1
|
Chandran N, Lee J, Prabhakaran P, Kumar S, Sudevan ST, Parambi DGT, Alsahli TG, Pant M, Kim H, Mathew B. New class of thio/semicarbazide-based benzyloxy derivatives as selective class of monoamine oxidase-B inhibitors. Sci Rep 2024; 14:31292. [PMID: 39732801 DOI: 10.1038/s41598-024-82771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Sixteen thio/semicarbazide-based benzyloxy derivatives (BT1-BT16) were synthesized and evaluated for their inhibitory activities against monoamine oxidases (MAOs). Most compounds showed better inhibitory activity against MAO-B than against MAO-A. BT1, BT3, and BT5 showed the greatest inhibitory activity with an identical IC50 value of 0.11 µM against MAO-B, followed by BT6 and BT7 (IC50 = 0.12 µM) and BT2 (IC50 = 1.68 µM). The selectivity index of BT5 was the highest (363.64) for MAO-B, whereas that of BT1 was 88.73. BT1 and BT5 were reversible MAO-B inhibitors, based on the results of dialysis experiments. In inhibition kinetics, BT1 and BT5 were competitive MAO-B inhibitors with Ki values of 0.074 ± 0.0020 and 0.072 ± 0.0079 µM, respectively. Additionally, in the in-vitro parallel artificial membrane penetration assay, BT1 and BT5 crossed the blood-brain barrier. Cytotoxicity and possible neuroprotective effects of the lead compounds were assessed using IMR 32 cells. Levels of the antioxidant superoxide dismutase, catalase, and glutathione peroxidase in IMR 32 cells were increased by pretreatment with lead compounds. Five lead molecules (BT1, BT3, BT5, BT6, and BT7) were used for the docking studies. A significant pi-pi interaction with Tyr 326 was observed and molecular dynamics studies were performed for the most promising BT1-MAO-B complex. These results suggested that BT1 and BT5 could be used therapeutically for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Namitha Chandran
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Jiseong Lee
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Prabitha Prabhakaran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Mysuru, Mysuru, 570015, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Tariq G Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Manu Pant
- Department of Biotechnology, Graphic Era (Deemed to be university), Clement town, Dehradun, 248002, India
| | - Hoon Kim
- Department of Pharmacy, College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, India.
| |
Collapse
|
2
|
Kalbe E, Folkerts AK, Witt K, Buhmann C, Liepelt-Scarfone I. German Society of Neurology guidelines for the diagnosis and treatment of cognitive impairment and affective disorders in people with Parkinson's disease: new spotlights on diagnostic procedures and non-pharmacological interventions. J Neurol 2024; 271:7330-7357. [PMID: 39120709 PMCID: PMC11561078 DOI: 10.1007/s00415-024-12503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Cognitive impairment and dementia as well as affective disorders are common and debilitating syndromes that develop in people with Parkinson's disease (PwPD). The authors summarized recommendations for the 2023 updated German guidelines on "Parkinson's disease" from the German Neurological Society (DGN), focusing on the diagnosis and treatment of these disorders. METHODS The recommendations were based on literature reviews, other relevant guidelines, and expert opinions. RESULTS Measurements to assess cognitive and affective states were reviewed for psychometric properties, use in routine clinical practice, and availability in German. To improve mild cognitive impairment, cognitive training and physical aerobic training are recommended. To treat Parkinson's disease (PD)-related dementia, cognitive stimulation (as a non-pharmacological intervention) and acetylcholinesterase inhibitors (AChEIs, i.e., rivastigmine) are recommended. Cognitive behavioral therapy is recommended to treat depression, anxiety, and fear of progression. Physical interventions are recommended to treat depression, fatigue, and apathy. Optimized dopaminergic treatment is the first-line pharmacological strategy recommended to manage depression, apathy, anhedonia, fatigue, and mood swings. Major depression can be additionally treated using venlafaxine or desipramine, while moderate depression can be treated pharmacologically according to its clinical phenotype (psychomotor retardation or agitation) and comorbidities (e.g., sleep disturbances, pain). Venlafaxine and nortriptyline can be used to treat anhedonia, while citalopram can be used for anxiety. CONCLUSIONS In addition to the updated pharmacological treatment options, new insights into recommendations for standardized diagnostics and non-pharmacological interventions were provided for the German health care system. However, more studies are needed to explore the full potential of non-pharmacological interventions to treat and prevent cognitive impairment and affective disorders.
Collapse
Affiliation(s)
- Elke Kalbe
- Medical Psychology | Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Ann-Kristin Folkerts
- Medical Psychology | Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Science, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Center of Neurosensory Science, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
- Department of Neurology, Evangelical Hospital, Oldenburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Clinic Eppendorf, Hamburg, Germany
| | - Inga Liepelt-Scarfone
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- IB-Hochschule, Stuttgart, Germany
| |
Collapse
|
3
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
4
|
Gahtani RM, Shoaib S, Hani U, Jayachithra R, Alomary MN, Chauhan W, Jahan R, Tufail S, Ansari MA. Combating Parkinson's disease with plant-derived polyphenols: Targeting oxidative stress and neuroinflammation. Neurochem Int 2024; 178:105798. [PMID: 38950626 DOI: 10.1016/j.neuint.2024.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disorder predominantly affecting the elderly, characterized by the loss of dopaminergic neurons in the substantia nigra. Reactive oxygen species (ROS) generation plays a central role in the pathogenesis of PD and other neurodegenerative diseases. An imbalance between cellular antioxidant activity and ROS production leads to oxidative stress, contributing to disease progression. Dopamine metabolism, mitochondrial dysfunction, and neuroinflammation in dopaminergic neurons have been implicated in the pathogenesis of Parkinson's disease. Consequently, there is a pressing need for therapeutic interventions capable of scavenging ROS. Current pharmacological approaches, such as L-dihydroxyphenylalanine (levodopa or L-DOPA) and other drugs, provide symptomatic relief but are limited by severe side effects. Researchers worldwide have been exploring alternative compounds with less toxicity to address the multifaceted challenges associated with Parkinson's disease. In recent years, plant-derived polyphenolic compounds have gained significant attention as potential therapeutic agents. These compounds exhibit neuroprotective effects by targeting pathophysiological responses, including oxidative stress and neuroinflammation, in Parkinson's disease. The objective of this review is to summarize the current understanding of the neuroprotective effects of various polyphenols in Parkinson's disease, focusing on their antioxidant and anti-inflammatory properties, and to discuss their potential as therapeutic candidates. This review highlights the progress made in elucidating the molecular mechanisms of action of these polyphenols, identifying potential therapeutic targets, and optimizing their delivery and bioavailability. Well-designed clinical trials are necessary to establish the efficacy and safety of polyphenol-based interventions in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Reem M Gahtani
- Department of clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shoaib Shoaib
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, 35205, USA.
