1
|
Cini NT, Pennisi M, Genc S, Spandidos DA, Falzone L, Mitsias PD, Tsatsakis A, Taghizadehghalehjoughi A. Glioma lateralization: Focus on the anatomical localization and the distribution of molecular alterations (Review). Oncol Rep 2024; 52:139. [PMID: 39155859 PMCID: PMC11358673 DOI: 10.3892/or.2024.8798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto‑occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal‑temporal‑parietal‑occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.
Collapse
Affiliation(s)
- Nilgun Tuncel Cini
- Department of Anatomy, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Sidika Genc
- Department of Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Panayiotis D. Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
2
|
Marino S, Menna G, Bilgin L, Mattogno PP, Gaudino S, Quaranta D, Caraglia N, Olivi A, Berger MS, Doglietto F, Della Pepa GM. "False friends" in Language Subcortical Mapping: A Systematic Literature Review. World Neurosurg 2024; 190:350-361.e20. [PMID: 38968990 DOI: 10.1016/j.wneu.2024.06.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Subcortical brain mapping in awake glioma surgery might optimize the extent of resection while minimizing neurological morbidity, but it requires a correct interpretation of responses evoked during surgery. To define, with a systematic review: 1) a comprehensive 'map' of the principal white matter bundles involved in awake surgery on language-related networks, describing the most employed tests and the expected responses; 2) In linguistics, a false friend is a word in a different language that looks or sounds like a word in given language but differs significantly in meaning. Similarly, our aim is to give the surgeons a comprehensive review of potentially misleading responses, namely "false friends", in subcortical language mapping. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Standardized data extraction was conducted. RESULTS Out of a total of 224 initial papers, 67 were included for analysis. Expected responses, common tests, and potential "false friends" were recorded for each of the following white matter bundles: frontal aslant tract, superior and inferior longitudinal fascicles, arcuate fascicle, inferior fronto-occipital fascicle, uncinate fascicle. Practical examples are discussed to underline the risk of intraoperative fallouts ("false friends") that might lead to an early interruption (false positive) or a risky surgical removal (false negative). CONCLUSIONS This paper represents a critical review of the present status of subcortical awake mapping and underlines practical "false-friend" in mapping critical crossroads in language-related networks.
Collapse
Affiliation(s)
- Salvatore Marino
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Grazia Menna
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Lal Bilgin
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Pier Paolo Mattogno
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Simona Gaudino
- Diagnostic Neuroradiology Unit, Department of Radiological and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Davide Quaranta
- Neurology Unit, Neurorehabilitation and Neuropsychology Service, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Naike Caraglia
- Neurology Unit, Neurorehabilitation and Neuropsychology Service, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico, San Giovanni Rotondo, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Francesco Doglietto
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giuseppe Maria Della Pepa
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy; Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy.
| |
Collapse
|
3
|
Sufianov A, Gonzalez-Lopez P, Simfukwe K, Martorell-Llobregat C, Iakimov IA, Sufianov RA, Mastronardi L, Borba LAB, Rangel CC, Forlizzi V, Campero A, Baldoncini M. Clinical and anatomical analysis of the epileptogenic spread patterns in focal cortical dysplasia patients. Surg Neurol Int 2023; 14:291. [PMID: 37680931 PMCID: PMC10481808 DOI: 10.25259/sni_210_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
Background Focal cortical dysplasia (FCD) is one of the main causes of intractable epilepsy, which is amendable by surgery. During the surgical management of FCD, the understanding of its epileptogenic foci, interconnections, and spreading pathways is crucial for attaining a good postoperative seizure free outcome. Methods We retrospectively evaluated 54 FCD patients operated in Federal Center of Neurosurgery, Tyumen, Russia. The electroencephalogram findings were correlated to the involved brain anatomical areas. Subsequently, we analyzed the main white matter tracts implicated during the epileptogenic spreading in some representative cases. We prepared 10 human hemispheres using Klinger's method and dissected them through the fiber dissection technique. Results The clinical results were displayed and the main white matter tracts implicated in the seizure spread were described in 10 patients. Respective FCD foci, interconnections, and ectopic epileptogenic areas in each patient were discussed. Conclusion A strong understanding of the main implicated tracts in epileptogenic spread in FCD patient remains cardinal for neurosurgeons dealing with epilepsy. To achieve meaningful seizure freedom, despite the focal lesion resection, the interconnections and tracts should be understood and somehow disconnected to stop the spreading.
Collapse
Affiliation(s)
- Albert Sufianov
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russian Federation
| | - Pablo Gonzalez-Lopez
- Department of Neurosurgery, Hospital General Universitario de Alicante, Alicante, Spain
| | - Keith Simfukwe
- Department of Neurosurgery, First Moscow Medical University, Moscow, Russian Federation
| | | | - Iurii A. Iakimov
- Department of Neurosurgery, First Moscow Medical University, Moscow, Russian Federation
| | - Rinat A. Sufianov
- Department of Neurosurgery, First Moscow Medical University, Moscow, Russian Federation
| | | | - Luis A. B. Borba
- Department of Neurosurgery, Mackenzie Evangelical University Hospital, Curitiba, Parana, Brazil
| | - Carlos Castillo Rangel
- Department of Neurosurgery, Institute of Security and Social Services for State Workers (ISSSTE), Mexico City, Mexico
| | - Valeria Forlizzi
- Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alvaro Campero
- Department of Neurosurgery, Hospital Padilla de Tucuman, Tucuman, Argentina
| | - Matias Baldoncini
- Department of Neurosurgery, San Fernando Hospital, San Fernando, Argentina
| |
Collapse
|
4
|
Mohammadi S, Jahanshahi A, Salehi MA, Darvishi R, Seyedmirzaei H, Luna LP. White matter microstructural changes in internet addiction disorder: A systematic review of diffusion tensor imaging studies. Addict Behav 2023; 143:107690. [PMID: 36989701 DOI: 10.1016/j.addbeh.2023.107690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Diffusion tensor imaging (DTI) is a kind of magnetic resonance imaging (MRI) modality that helps designate tracts with brain microstructural changes. Internet gaming disorder (IGD) is an internet addiction that can cause many social and personality problems, such as problems in social communication, anxiety, and depression. There are several pieces of evidence showing the impact of this condition on brain regions, and many studies have investigated DTI measurements in these individuals. Therefore, we decided to systematically review the studies that have reported DTI parameters in IGD individuals. We searched the PubMed and Scopus databases to find relevant articles. Two reviewers separately screened the studies, and finally, 14 articles, including diffusion and network studies, were found eligible for our systematic review. Most of the studies reported findings on FA, showing an increase in the thalamus, anterior thalamic radiation, corticospinal tract, and inferior longitudinal fasciculus (ILF), while other regions mentioned in the studies demonstrated inconsistent findings. Moreover, in network studies, IGD individuals showed a decrease in nodal and global efficiencies. In conclusion, our study illuminates the neuropsychological basis of this condition and suggests that internet gaming can correlate with microstructural abnormalities in the central nervous system. Some correlate with the characteristics of online gaming, the addiction state, and the illness's duration.
