641 and miR-1233-5p, miR-320b, miR-145-5p, miR-107, miR-26a-5p were validated by using qRT-PCR. Bioinformatics analysis predicted that the potential target genes of these miRNAs might be involved in metabolism, and the regulation of endothelial cells and nervous system. Moreover, the ROC analysis showed that the using miR-145-5p and let-7d-5p in combination can identify the healthy OSAHS, presence of miR-126-3p, miR-26a-5p and miR-107 was well indicative of OSAHS with arterial hypertension. Conclusions A cluster of dysregulation miRNAs have been found to be involved in the development of OSAHS patients. Moreover, these miRNAs might be used to be potential diagnostic and early warning markers.
Collapse
Affiliation(s)
- Xiuping Yang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xun Niu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Xiao
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Lin
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiong Chen
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Abstract
This study was aimed to explore the crucial genes and microRNAs (miRNAs) associated with the carotid atherosclerosis (CA).Two public datasets GSE28829 and GSE43292 were obtained from Gene Expression Omnibus databases to analyze the differentially expressed genes (DEGs) between primary and advanced atherosclerotic plaque tissues. The Gene Ontology (GO) terms, pathways, and protein-protein interactions (PPIs) of these DEGs were analyzed. miRNAs and transcription factor (TF) were predicted.A total of 112 upregulated and 179 downregulated intersection DEGs were identified between 2 datasets. In the PPI network, HSP90AB1 (degree = 19), RAP1A (degree = 14), and integrin subunit beta 1 (ITGB1) had higher degrees. A total of 23 miRNAs were predicted, such as miR-126, miR-155, miR-19A, and miR-19B. Four TFs were associated with upregulated DEGs, while 10 TFs were identified to be associated with downregulated genes.Our study suggests the important roles of HSP90AB1, RAP1A, and integrins proteins of ITGB1, ITGA11, ITGA9, and ITGB2 in the progression of CA plaque. Additionally, miR-126, miR-155, miR-19B, and miR-19A may be considered as biomarkers of CA.
Collapse
Affiliation(s)
- Zhanglin Mao
- Department of Vascular Surgery, Yiwu Central Hospital, Yiwu, Zhejing, China, Yiwu
| | - Fen Wu
- Department of Vascular Surgery, Yiwu Central Hospital, Yiwu, Zhejing, China, Yiwu
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, Yiwu Central Hospital, Yiwu, Zhejiang, China
| |
Collapse
|
26
|
Lv QL, Du H, Liu YL, Huang YT, Wang GH, Zhang X, Chen SH, Zhou HH. Low expression of microRNA-320b correlates with tumorigenesis and unfavorable prognosis in glioma. Oncol Rep 2017; 38:959-966. [PMID: 28656255 DOI: 10.3892/or.2017.5762] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/13/2017] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence demonstrates that dysregulated microRNAs (miRNAs) play a critical role in tumorigenesis and progression of various cancers. miR-320b, a member of miR‑320 family, was revealed downregulated in numerous human cancers, including nasopharyngeal carcinoma and colorectal cancer. However, the function of miR‑320b in human glioma remained poorly defined. In this study, we report that miR‑320b was lowly expressed in glioma tissues and cell lines in contrast with controls, being closely correlated with histological malignancy of glioma. Furthermore, patients with low expression of miR‑320b were associated with poor prognostic outcomes. In vitro functional assays indicated that overexpression of miR‑320b could markedly enhance cell apoptosis rate and suppress cell proliferation, migration and invasion. miR-320b mimic impaired cell cycle and metastasis through inhibiting the expression of G1/S transition key regulator Cyclin D1 as well as decreasing the expression level of MMP2 and MMP9. Additionally, upregulation of miR‑320b could markedly promote apoptosis by increasing the level of Bax and reducing Bcl-2 expression in glioma. Taken together, our data suggested that miR‑320b might serve as a novel prognostic marker and potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Hong Du
- Department of Pharmacy, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuang-Tao Huang
- Department of Neurology, The Brain Hospital of Hunan Province, Changsha, Hunan 410008, P.R. China
| | - Gui-Hua Wang
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410008, P.R. China
| | - Xue Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
27
|
Gandolfi M, Smania N, Vella A, Picelli A, Chirumbolo S. Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art. Neural Plast 2017; 2017:1389475. [PMID: 28373915 PMCID: PMC5360976 DOI: 10.1155/2017/1389475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Since the increasing update of the biomolecular scientific literature, biomarkers in stroke have reached an outstanding and remarkable revision in the very recent years. Besides the diagnostic and prognostic role of some inflammatory markers, many further molecules and biological factors have been added to the list, including tissue derived cytokines, growth factor-like molecules, hormones, and microRNAs. The literatures on brain derived growth factor and other neuroimmune mediators, bone-skeletal muscle biomarkers, cellular and immunity biomarkers, and the role of microRNAs in stroke recovery were reviewed. To date, biomarkers represent a possible challenge in the diagnostic and prognostic evaluation of stroke onset, pathogenesis, and recovery. Many molecules are still under investigation and may become promising and encouraging biomarkers. Experimental and clinical research should increase this list and promote new discoveries in this field, to improve stroke diagnosis and treatment.
Collapse
Affiliation(s)
- Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Antonio Vella
- Immunology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|