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - R Jayachithra
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, P.O. Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Saba Tufail
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, 35205, USA
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
5
|
Salabasidou E, Binder T, Volkmann J, Kuzkina A, Üçeyler N. Pain in Parkinson disease: a deep phenotyping study. Pain 2024; 165:1642-1654. [PMID: 38314763 DOI: 10.1097/j.pain.0000000000003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 02/07/2024]
Abstract
ABSTRACT In our prospective cross-sectional study, we comprehensively characterized Parkinson disease (PD)-related pain in monocentrically recruited patients with PD using standardized tools of pain assessment and categorization. One hundred fifty patients were systematically interviewed and filled in questionnaires for pain, depression, motor, and nonmotor symptoms. Patients with PD-related pain (PD pain), patients without PD-related pain (no PD pain), and patients without pain (no pain) were compared. Pain was present in 108/150 (72%) patients with PD, and 90/150 (60%) patients were classified as having PD-related pain. Most of the patients with PD (67/90, 74%) reported nociceptive pain, which was episodic (64/90, 71%), primarily nocturnal (56/90, 62%), and manifested as cramps (32/90, 36%). Parkinson disease-related pain was most frequently located in the feet (51/90, 57%), mainly at the toe joints (22/51, 43%). 38/90 (42%) patients with PD-related pain received analgesic medication with nonsteroidal anti-inflammatory drugs being the most frequently used (31/42, 82%) and opioids most effective (70% pain reduction of individual maximum pain intensities, range 22%-100%, confidence interval 50%-90%). All patients received oral PD treatment; however, levodopa equivalent dose showed no correlation with mean pain intensities (Spearman ρ = 0.027, P > 0.05). Our data provide a comprehensive analysis of PD-related pain, giving evidence for mainly non-neuropathic podalgia, which bears the potential to rethink assessment and analgesic treatment of pain in PD in clinical practice.
Collapse
Affiliation(s)
- Elena Salabasidou
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Kuzkina is now with the Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
6
|
Huang YT, Chen YW, Lin TY, Chen JC. Suppression of presynaptic corticostriatal glutamate activity attenuates L-dopa-induced dyskinesia in 6-OHDA-lesioned Parkinson's disease mice. Neurobiol Dis 2024; 193:106452. [PMID: 38401650 DOI: 10.1016/j.nbd.2024.106452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
A common adverse effect of Parkinson's disease (PD) treatment is L-dopa-induced dyskinesia (LID). This condition results from both dopamine (DA)-dependent and DA-independent mechanisms, as glutamate inputs from corticostriatal projection neurons impact DA-responsive medium spiny neurons in the striatum to cause the dyskinetic behaviors. In this study, we explored whether suppression of presynaptic corticostriatal glutamate inputs might affect the behavioral and biochemical outcomes associated with LID. We first established an animal model in which 6-hydroxydopamine (6-OHDA)-lesioned mice were treated daily with L-dopa (10 mg/kg, i.p.) for 2 weeks; these mice developed stereotypical abnormal involuntary movements (AIMs). When the mice were pretreated with the NMDA antagonist, amantadine, we observed suppression of AIMs and reductions of phosphorylated ERK1/2 and NR2B in the striatum. We then took an optogenetic approach to manipulate glutamatergic activity. Slc17a6 (vGluT2)-Cre mice were injected with pAAV5-Ef1a-DIO-eNpHR3.0-mCherry and received optic fiber implants in either the M1 motor cortex or dorsolateral striatum. Optogenetic inactivation at either optic fiber implant location could successfully reduce the intensity of AIMs after 6-OHDA lesioning and L-dopa treatment. Both optical manipulation strategies also suppressed phospho-ERK1/2 and phospho-NR2B signals in the striatum. Finally, we performed intrastriatal injections of LDN 212320 in the dyskenesic mice to enhance expression of glutamate uptake transporter GLT-1. Sixteen hours after the LDN 212320 treatment, L-dopa-induced AIMs were reduced along with the levels of striatal phospho-ERK1/2 and phospho-NR2B. Together, our results affirm a critical role of corticostriatal glutamate neurons in LID and strongly suggest that diminishing synaptic glutamate, either by suppression of neuronal activity or by upregulation of GLT-1, could be an effective approach for managing LID.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Wen Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tze-Yen Lin
- Department and Graduate Institute of Physiology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, Healthy Ageing Research Center, Chang-Gung University, Taiwan; Neuroscience Research Center and Department of Psychiatry, Chang-Gung Memorial Hospitall, Linkou, Taiwan.
| |
Collapse
|
7
|
Rademacher K, Nakamura K. Role of dopamine neuron activity in Parkinson's disease pathophysiology. Exp Neurol 2024; 373:114645. [PMID: 38092187 DOI: 10.1016/j.expneurol.2023.114645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Neural activity is finely tuned to produce normal behaviors, and disruptions in activity likely occur early in the course of many neurodegenerative diseases. However, how neural activity is altered, and how these changes influence neurodegeneration is poorly understood. Here, we focus on evidence that the activity of dopamine neurons is altered in Parkinson's disease (PD), either as a compensatory response to degeneration or as a result of circuit dynamics or pathologic proteins, based on available human data and studies in animal models of PD. We then discuss how this abnormal activity may augment other neurotoxic phenomena in PD, including mitochondrial deficits, protein aggregation and spread, dopamine toxicity, and excitotoxicity. A more complete picture of how activity is altered and the resulting effects on dopaminergic neuron health and function may inform future therapeutic interventions to target and protect dopamine neurons from degeneration.