Collapse
|
5
|
Nardi L, Schmeisser MJ, Schumann S. Fixation and staining methods for macroscopical investigation of the brain. Front Neuroanat 2023; 17:1200196. [PMID: 37426902 PMCID: PMC10323195 DOI: 10.3389/fnana.2023.1200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
The proper preservation of human brain tissue is an indispensable requirement for post-mortem investigations. Neuroanatomical teaching, neuropathological examination, neurosurgical training, basic and clinical neuroscientific research are some of the possible downstream applications of brain specimens and, although much apart from one another, proper tissue fixation and preservation is a common denominator to all of them. In this review, the most relevant procedures to fixate brain tissue are described. In situ and immersion fixation approaches have been so far the most widespread ways to deliver the fixatives inside the skull. Although most of them rely on the use of formalin, alternative fixative solutions containing lower amounts of this compound mixed with other preservative agents, have been attempted. The combination of fixation and freezing paved the way for fiber dissection, particularly relevant for the neurosurgical practice and clinical neuroscience. Moreover, special techniques have been developed in neuropathology to tackle extraordinary problems, such as the examination of highly infective specimens, as in the case of the Creutzfeldt-Jakob encephalopathy, or fetal brains. Fixation is a fundamental prerequisite for further staining of brain specimens. Although several staining techniques have been developed for the microscopical investigation of the central nervous system, numerous approaches are also available for staining macroscopic brain specimens. They are mostly relevant for neuroanatomical and neuropathological teaching and can be divided in white and gray matter staining techniques. Altogether, brain fixation and staining techniques are rooted in the origins of neuroscience and continue to arouse interest in both preclinical and clinical neuroscientists also nowadays.
Collapse
Affiliation(s)
- Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Zhang X, Li Y, Guan Q, Dong D, Zhang J, Meng X, Chen F, Luo Y, Zhang H. Distance-dependent reconfiguration of hubs in Alzheimer's disease: a cross-tissue functional network study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.532772. [PMID: 36993290 PMCID: PMC10055319 DOI: 10.1101/2023.03.24.532772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The hubs of the intra-grey matter (GM) network were sensitive to anatomical distance and susceptible to neuropathological damage. However, few studies examined the hubs of cross-tissue distance-dependent networks and their changes in Alzheimer's disease (AD). Using resting-state fMRI data of 30 AD patients and 37 normal older adults (NC), we constructed the cross-tissue networks based on functional connectivity (FC) between GM and white matter (WM) voxels. In the full-ranged and distance-dependent networks (characterized by gradually increased Euclidean distances between GM and WM voxels), their hubs were identified with weight degree metrics (frWD and ddWD). We compared these WD metrics between AD and NC; using the resultant abnormal WDs as the seeds, we performed seed-based FC analysis. With increasing distance, the GM hubs of distance-dependent networks moved from the medial to lateral cortices, and the WM hubs spread from the projection fibers to longitudinal fascicles. Abnormal ddWD metrics in AD were primarily located in the hubs of distance-dependent networks around 20-100mm. Decreased ddWDs were located in the left corona radiation (CR), which had decreased FCs with the executive network's GM regions in AD. Increased ddWDs were located in the posterior thalamic radiation (PTR) and the temporal-parietal-occipital junction (TPO), and their FCs were larger in AD. Increased ddWDs were shown in the sagittal striatum, which had larger FCs with the salience network's GM regions in AD. The reconfiguration of cross-tissue distance-dependent networks possibly reflected the disruption in the neural circuit of executive function and the compensatory changes in the neural circuits of visuospatial and social-emotional functions in AD.
Collapse
Affiliation(s)
- Xingxing Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yingjia Li
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Fuyong Chen
- Department of Neurosurgery, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Yuejia Luo
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Haobo Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | | |
Collapse
|
7
|
Tanedo J, Gajawelli N, Guo S, Baron Nelson M, Lepore N. White matter tract changes in pediatric posterior fossa brain tumor survivors after surgery and chemotherapy. FRONTIERS IN NEUROIMAGING 2022; 1:845609. [PMID: 37555139 PMCID: PMC10406254 DOI: 10.3389/fnimg.2022.845609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/24/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND Survivors of pediatric posterior fossa brain tumors are susceptible to the adverse effects of treatment as they grow into adulthood. While the exact neurobiological mechanisms of these outcomes are not yet understood, the effects of treatment on white matter (WM) tracts in the brain can be visualized using diffusion tensor (DT) imaging. We investigated these WM microstructural differences using the statistical method tract-specific analysis (TSA). We applied TSA to the DT images of 25 children with a history of posterior fossa tumor (15 treated with surgery, 10 treated with surgery and chemotherapy) along with 21 healthy controls. Between these 3 groups, we examined differences in the most used DTI metric, fractional anisotropy (FA), in 11 major brain WM tracts. RESULTS Lower FA was found in the splenium of the corpus callosum (CC), the bilateral corticospinal tract (CST), the right inferior frontal occipital fasciculus (IFOF) and the left uncinate fasciculus (UF) in children with brain tumors as compared to healthy controls. Lower FA, an indicator of microstructural damage to WM, was observed in 4 of the 11 WM tracts examined in both groups of children with a history of posterior fossa tumor, with an additional tract unique to children who received surgery and chemotherapy (left UF). CONCLUSIONS Our findings indicate that a history of tumor in the posterior fossa and surgical resection may have effects on the WM in other parts of the brain.