Collapse
Affiliation(s)
- Katerina Rademacher
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, California, 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA.
| |
Collapse
|
8
|
Cattaneo C, Kulisevsky J. The Effects of Safinamide in Chinese and Non-Chinese Patients with Parkinson's Disease. Adv Ther 2024; 41:638-648. [PMID: 38070039 PMCID: PMC10838837 DOI: 10.1007/s12325-023-02736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 02/06/2024]
Abstract
INTRODUCTION Ethnicity differences are an important determinant in the clinical manifestation of Parkinson's disease (PD), but they are not yet widely recognized, particularly regarding the response to dopaminergic medications. The aim of this paper is to analyze the efficacy and safety of safinamide in Chinese patients with PD in the pivotal studies SETTLE and XINDI compared to the non-Chinese population of the SETTLE trial. METHODS SETTLE (NCT00627640) and XINDI (NCT03881371) were phase III, randomized, double-blind, placebo-controlled, multicenter trials. Patients received safinamide or placebo as add-on to levodopa. The primary efficacy endpoint was the change in the mean total daily OFF time. Secondary efficacy endpoints included total daily ON time, ON time with no/non-troublesome dyskinesia, Unified Parkinson's Disease Rating Scale, and Parkinson's Disease Questionnaire-39 items. Safety was evaluated through the frequency of adverse events. Data from 440 non-Chinese and 109 Chinese patients in the SETTLE study, and 305 Chinese patients in the XINDI trial were considered for this post hoc analysis. RESULTS Significant positive results were seen in favor of safinamide in all populations for the primary and secondary endpoints, with no differences in terms of magnitude. No "treatment by ethnicity" interaction was detected for any parameters, confirming the homogeneity of treatment effects between different populations. The safety and tolerability of safinamide in Chinese patients were similar to those in the other ethnic groups, without unexpected adverse reactions. CONCLUSIONS Safinamide was shown to improve PD symptoms and quality of life in different ethnic populations, without any treatment by race interaction. Further studies are warranted to investigate potential differences in a real-life situation. TRIAL REGISTRATION NUMBER SETTLE (NCT00627640) and XINDI (NCT03881371).
Collapse
Affiliation(s)
| | - Jaime Kulisevsky
- Movement Disorders Unit, Sant Pau Hospital, Universitat Autonoma de Barcelona, CIBERNED, Universitat Oberta de Catalunya, Barcelona, Spain
| |
Collapse
|
9
|
Shejul PP, Doshi GM. Glutamate Receptors and C-ABL Inhibitors: A New Therapeutic Approach for Parkinson's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:22-44. [PMID: 38273763 DOI: 10.2174/0118715249268627231206115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is the second-most prevalent central nervous system (CNS) neurodegenerative condition. Over the past few decades, suppression of BCR-Abelson tyrosine kinase (c-Abl), which serves as a marker of -synuclein aggregation and oxidative stress, has shown promise as a potential therapy target in PD. c-Abl inhibition has the potential to provide neuroprotection against PD, as shown by experimental results and the first-in-human trial, which supports the strategy in bigger clinical trials. Furthermore, glutamate receptors have also been proposed as potential therapeutic targets for the treatment of PD since they facilitate and regulate synaptic neurotransmission throughout the basal ganglia motor system. It has been noticed that pharmacological manipulation of the receptors can change normal as well as abnormal neurotransmission in the Parkinsonian brain. The review study contributes to a comprehensive understanding of the approach toward the role of c-Abl and glutamate receptors in Parkinson's disease by highlighting the significance and urgent necessity to investigate new pharmacotherapeutic targets. The article covers an extensive insight into the concept of targeting, pathophysiology, and c-Abl interaction with α-synuclein, parkin, and cyclin-dependent kinase 5 (Cdk5). Furthermore, the concepts of Nmethyl- D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPA) receptor, and glutamate receptors are discussed briefly. Conclusion: This review article focuses on in-depth literature findings supported by an evidence-based discussion on pre-clinical trials and clinical trials related to c-Abl and glutamate receptors that act as potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Priya P Shejul
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
10
|
Bailey HM, Cookson MR. How Parkinson's Disease-Linked LRRK2 Mutations Affect Different CNS Cell Types. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1331-1352. [PMID: 38905056 PMCID: PMC11492021 DOI: 10.3233/jpd-230432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/23/2024]
Abstract
LRRK2 is a relatively common genetic risk factor for Parkinson's disease (PD), with six coding variants known to cause familial PD. Non-coding variation at the same locus is also associated with sporadic PD. LRRK2 plays a role in many different intracellular signaling cascades including those involved in endolysosomal function, cytoskeletal dynamics, and Ca2+ homeostasis. PD-causing LRRK2 mutations cause hyperactive LRRK2 kinase activity, resulting in altered cellular signaling. Importantly, LRRK2 is lowly expressed in neurons and prominently expressed in non-neuronal cells in the brain. In this review, we will summarize recent and novel findings on the effects of PD-causing LRRK2 mutations in different nervous system cell types. This review will also provide novel insight into future areas of research at the intersection of LRRK2 cell biology, cell type specificity, and PD.
Collapse
Affiliation(s)
- Hannah M. Bailey
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Pellecchia MT, Picillo M, Russillo MC, Andreozzi V, Oliveros C, Cattaneo C. The effects of safinamide according to gender in Chinese parkinsonian patients. Sci Rep 2023; 13:20632. [PMID: 37996493 PMCID: PMC10667246 DOI: 10.1038/s41598-023-48067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
The incidence and prevalence of Parkinson's disease (PD) is expected to raise dramatically over the next decades. Gender-related differences are not yet widely recognized, particularly regarding the response to dopaminergic medications. To analyse gender differences in the clinical effects of safinamide, compared to placebo, in Chinese PD patients of the pivotal XINDI trial. The XINDI study was a phase III, randomized, double-blind, placebo-controlled, multicenter trial. Patients were followed for 16 weeks receiving safinamide or placebo as add-on to levodopa. The primary efficacy endpoint was the change in the mean total daily OFF time. Secondary efficacy endpoints included total daily ON time, ON time with no/non-troublesome dyskinesia, Unified Parkinson's Disease Rating Scale and Parkinson's Disease Questionnaire-39 items. A post-hoc analysis was performed to describe the efficacy of safinamide in both genders on motor symptoms, motor fluctuations and quality of life. 128 (42%) out of 305 patients enrolled were women and 177 (58%) men. Our additional analyses of the XINDI study have shown that safinamide, compared to placebo, was associated with improvements in motor symptoms, motor fluctuations and quality of life in both genders, with some differences in the response that did not reach statistical significance, possibly due to sample size limitation and post-hoc design of the study. The changes from baseline at week 16 were > 50% higher in the females compared to males for the total daily OFF time (- 1.149 h vs - 0.764 h in males), the total daily ON time (1.283 h vs 0.441 h in males), the UPDRS total score (- 8.300 points vs - 5.253 points in males) and the UPDRS part II score (- 2.574 points vs - 1.016 points in males). The changes from baseline at week 16 were higher in the females compared to males in the "ADL" domain (- 6.965 points vs - 5.772 points in males), the "Emotional well-being" domain (- 6.243 points vs - 4.203 in males), the "Stigma" domain (- 6.185 points vs - 4.913 points in males) and the "Bodily discomfort" domain (- 5.196 points vs 1.099 points in males), while were higher in males in the "Mobility" score (- 6.523 points vs - 4.961 points in females) and the "Communication" score (- 3.863 points vs - 1.564 points in females). Safinamide was shown to improve PD symptoms and quality of life in both male and female Chinese patients. Possible differences in the response between genders need to be further studied in larger and different ethnic populations.
Collapse
Affiliation(s)
- M T Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84131, Salerno, Italy.
| | - M Picillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84131, Salerno, Italy
| | - M C Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84131, Salerno, Italy
| | - V Andreozzi
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84131, Salerno, Italy
| | - C Oliveros
- Medical Department, Zambon SpA, Bresso, Italy
| | - C Cattaneo
- Medical Department, Zambon SpA, Bresso, Italy
| |
Collapse
|
12
|
Jenner P, Falup-Pecurariu C, Leta V, Verin M, Auffret M, Bhidayasiri R, Weiss D, Borovečki F, Jost WH. Adopting the Rumsfeld approach to understanding the action of levodopa and apomorphine in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:1337-1347. [PMID: 37210460 PMCID: PMC10645644 DOI: 10.1007/s00702-023-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
Dopaminergic therapies dominate the treatment of the motor and non-motor symptoms of Parkinson's disease (PD) but there have been no major advances in therapy in many decades. Two of the oldest drugs used appear more effective than others-levodopa and apomorphine-but the reasons for this are seldom discussed and this may be one cause for a lack of progress. This short review questions current thinking on drug action and looks at whether adopting the philosophy of ex-US Secretary of State Donald Rumsfeld reveals 'unknown' aspects of the actions of levodopa and apomorphine that provide clues for a way forward. It appears that both levodopa and apomorphine have a more complex pharmacology than classical views would suggest. In addition, there are unexpected facets to the mechanisms through which levodopa acts that are either forgotten as 'known unknowns' or ignored as 'unknown unknowns'. The conclusion reached is that we may not know as much as we think about drug action in PD and there is a case for looking beyond the obvious.
Collapse
Affiliation(s)
- P Jenner
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| | - C Falup-Pecurariu
- Department of Neurology, Transylvania University, 500036, Brasov, Romania
| | - V Leta
- Parkinson's Foundation Center of Excellence at King's College Hospital; Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | - M Verin
- Institut des Neurosciences Cliniques de Rennes (INCR); Behavior and Basal Ganglia Research Unit, CIC-IT, CIC1414, Pontchaillou University Hospital and University of Rennes, Rennes, France
| | - M Auffret
- Institut des Neurosciences Cliniques de Rennes (INCR); Behavior and Basal Ganglia Research Unit, CIC-IT, CIC1414, Pontchaillou University Hospital and University of Rennes, Rennes, France
- France Développement Electronique (FDE), Monswiller, France
| | - Roongroj Bhidayasiri
- Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, 10330, Thailand
| | - D Weiss
- Department for Neurodegenerative Diseases, Centre for Neurology, Hertie-Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - F Borovečki
- Division for Neurodegenerative Diseases and Neurogenomics, Department of Neurology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - W H Jost
- Parkinson-Klinik Ortenau, Kreuzbergstr. 12-16, 77709, Wolfach, Germany
| |
Collapse
|
13
|
Du L, He X, Fan X, Wei X, Xu L, Liang T, Wang C, Ke Y, Yung WH. Pharmacological interventions targeting α-synuclein aggregation triggered REM sleep behavior disorder and early development of Parkinson's disease. Pharmacol Ther 2023; 249:108498. [PMID: 37499913 DOI: 10.1016/j.pharmthera.2023.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by elevated motor behaviors and dream enactments in REM sleep, often preceding the diagnosis of Parkinson's disease (PD). As RBD could serve as a biomarker for early PD developments, pharmacological interventions targeting α-synuclein aggregation triggered RBD could be applied toward early PD progression. However, robust therapeutic guidelines toward PD-induced RBD are lacking, owing in part to a historical paucity of effective treatments and trials. We reviewed the bidirectional links between α-synuclein neurodegeneration, progressive sleep disorders, and RBD. We highlighted the correlation between RBD development, α-synuclein aggregation, and neuronal apoptosis in key brainstem regions involved in REM sleep atonia maintenance. The current pharmacological intervention strategies targeting RBD and their effects on progressive PD are discussed, as well as current treatments for progressive neurodegeneration and their effects on RBD. We also evaluated emerging and potential pharmacological solutions to sleep disorders and developing synucleinopathies. This review provides insights into the mechanisms and therapeutic targets underlying RBD and PD, and explores bidirectional treatment effects for both diseases, underscoring the need for further research in this area.