Collapse
Affiliation(s)
- Jeffrey Tanedo
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Niharika Gajawelli
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Sharon Guo
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Mary Baron Nelson
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Natasha Lepore
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Steinberg SN, Tedla NB, Hecht E, Robins DL, King TZ. White matter pathways associated with empathy in females: A DTI investigation. Brain Cogn 2022; 162:105902. [PMID: 36007350 DOI: 10.1016/j.bandc.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
Empathy is a component of social cognition that allows us to understand, perceive, experience, and respond to the emotional state of others. In this study, we seek to build on previous research that suggests that sex and hormone levels may impact white matter microstructure. These white matter microstructural differences may influence social cognition. We examine the fractional anisotropy (FA) of white matter pathways associated with the complex human process of empathy in healthy young adult females during the self-reported luteal phase of their menstrual cycle. We used tract-based spatial statistics to perform statistical comparisons of FA and conducted multiple linear regression analysis to examine the strength of association between white matter FA and scores on the Empathy Quotient (EQ), a self-report questionnaire in which individuals report how much they agree or disagree with 60 statements pertaining to their empathic tendencies. Results identified a significant negative relationship between EQ scores and FA within five clusters of white matter: in the left forceps minor/body of the corpus callosum, left corticospinal tract, intraparietal sulcus/primary somatosensory cortex, superior longitudinal fasciculus, and right inferior fronto-occipital fasciculus/forceps minor. These consistent findings across clusters suggest that lower self-reported empathy is related to higher FA across healthy young females in specific white matter regions during the menstrual luteal phase. Future research should seek to examine if self-reported empathy varies across the menstrual cycle, using blood samples to confirm cycle phase and hormone levels.
Collapse
Affiliation(s)
| | - Neami B Tedla
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Erin Hecht
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Diana L Robins
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
9
|
Workflow in the multidisciplinary management of glioma patients in everyday practice: how we do it. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00505-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
De Luca C, Virtuoso A, Papa M, Certo F, Barbagallo GMV, Altieri R. Regional Development of Glioblastoma: The Anatomical Conundrum of Cancer Biology and Its Surgical Implication. Cells 2022; 11:cells11081349. [PMID: 35456027 PMCID: PMC9025763 DOI: 10.3390/cells11081349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) are among the most common malignant central nervous system (CNS) cancers, they are relatively rare. This evidence suggests that the CNS microenvironment is naturally equipped to control proliferative cells, although, rarely, failure of this system can lead to cancer development. Moreover, the adult CNS is innately non-permissive to glioma cell invasion. Thus, glioma etiology remains largely unknown. In this review, we analyze the anatomical and biological basis of gliomagenesis considering neural stem cells, the spatiotemporal diversity of astrocytes, microglia, neurons and glutamate transporters, extracellular matrix and the peritumoral environment. The precise understanding of subpopulations constituting GBM, particularly astrocytes, is not limited to glioma stem cells (GSC) and could help in the understanding of tumor pathophysiology. The anatomical fingerprint is essential for non-invasive assessment of patients’ prognosis and correct surgical/radiotherapy planning.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
| | - Assunta Virtuoso
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
| | - Michele Papa
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milano, Italy
- Correspondence: (M.P.); (R.A.)
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
- Correspondence: (M.P.); (R.A.)
| |
Collapse
|
11
|
Camins À, Naval-Baudin P, Majós C, Sierpowska J, Sanmillan JL, Cos M, Rodriguez-Fornells A, Gabarrós A. Inferior fronto-occipital fascicle displacement in temporoinsular gliomas using diffusion tensor imaging. J Neuroimaging 2022; 32:638-646. [PMID: 35352437 PMCID: PMC9544573 DOI: 10.1111/jon.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose Brain tumors can result in displacement or destruction of important white matter tracts such as the inferior fronto‐occipital fascicle (IFOF). Diffusion tensor imaging (DTI) can assess the extent of this effect and potentially provide neurosurgeons with an accurate map to guide tumor resection; analyze IFOF displacement patterns in temporoinsular gliomas based on tumor grading and topography in the temporal lobe; and assess whether these patterns follow a predictable pattern, to assist in maximal tumor resection while preserving IFOF function. Methods Thirty‐four patients with temporal gliomas and available presurgical MRI were recruited. Twenty‐two had insula infiltration. DTI deterministic region of interest (ROI)‐based tractography was performed using commercial software. Tumor topographic imaging characteristics analyzed were as follows: location in the temporal lobe and extent of extratemporal involvement. Qualitative tractographic data obtained from directional DTI color maps included type of involvement (displaced/edematous‐infiltrated/destroyed) and displacement direction. Quantitative tractographic data of ipsi‐ and contralateral IFOF included whole tract volume, fractional anisotropy, and fractional anisotropy of a 2‐dimensional coronal ROI on the tract at the point of maximum tumor involvement. Results The most common tract involvement pattern was edematous/infiltrative displacement. Displacement patterns depended on main tumor location in the temporal lobe and presence of insular involvement. All tumors showed superior displacement pattern. In lateral tumors, displacement tendency was medial. In medial tumors, displacement tendency was lateral. When we add insular involvement, the tendency was more medial displacement. A qualitative and quantitative assessment supported these results. Conclusions IFOF displacement patterns are reproducible and suitable for temporoinsular gliomas presurgical planning.
Collapse
Affiliation(s)
- Àngels Camins
- Radiology Department, Institut de Diagnostic per la Imatge, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), Barcelona, 08907, Spain
| | - Pablo Naval-Baudin
- Radiology Department, Institut de Diagnostic per la Imatge, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain
| | - Carles Majós
- Radiology Department, Institut de Diagnostic per la Imatge, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain
| | - Joanna Sierpowska
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Medical Psychology, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL) & Institut de Neurociencies, Barcelona, Spain
| | - Jose L Sanmillan
- Neurosurgery Department, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, University of Barcelona - IDIBELL, Barcelona, Spain
| | - Mónica Cos
- Radiology Department, Institut de Diagnostic per la Imatge, Hospital Universitari de Bellvitge (HUB), Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL) & Institut de Neurociencies, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Andreu Gabarrós
- Neurosurgery Department, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, University of Barcelona - IDIBELL, Barcelona, Spain
| |
Collapse
|
12
|
Solis-Urra P, Esteban-Cornejo I, Rodriguez-Ayllon M, Verdejo-Román J, Labayen I, Catena A, Ortega FB. Early life factors and white matter microstructure in children with overweight and obesity: The ActiveBrains project. Clin Nutr 2021; 41:40-48. [PMID: 34864454 DOI: 10.1016/j.clnu.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND & AIMS Exposure to a suboptimal environment during the fetal and early infancy period's results in long-term consequences for brain morphology and function. We investigated the associations of early life factors such as anthropometric neonatal data (i.e., birth length, birth weight and birth head circumference) and breastfeeding practices (i.e., exclusive and any breastfeeding) with white matter (WM) microstructure, and ii) we tested whether WM tracts related to early life factors are associated with academic performance in children with overweight/obesity. METHODS 96 overweight/obese children (10.03 ± 1.16 years; 38.7% girls) were included from the ActiveBrains Project. WM microstructure indicators used were fractional anisotropy (FA) and mean diffusivity (MD), derived from Diffusion Tensor Imaging. Academic performance was evaluated with the Battery III Woodcock-Muñoz Tests of Achievement. Regression models were used to examine the associations of the early life factors with tract-specific FA and MD, as well as its association with academic performance. RESULTS Head circumference at birth was positively associated with FA of the inferior fronto-occipital fasciculus tract (0.441; p = 0.005), as well as negatively associated with MD of the cingulate gyrus part of cingulum (-0.470; p = 0.006), corticospinal (-0.457; p = 0.005) and superior thalamic radiation tract (-0.476; p = 0.001). Association of birth weight, birth length and exclusive breastfeeding with WM microstructure did not remain significant after false discovery rate correction. None tract related to birth head circumference was associated with academic performance (all p > 0.05). CONCLUSIONS Our results highlighted the importance of the perinatal growth in WM microstructure later in life, although its possible academic implications remain inconclusive.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - María Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Pamplona, Spain
| | - Andrés Catena
- Department of Experimental Psychology, Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
13
|
Schilling KG, Rheault F, Petit L, Hansen CB, Nath V, Yeh FC, Girard G, Barakovic M, Rafael-Patino J, Yu T, Fischi-Gomez E, Pizzolato M, Ocampo-Pineda M, Schiavi S, Canales-Rodríguez EJ, Daducci A, Granziera C, Innocenti G, Thiran JP, Mancini L, Wastling S, Cocozza S, Petracca M, Pontillo G, Mancini M, Vos SB, Vakharia VN, Duncan JS, Melero H, Manzanedo L, Sanz-Morales E, Peña-Melián Á, Calamante F, Attyé A, Cabeen RP, Korobova L, Toga AW, Vijayakumari AA, Parker D, Verma R, Radwan A, Sunaert S, Emsell L, De Luca A, Leemans A, Bajada CJ, Haroon H, Azadbakht H, Chamberland M, Genc S, Tax CMW, Yeh PH, Srikanchana R, Mcknight CD, Yang JYM, Chen J, Kelly CE, Yeh CH, Cochereau J, Maller JJ, Welton T, Almairac F, Seunarine KK, Clark CA, Zhang F, Makris N, Golby A, Rathi Y, O'Donnell LJ, Xia Y, Aydogan DB, Shi Y, Fernandes FG, Raemaekers M, Warrington S, Michielse S, Ramírez-Manzanares A, Concha L, Aranda R, Meraz MR, Lerma-Usabiaga G, Roitman L, Fekonja LS, Calarco N, Joseph M, Nakua H, Voineskos AN, Karan P, Grenier G, Legarreta JH, Adluru N, Nair VA, Prabhakaran V, Alexander AL, Kamagata K, Saito Y, Uchida W, Andica C, Abe M, Bayrak RG, Wheeler-Kingshott CAMG, D'Angelo E, Palesi F, Savini G, Rolandi N, Guevara P, Houenou J, López-López N, Mangin JF, Poupon C, Román C, Vázquez A, Maffei C, Arantes M, Andrade JP, Silva SM, Calhoun VD, Caverzasi E, Sacco S, Lauricella M, Pestilli F, Bullock D, Zhan Y, Brignoni-Perez E, Lebel C, Reynolds JE, Nestrasil I, Labounek R, Lenglet C, Paulson A, Aulicka S, Heilbronner SR, Heuer K, Chandio BQ, Guaje J, Tang W, Garyfallidis E, Raja R, Anderson AW, Landman BA, Descoteaux M. Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset? Neuroimage 2021; 243:118502. [PMID: 34433094 PMCID: PMC8855321 DOI: 10.1016/j.neuroimage.2021.118502] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022] Open
Abstract
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| | | | - Laurent Petit
- Groupe dImagerie Neurofonctionnelle, Institut Des Maladies Neurodegeneratives, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Colin B Hansen
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Vishwesh Nath
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gabriel Girard
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK), Department of Medicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Jonathan Rafael-Patino
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas Yu
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elda Fischi-Gomez
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Simona Schiavi
- Department of Computer Science, University of Verona, Italy
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (ThINK), Department of Medicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Giorgio Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology & Neurosurgery, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Stephen Wastling
- Lysholm Department of Neuroradiology, National Hospital for Neurology & Neurosurgery, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Maria Petracca
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Vejay N Vakharia
- Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Helena Melero
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento - Universidad Complutense de Madrid, Spain Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos, Madrid, Spain
| | - Lidia Manzanedo
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Emilio Sanz-Morales
- Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos, Madrid, Spain
| | - Ángel Peña-Melián
- Departamento de Anatomía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Calamante
- Sydney Imaging and School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - Arnaud Attyé
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Laura Korobova
- Center for Integrative Connectomics, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | | | - Drew Parker
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ahmed Radwan
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| | | | | | - Claude J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Hamied Haroon
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Rujirutana Srikanchana