Collapse
Affiliation(s)
- Lida Du
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xiaoli He
- Institute of Medical Plant Development, Peking Union Medical College, Beijing, China
| | - Xiaonuo Fan
- Department of Biology, Boston University, Boston, USA
| | - Xiaoya Wei
- Harvard T.H. Chan School of Public Health, Boston, USA
| | - Linhao Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tuo Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chunbo Wang
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao, China
| | - Ya Ke
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Neuroscience, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Angelopoulou E, Stanitsa E, Karpodini CC, Bougea A, Kontaxopoulou D, Fragkiadaki S, Koros C, Georgakopoulou VE, Fotakopoulos G, Koutedakis Y, Piperi C, Papageorgiou SG. Pharmacological and Non-Pharmacological Treatments for Depression in Parkinson's Disease: An Updated Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1454. [PMID: 37629744 PMCID: PMC10456434 DOI: 10.3390/medicina59081454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Depression represents one of the most common non-motor disorders in Parkinson's disease (PD) and it has been related to worse life quality, higher levels of disability, and cognitive impairment, thereby majorly affecting not only the patients but also their caregivers. Available pharmacological therapeutic options for depression in PD mainly include selective serotonin reuptake inhibitors, serotonin and norepinephrine reuptake inhibitors, and tricyclic antidepressants; meanwhile, agents acting on dopaminergic pathways used for motor symptoms, such as levodopa, dopaminergic agonists, and monoamine oxidase B (MAO-B) inhibitors, may also provide beneficial antidepressant effects. Recently, there is a growing interest in non-pharmacological interventions, including cognitive behavioral therapy; physical exercise, including dance and mind-body exercises, such as yoga, tai chi, and qigong; acupuncture; therapeutic massage; music therapy; active therapy; repetitive transcranial magnetic stimulation (rTMS); and electroconvulsive therapy (ECT) for refractory cases. However, the optimal treatment approach for PD depression is uncertain, its management may be challenging, and definite guidelines are also lacking. It is still unclear which of these interventions is the most appropriate and for which PD stage under which circumstances. Herein, we aim to provide an updated comprehensive review of both pharmacological and non-pharmacological treatments for depression in PD, focusing on recent clinical trials, systematic reviews, and meta-analyses. Finally, we discuss the pharmacological agents that are currently under investigation at a clinical level, as well as future approaches based on the pathophysiological mechanisms underlying the onset of depression in PD.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Claire Chrysanthi Karpodini
- Sport and Physical Activity Research Centre, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Anastasia Bougea
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Dionysia Kontaxopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Stella Fragkiadaki
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Christos Koros
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | | | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece;
| | - Yiannis Koutedakis
- Functional Architecture of Mammals in Their Environment Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 38221 Volos, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| |
Collapse
|
15
|
Pauletti C, Locuratolo N, Mannarelli D, Maffucci A, Petritis A, Menini E, Fattapposta F. Fatigue in fluctuating Parkinson's disease patients: possible impact of safinamide. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02654-1. [PMID: 37210459 DOI: 10.1007/s00702-023-02654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Fatigue is a common non-motor symptom in Parkinson's disease (PD). Among other pathophysiological mechanisms, neuroinflammation, a pathological PD hallmark associated with changes in glutamatergic transmission in basal ganglia, has been proposed as a crucial factor closely related to fatigue. To test the hypothesis that safinamide could represent an effective treatment of fatigue in PD patients, given its dual mechanism of action (it selectively and reversibly inhibits MAOB and modulates glutamate release), we administered the validated versions of fatigue severity scale (FSS) and Parkinson fatigue scale-16 (PFS-16) to 39 fluctuating PD patients with fatigue before and after a 24-week treatment period with safinamide as add-on therapy. An assessment of secondary variables such as depression, quality of life (QoL), and motor and non-motor symptoms (NMS) was conducted. After 24 weeks of treatment with safinamide, both FSS (p < 0.001) and PF-S16 (p = 0.02) scores were significantly lower than at baseline. Moreover, 46.2% and 41% of patients scored below the cut-off for the presence of fatigue according to FSS and PFS-16, respectively (responders). At follow-up, a significant difference emerged between responders and non-responders in mood, QoL, and NMS. Fatigue improved in fluctuating PD, and more than 40% of patients were "fatigue-free" after a 6 month treatment with safinamide. Patients without fatigue at follow-up displayed significantly better scores in QoL domains, such as mobility or activities of daily living, although disease severity remained stable, supporting the hypothesis that fatigue could considerably affect QoL. Drugs that interact with multiple neurotransmission systems, such as safinamide, could be useful in reducing this symptom.