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Colin D Mcknight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joseph Yuan-Mou Yang
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Suite (NACIS), Royal Children's Hospital, Parkville, Melbourne, Australia
| | - Jian Chen
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Claire E Kelly
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University & Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Jerome J Maller
- MRI Clinical Science Specialist, General Electric Healthcare, Australia
| | | | - Fabien Almairac
- Neurosurgery department, Hôpital Pasteur, University Hospital of Nice, Côte d'Azur University, France
| | - Kiran K Seunarine
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, London
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, London
| | - Fan Zhang
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nikos Makris
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Golby
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren J O'Donnell
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yihao Xia
- University of Southern California, Keck School of Medicine, Neuroimaging and Informatics Institute, Los Angeles, California, United States
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Yonggang Shi
- University of Southern California, Keck School of Medicine, Neuroimaging and Informatics Institute, Los Angeles, California, United States
| | | | - Mathijs Raemaekers
- UMC Utrecht Brain Center, Department of Neurology&Neurosurgery, Utrecht, the Netherlands
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
| | - Stijn Michielse
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University
| | | | - Luis Concha
- Universidad Nacional Autonoma de Mexico, Institute of Neurobiology, Mexico City, Mexico
| | - Ramón Aranda
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE-UT3), Cátedras-CONACyT, Ensenada, Mexico
| | | | | | - Lucas Roitman
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Navona Calarco
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Michael Joseph
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Hajer Nakua
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | | | | | | | | | - Veena A Nair
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Masahiro Abe
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Roza G Bayrak
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Giovanni Savini
- Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Nicolò Rolandi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Pamela Guevara
- Universidad de Concepción, Faculty of Engineering, Concepción, Chile
| | - Josselin Houenou
- Université Paris-Saclay, CEA, CNRS, Neurospin, Gif-sur-Yvette, France
| | | | | | - Cyril Poupon
- Université Paris-Saclay, CEA, CNRS, Neurospin, Gif-sur-Yvette, France
| | - Claudio Román
- Universidad de Concepción, Faculty of Engineering, Concepción, Chile
| | - Andrea Vázquez
- Universidad de Concepción, Faculty of Engineering, Concepción, Chile
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mavilde Arantes
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - José Paulo Andrade
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Susana Maria Silva
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, United States
| | - Eduardo Caverzasi
- Neurology Department UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Simone Sacco
- Neurology Department UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Michael Lauricella
- Memory and Aging Center. UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Franco Pestilli
- Department of Psychology, The University of Texas at Austin, TX 78731, USA
| | - Daniel Bullock
- Department of Psychology, The University of Texas at Austin, TX 78731, USA
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Edith Brignoni-Perez
- Developmental-Behavioral Pediatrics Division, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Catherine Lebel
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Jess E Reynolds
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Amy Paulson
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stefania Aulicka
- Department of Paediatric Neurology, University Hospital and Medicine Faculty, Masaryk University, Brno, Czech Republic
| | | | - Katja Heuer
- Center for Research and Interdisciplinarity (CRI), INSERM U1284, Université de Paris, Paris, France
| | - Bramsh Qamar Chandio
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Javier Guaje
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Wei Tang
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | | | - Rajikha Raja
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adam W Anderson
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
14
|
Liu T, Gao F, Zheng W, You Y, Zhao Z, Lv Y, Chen W, Zhang H, Ji C, Wu D. Diffusion MRI of the infant brain reveals unique asymmetry patterns during the first-half-year of development. Neuroimage 2021; 242:118465. [PMID: 34389444 DOI: 10.1016/j.neuroimage.2021.118465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
The human brain demonstrates anatomical and functional lateralization/asymmetry between the left and right hemispheres, and such asymmetry is known to start from the early age of life. However, how the asymmetry changes with brain development during infancy remained unknown. In this study, we aimed to systematically investigate the spatiotemporal pattern of brain asymmetry in healthy preterm-born infants during the first-half-year of development, using high angular resolution diffusion MRI. Sixty-five healthy preterm-born infants (gestational age between 25.3-36.6 weeks) were scanned with postmenstrual age (PMA) ranging from term-equivalent age (TEA) to 6-months. At the regional level, we performed a region-of-interest-based analysis by segmenting the brain into 63 symmetrical pairs of regions, based on which the laterality index was assessed and correlated with PMA. At the voxel level, we performed a fixel-based analysis of each fiber component between the native and left-right flipped data, separately in TEA-1 month, 1-3 months, and 3-6 months groups. The infant brains demonstrated extensive regions with structural asymmetry during their first half-of-year of life. A distinct central-peripheral asymmetry pattern was observed in mean diffusivity, namely, leftward lateralization in the neocortex and rightward asymmetry in the deep brain regions. Besides, the posterior brain demonstrated a higher lateralization index compared with the anterior brain in all metrics, which is congruent with the brain developmental pattern from caudal to rostral. Regionally, language processing regions showed a rightward asymmetry, while visuospatial processing regions exhibited leftward lateralization in fractional anisotropy, fibre density, and fibre cross-section measurements, and most white matter regions were lateralized to the left in these measurements. The laterality index of several regions (12 out 63) demonstrated significant developmental changes in mean diffusivity. At the fixel level, the fiber cross-section of inferior fronto-occipital fasciculus showed significant leftward asymmetry and the extent of asymmetry increased with PMA. In summary, the results revealed unique spatiotemporal patterns of macro- and micro-structural asymmetry in early life, which dynamically changed with age. These findings may contribute to the understanding of brain development during infancy.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou 310027, China
| | - Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou 310027, China
| | - Yuqing You
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou 310027, China
| | - Ying Lv
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijun Chen
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chai Ji
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou 310027, China.
| |
Collapse
|
15
|
Palmieri G, Cofano F, Salvati LF, Monticelli M, Zeppa P, Perna GD, Melcarne A, Altieri R, La Rocca G, Sabatino G, Barbagallo GM, Tartara F, Zenga F, Garbossa D. Fluorescence-Guided Surgery for High-Grade Gliomas: State of the Art and New Perspectives. Technol Cancer Res Treat 2021; 20:15330338211021605. [PMID: 34212784 PMCID: PMC8255554 DOI: 10.1177/15330338211021605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are aggressive tumors that require multimodal management and gross total resection is considered to be the first crucial step of treatment. Because of their infiltrative nature, intraoperative differentiation of neoplastic tissue from normal parenchyma can be challenging. For these reasons, in the recent years, neurosurgeons have increasingly performed this surgery under the guidance of tissue fluorescence. Sodium fluoresceine and 5-aminolevulinic acid represent the 2 main compounds that allow real-time identification of residual malignant tissue and have been associated with improved gross total resection and radiological outcomes. Though presenting different profiles of sensitivity and specificity and further investigations concerning cost-effectiveness are need, Sodium fluoresceine, 5-aminolevulinic acid and new phluorophores, such as Indocyanine green, represent some of the most important tools in the neurosurgeon’s hands to achieve gross total resection.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Fabio Cofano
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy.,Neurosurgery/Spine Surgery, Humanitas Gradenigo Hospital, Turin, Italy
| | - Luca Francesco Salvati
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Matteo Monticelli
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Pietro Zeppa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Giuseppe Di Perna
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Antonio Melcarne
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giuseppe Maria Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Fulvio Tartara
- Unit of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Francesco Zenga
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Diego Garbossa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| |
Collapse
|
16
|
Kelly JP, Phillips JO, Saneto RP, Khalatbari H, Poliakov A, Tarczy-Hornoch K, Weiss AH. Cerebral Visual Impairment Characterized by Abnormal Visual Orienting Behavior With Preserved Visual Cortical Activation. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 33984120 PMCID: PMC8132015 DOI: 10.1167/iovs.62.6.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Children with cerebral visual impairment (CVI) often have abnormal visual orienting behaviors due to impaired or damaged visual cortex. Alternatively, visual-cortical function is intact but visual information is not transformed downstream into an appropriate oculomotor output (visuomotor dysfunction). We examined visual, anatomic, and oculomotor assessments to distinguish visuomotor dysfunction from CVI associated with severely reduced visual-cortical response. Methods We reviewed the medical records from children with CVI having abnormal visual orienting behaviors, normal ocular examinations, and born near term. Relevant data were visual evoked potentials (VEPs), Teller card acuity, eye movements recorded by video-oculography (VOG), and neuroimaging (magnetic resonance imaging [MRI]) including diffusion tensor imaging (DTI) tractography. Results Thirty subjects had visuomotor dysfunction based on a normal VEP; of these 33% had a normal MRI and 67% had white matter abnormalities associated with metabolic disease and/or decreased volume of brain parenchyma. VOG recordings showed smooth pursuit gains were uniformly reduced and saccades were dysmetric but followed the main sequence. Ten subjects had severe CVI based on VEPs at noise levels; visual acuities and MRI findings overlapped those of the visuomotor dysfunction group. Developmental delay, seizures, microcephaly, and hypotonia were common across all groups. All subjects with an abnormal conventional MRI had abnormal metrics on DTI tractography from the occipital lobe. Conclusions A subset of patients with CVI have abnormal visual orienting behaviors despite a normal VEP (visuomotor dysfunction). A majority have abnormal white matter metrics on tractography suggesting a downstream defect in sensorimotor transformation. Clinically, visuomotor dysfunction is indistinguishable from severe CVI.
Collapse
Affiliation(s)
- John P Kelly
- Roger H. Johnson Vision Clinic, Seattle Children's Hospital, Division of Ophthalmology, Seattle, Washington, United States.,University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - James O Phillips
- Roger H. Johnson Vision Clinic, Seattle Children's Hospital, Division of Ophthalmology, Seattle, Washington, United States.,University of Washington School of Medicine, Department of Otolaryngology, Seattle, Washington, United States
| | - Russell P Saneto
- Seattle Children's Hospital, Department of Neurology/Division of Pediatric Neurology, Neuroscience Institute, Seattle, Washington, United States
| | - Hedieh Khalatbari
- Seattle Children's Hospital, Department of Radiology, Seattle, Washington, United States
| | - Andrew Poliakov
- Seattle Children's Hospital, Department of Radiology, Seattle, Washington, United States
| | - Kristina Tarczy-Hornoch
- Roger H. Johnson Vision Clinic, Seattle Children's Hospital, Division of Ophthalmology, Seattle, Washington, United States.,University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Avery H Weiss
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| |
Collapse
|
17
|
Labounek R, Wu Z, Bridwell DA, Brázdil M, Jan J, Nestrašil I. Blind Visualization of Task-Related Networks From Visual Oddball Simultaneous EEG-fMRI Data: Spectral or Spatiospectral Model? Front Neurol 2021; 12:644874. [PMID: 33981283 PMCID: PMC8107237 DOI: 10.3389/fneur.2021.644874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Various disease conditions can alter EEG event-related responses and fMRI-BOLD signals. We hypothesized that event-related responses and their clinical alterations are imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat). We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e., absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind visualization of task-related neural networks. Two (spatio)spectral patterns (high δ 4 band and low β 1 band) demonstrated significant negative linear relationship (p FWE < 0.05) to the frequent stimulus and three patterns (two low δ 2 and δ 3 bands, and narrow θ 1 band) demonstrated significant positive relationship (p < 0.05) to the target stimulus. These patterns were identified as ERSPats. EEG-fMRI F-map of each δ 4 model showed strong engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified the relationship to the frequent stimulus. For the δ 4 model, we detected a reduced HRF peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN, default mode network (DMN) and in the frontal white matter. The frequent-related β 1 patterns visualized less significant and distinct suprathreshold spatial associations. Each θ 1 model showed strong involvement of lateralized left-sided sensory-motor and motor networks with simultaneous basal ganglia co-activations and reduced HRF peak and amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ 1 model preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ 4, β 1, and θ 1 bands, all models provided high local F-statistics in expected regions. The most robust EEG-fMRI associations were observed for ASM and RSSM.
Collapse
Affiliation(s)
- René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Zhuolin Wu
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | | | - Milan Brázdil
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jiří Jan
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czechia
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
18
|
Barbagallo GMV, Altieri R, Garozzo M, Maione M, Di Gregorio S, Visocchi M, Peschillo S, Dolce P, Certo F. High Grade Glioma Treatment in Elderly People: Is It Different Than in Younger Patients? Analysis of Surgical Management Guided by an Intraoperative Multimodal Approach and Its Impact on Clinical Outcome. Front Oncol 2021; 10:631255. [PMID: 33718122 PMCID: PMC7943843 DOI: 10.3389/fonc.2020.631255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Age is considered a negative prognostic factor for High Grade Gliomas (HGGs) and many neurosurgeons remain skeptical about the benefits of aggressive treatment. New surgical and technological improvements may allow extended safe resection, with lower level of post-operative complications. This opportunity opens the unsolved question about the most appropriate HGG treatment in elderly patients. The aim of this study is to analyze if HGG maximal safe resection guided by an intraoperative multimodal imaging protocol coupled with neuromonitoring is associated with differences in outcome in elderly patients versus younger ones. METHODS We reviewed 100 patients, 53 (53%) males and 47 (47%) females, with median (IQR) age of 64 (57; 72) years. Eight patients were diagnosed with Anaplastic Astrocytoma (AA), 92 with Glioblastoma (GBM). Surgery was aimed to achieve safe maximal resection. An intraoperative multimodal imaging protocol, including neuronavigation, neurophysiological monitoring, 5-ALA fluorescence, 11C MET-PET, navigated i-US system and i-CT, was used, and its impact on EOTR and clinical outcome in elderly patients was analyzed. We divided patients in two groups according to their age: <65 and >65 years, and surgical and clinical results (EOTR, post-operative KPS, OS and PFS) were compared. Yet, to better understand age-related differences, the same patient cohort was also divided into <70 and >70 years and all the above data reanalyzed. RESULTS In the first cohort division, we did not found KPS difference over time and survival analysis did not show significant difference between the two groups (p = 0.36 for OS and p = 0.49 for PFS). Same results were obtained increasing the age cut-off for age up to 70 years (p = 0.52 for OS and p = 0.92 for PFS). CONCLUSIONS Our data demonstrate that there is not statistically significant difference in post-operative EOTR, KPS, OS, and PFS between younger and elderly patients treated with extensive tumor resection aided by a intraoperative multimodal protocol.