Collapse
Affiliation(s)
- Caterina Pauletti
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy.
| | - Nicoletta Locuratolo
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
- National Centre for Disease Prevention and Health Promotion, National Institute of Health, Rome, Italy
| | - Daniela Mannarelli
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
| | - Andrea Maffucci
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
| | - Alessia Petritis
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
| | - Elisa Menini
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesco Fattapposta
- Department of Human Neurosciences, Universita degli Studi di Roma La Sapienza, Rome, Italy
| |
Collapse
|
16
|
Jenner P, Kanda T, Mori A. How and why the adenosine A 2A receptor became a target for Parkinson's disease therapy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:73-104. [PMID: 37741697 DOI: 10.1016/bs.irn.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dopaminergic therapy for Parkinson's disease has revolutionised the treatment of the motor symptoms of the illness. However, it does not alleviate all components of the motor deficits and has only limited effects on non-motor symptoms. For this reason, alternative non-dopaminergic approaches to treatment have been sought and the adenosine A2A receptor provided a novel target for symptomatic therapy both within the basal ganglia and elsewhere in the brain. Despite an impressive preclinical profile that would indicate a clear role for adenosine A2A antagonists in the treatment of Parkinson's disease, the road to clinical use has been long and full of difficulties. Some aspects of the drugs preclinical profile have not translated into clinical effectiveness and not all the clinical studies undertaken have had a positive outcome. The reasons for this will be explored and suggestions made for the further development of this drug class in the treatment of Parkinson's disease. However, one adenosine A2A antagonist, namely istradefylline has been introduced successfully for the treatment of late-stage Parkinson's disease in two major areas of the world and has become a commercial success through offering the first non-dopaminergic approach to the treatment of unmet need to be introduced in several decades.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, King's College London, London, United Kingdom.
| | - Tomoyuki Kanda
- Kyowa Kirin Co., Ltd., Otemachi. Chiyoda-ku, Tokyo, Japan
| | | |
Collapse
|
17
|
Chakraborty P, Dey A, Gopalakrishnan AV, Swati K, Ojha S, Prakash A, Kumar D, Ambasta RK, Jha NK, Jha SK, Dewanjee S. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders. Ageing Res Rev 2023; 85:101838. [PMID: 36610558 DOI: 10.1016/j.arr.2022.101838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
In the mammalian brain, glutamate is regarded to be the primary excitatory neurotransmitter due to its widespread distribution and wide range of metabolic functions. Glutamate plays key roles in regulating neurogenesis, synaptogenesis, neurite outgrowth, and neuron survival in the brain. Ionotropic and metabotropic glutamate receptors, neurotransmitters, neurotensin, neurosteroids, and others co-ordinately formulate a complex glutamatergic network in the brain that maintains optimal excitatory neurotransmission. Cognitive activities are potentially synchronized by the glutamatergic activities in the brain via restoring synaptic plasticity. Dysfunctional glutamate receptors and other glutamatergic components are responsible for the aberrant glutamatergic activity in the brain that cause cognitive impairments, loss of synaptic plasticity, and neuronal damage. Thus, controlling the brain's glutamatergic transmission and modifying glutamate receptor function could be a potential therapeutic strategy for cognitive disorders. Certain drugs that regulate glutamate receptor activities have shown therapeutic promise in improving cognitive functions in preclinical and clinical studies. However, several issues regarding precise functional information of glutamatergic activity are yet to be comprehensively understood. The present article discusses the scope of developing glutamatergic systems as prospective pharmacotherapeutic targets to treat cognitive disorders. Special attention has been given to recent developments, challenges, and future prospects.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand 248007, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
18
|
Dardiotis E, Skouras P, Varvarelis OP, Aloizou AM, Hernández AF, Liampas I, Rikos D, Dastamani M, Golokhvast KS, Bogdanos DP, Tsatsakis A, Siokas V, Mitsias PD, Hadjigeorgiou GM. Pesticides and tremor: An overview of association, mechanisms and confounders. ENVIRONMENTAL RESEARCH 2023; 229:115442. [PMID: 36758916 DOI: 10.1016/j.envres.2023.115442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 05/06/2023]
Abstract
Pesticides are a heterogeneous class of chemicals mainly used for the protection of crops from pests. Because of their very widespread use, acute or/and chronic exposure to these chemicals can lead to a plethora of sequelae inflicting diseases, many of which involve the nervous system. Tremor has been associated with pesticide exposure in human and animal studies. This review is aimed at assessing the studies currently available on the association between the various types of pesticides/insecticides and tremor, while also accounting for potential confounding factors. To our knowledge, this is the first coherent review on the subject. After appraising the available evidence, we call for more intensive research on this topic, as well as intonate the need of implementing future preventive measures to protect the exposed populations and to reduce potential disabilities and social drawbacks.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Panagiotis Skouras
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Orfeas-Petros Varvarelis
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain; Health Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, Krasnoobsk, Russia, 630501
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Panayiotis D Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003, Heraklion, Greece; Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Georgios M Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
19
|
Chang HW, Chen CL, Jhu SJ, Lin GW, Cheng CW, Tsai YC. Femtosecond laser structuring in the fabrication of periodic nanostructure on titanium for enhanced photoelectrochemical dopamine sensing performance. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
21
|
Sharaf J, Williams KAD, Tariq M, Acharekar MV, Guerrero Saldivia SE, Unnikrishnan S, Chavarria YY, Akindele AO, Jalkh AP, Eastmond AK, Shetty C, Rizvi SMHA, Mohammed L. The Efficacy of Safinamide in the Management of Parkinson's Disease: A Systematic Review. Cureus 2022; 14:e29118. [PMID: 36259026 PMCID: PMC9559607 DOI: 10.7759/cureus.29118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease that is challenging to treat due to its progressive nature and its weaning response to therapy. Safinamide, a monoamine oxidase type-B inhibitor (MAOB-I), has shown promise in managing dyskinesias caused by levodopa (L-dopa), carbidopa, and PD features such as pain and depression. This systematic review aimed to evaluate safinamide's efficacy as a monotherapy and an add-on in tackling these issues. We composed this systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Our group searched the following databases: Manchester University Library, ScienceDirect, Google Scholar, PubMed, PubMed Central, and MedLine for articles produced in the last ten years using various search terms and criteria, which we outlined in the search strategy and eligibility criteria sections. We excluded 722 out of the initially screened 730 records for multiple reasons, such as titles and abstracts being irrelevant to the topic, articles without free full access, articles originally not in the English language, and articles that did not score 70% or above on their respective quality assessment tools. The studies explored supported safinamide's use in managing motor fluctuations, pain, depression, and improving patients' quality of life.
Collapse
|
22
|
Wang L, Wu P, Brown P, Zhang W, Liu F, Han Y, Zuo CT, Cheng W, Feng J. Association of Structural Measurements of Brain Reserve With Motor Progression in Patients With Parkinson Disease. Neurology 2022; 99:e977-e988. [PMID: 35667838 PMCID: PMC7613818 DOI: 10.1212/wnl.0000000000200814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate the relationship between baseline structural measurements of brain reserve and clinical progression in Parkinson disease (PD). To further provide a possible underlying mechanism for structural measurements of brain reserve in PD, we combined functional and transcriptional data and investigated their relationship with progression-associated patterns derived from structural measurements and longitudinal clinical scores. METHODS This longitudinal study collected data from June 2010 to March 2019 from 2 datasets. The Parkinson's Progression Markers Initiative (PPMI) included controls and patients with newly diagnosed PD from 24 participating sites worldwide. Results were confirmed using data from the Huashan dataset (Shanghai, China), which included controls and patients with PD. Clinical symptoms were assessed with Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores and Schwab & England activities of daily living (ADL). Both datasets were followed up to 5 years. Linear mixed-effects (LME) models were performed to examine whether changes in clinical scores over time differed as a function of brain structural measurements at baseline. RESULTS A total of 389 patients with PD (n = 346, age 61.3 ± 10.03, 35% female, PPMI dataset; n = 43, age 59.4 ± 7.3, 38.7% female, Huashan dataset) with T1-MRI and follow-up clinical assessments were included in this study. Results of LME models revealed significant interactions between baseline structural measurements of subcortical regions and time on longitudinal deterioration of clinical scores (MDS-UPDRS Part II, absolute β > 0.27; total MDS-UPDRS scores, absolute β > 1.05; postural instability-gait difficulty (PIGD) score, absolute β > 0.03; Schwab & England ADL, absolute β > 0.59; all p < 0.05, false discovery rate corrected). The interaction of baseline structural measurements of subcortical regions and time on longitudinal deterioration of the PIGD score was replicated using data from Huashan Hospital. Furthermore, the β-coefficients of these interactions recapitulated the spatial distribution of dopaminergic, metabolic, and structural changes between patients with PD and normal controls and the spatial distribution of expression of the α-synuclein gene (SNCA). DISCUSSION Patients with PD with greater brain resources (that is, higher deformation-based morphometry values) had greater compensatory capacity, which was associated with slower rates of clinical progression. This knowledge could be used to stratify and monitor patients for clinical trials.
Collapse
Affiliation(s)
- Linbo Wang
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China
| | - Ping Wu
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China
| | - Peter Brown
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China
| | - Wei Zhang
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China
| | - Fengtao Liu
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China
| | - Yan Han
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China
| | - Chuan-Tao Zuo
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China
| | - Wei Cheng
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain-inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; PET Center (P.W., C.-T.Z.), Huashan Hospital, Fudan University, Shanghai, China; Medical Research Council Brain Network Dynamics Unit (P.B.), and Nuffield Department of Clinical Neurosciences (P.B.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Neurology (F.L., C.-T.Z.), Huashan Hospital North, Fudan University; Department of Neurology (Y.H.), Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; Human Phenome Institute (C.-T.Z.), Fudan University; Zhangjiang Fudan International Innovation Center (W.C., J.F.), Shanghai, China; Department of Computer Science (W.C., J.F.), University of Warwick, Coventry, United Kingdom; and Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C., J.F.), Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
23
|
Tsuboi T, Satake Y, Hiraga K, Yokoi K, Hattori M, Suzuki M, Hara K, Ramirez-Zamora A, Okun MS, Katsuno M. Effects of MAO-B inhibitors on non-motor symptoms and quality of life in Parkinson's disease: A systematic review. NPJ Parkinsons Dis 2022; 8:75. [PMID: 35697709 PMCID: PMC9192747 DOI: 10.1038/s41531-022-00339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Non-motor symptoms (NMS) are common among patients with Parkinson's disease and reduce patients' quality of life (QOL). However, there remain considerable unmet needs for NMS management. Three monoamine oxidase B inhibitors (MAO-BIs), selegiline, rasagiline, and safinamide, have become commercially available in many countries. Although an increasing number of studies have reported potential beneficial effects of MAO-BIs on QOL and NMS, there has been no consensus. Thus, the primary objective of this study was to provide an up-to-date systematic review of the QOL and NMS outcomes from the available clinical studies of MAO-BIs. We conducted a literature search using the PubMed, Scopus, and Cochrane Library databases in November 2021. We identified 60 publications relevant to this topic. Overall, rasagiline and safinamide had more published evidence on QOL and NMS changes compared with selegiline. This was likely impacted by selegiline being introduced many years prior to the field embarking on the study of NMS. The impact of MAO-BIs on QOL was inconsistent across studies, and this was unlikely to be clinically meaningful. MAO-BIs may potentially improve depression, sleep disturbances, and pain. In contrast, cognitive and olfactory dysfunctions are likely unresponsive to MAO-BIs. Given the paucity of evidence and controlled, long-term studies, the effects of MAO-BIs on fatigue, autonomic dysfunctions, apathy, and ICD remain unclear. The effects of MAO-BIs on static and fluctuating NMS have never been investigated systematically. More high-quality studies will be needed and should enable clinicians to provide personalized medicine based on a non-motor symptom profile.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Yuki Satake
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Hiraga
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsunori Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Makoto Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
24
|