Collapse
Affiliation(s)
- Giuseppe Maria Vincenzo Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Marco Garozzo
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
| | - Massimiliano Maione
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
| | - Stefania Di Gregorio
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
| | | | - Simone Peschillo
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
| | - Pasquale Dolce
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Ius T, Somma T, Baiano C, Guarracino I, Pauletto G, Nilo A, Maieron M, Palese F, Skrap M, Tomasino B. Risk Assessment by Pre-surgical Tractography in Left Hemisphere Low-Grade Gliomas. Front Neurol 2021; 12:648432. [PMID: 33679596 PMCID: PMC7928377 DOI: 10.3389/fneur.2021.648432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Tracking the white matter principal tracts is routinely typically included during the pre-surgery planning examinations and has revealed to limit functional resection of low-grade gliomas (LGGs) in eloquent areas. Objective: We examined the integrity of the Superior Longitudinal Fasciculus (SLF) and Inferior Fronto-Occipital Fasciculus (IFOF), both known to be part of the language-related network in patients with LGGs involving the temporo-insular cortex. In a comparative approach, we contrasted the main quantitative fiber tracking values in the tumoral (T) and healthy (H) hemispheres to test whether or not this ratio could discriminate amongst patients with different post-operative outcomes. Methods: Twenty-six patients with LGGs were included. We obtained quantitative fiber tracking values in the tumoral and healthy hemispheres and calculated the ratio (HIFOF–TIFOF)/HIFOF and the ratio (HSLF–TSLF)/HSLF on the number of streamlines. We analyzed how these values varied between patients with and without post-operative neurological outcomes and between patients with different post-operative Engel classes. Results: The ratio for both IFOF and SLF significantly differed between patient with and without post-operative neurological language deficits. No associations were found between white matter structural changes and post-operative seizure outcomes. Conclusions: Calculating the ratio on the number of streamlines and fractional anisotropy between the tumoral and the healthy hemispheres resulted to be a useful approach, which can prove to be useful during the pre-operative planning examination, as it gives a glimpse on the potential clinical outcomes in patients with LGGs involving the left temporo-insular cortex.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cinzia Baiano
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Ilaria Guarracino
- Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea, Pordenone, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Marta Maieron
- Medical Physics, Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Barbara Tomasino
- Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea, Pordenone, Italy
| |
Collapse
|
20
|
La Rocca G, Sabatino G, Altieri R, Mazzucchi E, Rapisarda A, Ius T, Garbossa D, Cofano F, Olivi A, Della Pepa GM. Parietal interhemispheric transfalcine transtentorial approach for posterior incisural space lesions: from the lab to the operative room. Neurosurg Rev 2020; 44:1779-1788. [PMID: 32840722 DOI: 10.1007/s10143-020-01375-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
The operative approach to the posterior incisural space is challenging because of its deep location, the surrounding eloquent areas, and the intimate relationship with the deep veins. Several approaches have been proposed to manage the lesions in this region: supratentorial, infratentorial and a combination of them. Brain retraction, injury to the occipital lobe and corpus callosum, and venous bleeding are the principle drawbacks of these routes. We performed anatomical dissection study using 10 embalmed human cadaver specimens injected with colored latex exploring a different route, parietal interhemispheric transfalcine transtentorial (PITT). Then we used a PITT approach on two patients with posterior incisural space (PIS) lesions. The PITT approach led to successful and safe complete removal of PIS lesions in our cases. No complications were reported. The present approach could be a valuable option in case of PIS lesions, especially those associated with downward displacement of the deep venous complex; thanks to the gravity it reduce the complications related to the occipital lobe retraction and manipulation. Moreover, cutting the superior-anterior edge of the tentorium, the sub-tentorial space could be reached.
Collapse
Affiliation(s)
- G La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
- Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - G Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
- Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Roberto Altieri
- Division of Neurosurgery, Department of Neurosciences, Policlinico "G. Rodolico" University Hospital, Catania, Italy.
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, AOU Città della Salute e della Scienza, Turin, Italy.
| | - E Mazzucchi
- Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - A Rapisarda
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - T Ius
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia, University Hospital, Udine, Italy
| | - D Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - F Cofano
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - A Olivi
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - G M Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| |
Collapse
|
21
|
Monticelli M, Zeppa P, Altieri R, Veneziani Santonio F, Cofano F, Melcarne A, Junemann CV, Zenga F, Sabatino G, La Rocca G, Della Pepa GM, Ducati A, Garbossa D. Exploring the anatomy of negative motor areas (NMAs): Findings in awake surgery. J Clin Neurosci 2020; 73:219-223. [PMID: 32001111 DOI: 10.1016/j.jocn.2020.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 11/28/2022]
Abstract
Positive motor responses have been used in neurosurgery for the identification of motor structures. With the term "negative motor responses" (NMRs) a complete inhibition of movement without loss of muscle tone or consciousness is meant. Papers already exist in the literature regarding cortical areas in which such NMRs are evoked, the so-called "negative motor areas" (NMAs), but their location and functional meaning are still poorly understood. This paper discusses the anatomy of the NMAs of the human brain, in light of our brain mapping experience. 21 patients underwent awake surgery and direct electrical stimulation (DES) was performed using bipolar electrodes. Excision was interrupted when functional responses were intraoperatively identified through DES. The labeled mapping sites were recorded by photography prior to and following tumor resection. Results depicting a probabilistic map of negative motor network anatomy were retrospectively analyzed. Our findings strongly support the fact that the precentral gyrus, classical site of the of the Primary Motor Areas, is also strongly involved in generating NMRs. The distribution of NMAs was noted not to be as rigid as previously described, ranging in different brain areas with a somatotopic arrangement. Presented anatomical results are consistent with the literature, but the exact functional meaning of NMAs and their subcortical connectivity is still far from being completely understood.
Collapse
Affiliation(s)
- Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy.
| | - Pietro Zeppa
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy
| | - Roberto Altieri
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy; Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy; PhD program at Department of Neuroscience "Rita Levi Montalcini"; University of Turin, Turin, Italy
| | | | - Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy
| | - Antonio Melcarne
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy
| | - Carola Vera Junemann
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy
| | | | - Giuseppe La Rocca
- Mater Olbia Hospital, Neurosurgery Unit, Italy; "Agostino Gemelli" Policlinic Hospital, Neurosurgery Unit, Italy
| | | | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini"; Neurosurgery Unit, University of Turin, Turin, Italy
| |
Collapse
|
22
|
Kalyvas A, Koutsarnakis C, Komaitis S, Karavasilis E, Christidi F, Skandalakis GP, Liouta E, Papakonstantinou O, Kelekis N, Duffau H, Stranjalis G. Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: shifting the paradigm of its segmentation and connectivity pattern. Brain Struct Funct 2019; 225:85-119. [PMID: 31773331 DOI: 10.1007/s00429-019-01987-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Τhe middle longitudinal fasciculus (MdLF) was initially identified in humans as a discrete subcortical pathway connecting the superior temporal gyrus (STG) to the angular gyrus (AG). Further anatomo-imaging studies, however, proposed more sophisticated but conflicting connectivity patterns and have created a vague perception on its functional anatomy. Our aim was, therefore, to investigate the ambiguous structural architecture of this tract through focused cadaveric dissections augmented by a tailored DTI protocol in healthy participants from the Human Connectome dataset. Three segments and connectivity patterns were consistently recorded: the MdLF-I, connecting the dorsolateral Temporal Pole (TP) and STG to the Superior Parietal Lobule/Precuneus, through the Heschl's gyrus; the MdLF-II, connecting the dorsolateral TP and the STG with the Parieto-occipital area through the posterior transverse gyri and the MdLF-III connecting the most anterior part of the TP to the posterior border of the occipital lobe through the AG. The lack of an established termination pattern to the AG and the fact that no significant leftward asymmetry is disclosed tend to shift the paradigm away from language function. Conversely, the theory of "where" and "what" auditory pathways, the essential relationship of the MdLF with the auditory cortex and the functional role of the cortical areas implicated in its connectivity tend to shift the paradigm towards auditory function. Allegedly, the MdLF-I and MdLF-II segments could underpin the perception of auditory representations; whereas, the MdLF-III could potentially subserve the integration of auditory and visual information.
Collapse
Affiliation(s)
- Aristotelis Kalyvas
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece. .,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece. .,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios P Skandalakis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Liouta
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| | - Olympia Papakonstantinou
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Hellenic Center for Neurosurgical Research, "PetrosKokkalis", Athens, Greece
| |
Collapse
|
23
|
Altieri R, Raimondo S, Tiddia C, Sammarco D, Cofano F, Zeppa P, Monticelli M, Melcarne A, Junemann C, Zenga F, Savastano R, Garbossa D, Certo F, Barbagallo G. Glioma surgery: From preservation of motor skills to conservation of cognitive functions. J Clin Neurosci 2019; 70:55-60. [PMID: 31537460 DOI: 10.1016/j.jocn.2019.08.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 11/17/2022]
Abstract
The first step of glioma treatment is surgery. Extent of resection (EOR) improves patient survival if surgery does not negatively impair a patient's neurological status. However, how surgery affects the patient's quality of life (QOL) has been less studied, especially as regards cognitive aspects. In our study, we retrospectively analyzed our cases with awake surgery. In all patients, surgical excision was stopped when active functions were intraoperatively identified. A neuropsychological assessment was performed both before and after surgery (5 days and 1 month after). Writing, motor speech, comprehension, expression, reading, pragmatics, attention, memory, problem solving and visuoperceptive functions were evaluated and scored with the NOMS scale. We found no differences in the median values of writing and motor speech, while there was a difference in the following variables: comprehension, expression, reading, pragmatics, attention, memory, problem solving and visuoperceptive functions. Moreover, the Dunn test did not show any difference between preoperative evaluation and evaluation performed 30 days after surgery regarding comprehension, expression, reading, pragmatics, attention, problem solving and visuoperceptive functions. However, there was a difference between preoperative and postoperative evaluation for memory. This retrospective study shows that awake surgery could be a reasonable possibility to preserve a patient's QOL achieving an EOR >82% of the Total Tumor Volume (Fluid-attenuated inversion recovery (FLAIR) hyperintense region in low-grade gliomas and enhancing nodules plus FLAIR hyperintense region in high-grade gliomas). In this series memory was the only aspect that had an impairment after surgery without a complete recovery at one month after surgery.
Collapse
Affiliation(s)
- Roberto Altieri
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy; Division of Neurosurgery, Department of Neurosciences, Policlinico "G.Rodolico" University Hospital, Catania, Italy.
| | - Simona Raimondo
- ENT Unit, Department of Surgery, University of Turin, Turin, Italy
| | - Cristiana Tiddia
- ENT Unit, Department of Surgery, University of Turin, Turin, Italy
| | - Diego Sammarco
- ENT Unit, Department of Surgery, University of Turin, Turin, Italy
| | - Fabio Cofano
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Pietro Zeppa
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Matteo Monticelli
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Melcarne
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Carola Junemann
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesco Zenga
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Diego Garbossa
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesco Certo
- Division of Neurosurgery, Department of Neurosciences, Policlinico "G.Rodolico" University Hospital, Catania, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Giuseppe Barbagallo
- Division of Neurosurgery, Department of Neurosciences, Policlinico "G.Rodolico" University Hospital, Catania, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|