Effects of Pramipexole Combined with Nerve Growth Factor on Cognitive Impairment and Urinary AD7c-NTP Expression in Patients with Parkinson’s Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3398732. [PMID: 35516456 PMCID: PMC9064489 DOI: 10.1155/2022/3398732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the effects of pramipexole combined with nerve growth factor (NGF) on cognitive impairment and urinary Alzheimer-associated neural thread protein (AD7c-NTP) expression in patients with Parkinson's disease (PD). Methods Fifty patients with PD treated in our hospital from February 2020 to April 2021 were enrolled. The patients were arbitrarily assigned into control group and study group. The former was treated with pramipexole, and the latter was treated with pramipexole combined with NGF. The efficacy, cognitive function, serum inflammatory factors, cortisol levels, serum macrophage migration inhibitory factor (MIF), brain-derived neurotrophic factor (BDNF), urine AD7c-NTP levels, and the incidence of adverse reactions were compared. Results First of all, the effective rate in the study group was higher compared to the control group (P < 0.05). After treatment, the cognitive function was enhanced, and the scores of Montreal cognitive assessment (MoCA) in the study group were higher compared to the control group (P < 0.05). The levels of serum IL-6, CRP, and TNF-α decreased after treatment, and the levels of serum IL-6, CRP, and TNF-α in the study group were remarkably lower compared to the control group (P < 0.05). In addition, the levels of serum DA, NE, and 5-HT increased after treatment, and the levels of serum DA, NE, and 5-HT in the study group were remarkably higher compared to the control group (P < 0.05). Then, the levels of serum MIF and urine AD7c-NTP decreased and BDNF increased after treatment, and the level of BDNF in the study group was higher compared to the control group, while the levels of serum MIF and urine AD7c-NTP in the study group were lower compared to the control group (P < 0.05). Finally, the adverse reactions were compared. The incidence of adverse reactions in the study group was lower compared to the control group, and the difference exhibited not statistically significant (16.00% vs. 24.00%, P > 0.05). Conclusion Pramipexole combined with NGF therapy not only can effectively strengthen the cognitive impairment of patients with PD and promote clinical efficacy and high safety but also can inhibit inflammatory state, regulate brain neurotransmitters, and reduce urinary AD7c-NTP levels.
Collapse
|
25
|
A critical appraisal of MAO-B inhibitors in the treatment of Parkinson's disease. J Neural Transm (Vienna) 2022; 129:723-736. [PMID: 35107654 PMCID: PMC9188534 DOI: 10.1007/s00702-022-02465-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/15/2022] [Indexed: 10/31/2022]
Abstract
Since the 1980s, the MAO-B inhibitors have gained considerable status in the therapy of the Parkinson's disease. In addition to the symptomatic effect in mono- and combination therapies, a neuroprotective effect has repeatedly been a matter of some discussion, which has unfortunately led to a good many misunderstandings. Due to potential interactions, selegiline has declined in significance in the field. For the MAO-B inhibitor safinamide, recently introduced to the market, an additional inhibition of pathological release of glutamate has been postulated. At present, rasagiline and selegiline are being administered in early therapy as well as in combination with levodopa. Safinamide has been approved only for combination therapy with levodopa when motor fluctuations have occurred. MAO-B inhibitors are a significant therapeutic option for Parkinson's disease, an option which is too often not appreciated properly.
Collapse
|
26
|
Sivils A, Yang F, Wang JQ, Chu XP. Acid-Sensing Ion Channel 2: Function and Modulation. MEMBRANES 2022; 12:membranes12020113. [PMID: 35207035 PMCID: PMC8880099 DOI: 10.3390/membranes12020113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
Acid-sensing ion channels (ASICs) have an important influence on human physiology and pathology. They are members of the degenerin/epithelial sodium channel family. Four genes encode at least six subunits, which combine to form a variety of homotrimers and heterotrimers. Of these, ASIC1a homotrimers and ASIC1a/2 heterotrimers are most widely expressed in the central nervous system (CNS). Investigations into the function of ASIC1a in the CNS have revealed a wealth of information, culminating in multiple contemporary reviews. The lesser-studied ASIC2 subunits are in need of examination. This review will focus on ASIC2 in health and disease, with discussions of its role in modulating ASIC function, synaptic targeting, cardiovascular responses, and pharmacology, while exploring evidence of its influence in pathologies such as ischemic brain injury, multiple sclerosis, epilepsy, migraines, drug addiction, etc. This information substantiates the ASIC2 protein as a potential therapeutic target for various neurological, psychological, and cerebrovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Correspondence: ; Tel.: +1-816-235-2248; Fax: +1-816-235-6517
| |
Collapse
|
27
|
Pellecchia MT, Picillo M, Russillo MC, De Pandis MF, Bonizzoni E, Marjanovic I, Cattaneo C. Efficacy of Safinamide and Gender Differences During Routine Clinical Practice. Front Neurol 2022; 12:756304. [PMID: 34970207 PMCID: PMC8712933 DOI: 10.3389/fneur.2021.756304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background: There is increasing evidence of gender differences in the epidemiology and clinical manifestation of both motor and non-motor symptoms of Parkinson's disease (PD). Nevertheless, few data are available on gender differences in the response to antiparkinsonian drugs. Safinamide is a multimodal drug with positive effects on motor and non-motor fluctuations that might improve patients' care and quality of life. Objective: To analyze gender differences on clinical effects of safinamide in PD patients treated in real-life conditions during the SYNAPSES trial. Methods: SYNAPSES was a multinational, multicenter, observational study. At baseline, patients with PD diagnosis received safinamide as an add-on to levodopa and were followed up for 12 months, with visits performed every 4 months. A new statistical analysis was performed to describe the efficacy of safinamide in men and women on motor complications, motor symptoms, and adverse events. Results: Six hundred and sixteen (38%) out of 1,610 patients enrolled in the SYNAPSES study were women and 994 (62%) men. Safinamide improved motor symptoms and motor complications (fluctuations and dyskinesia) in both genders, with a good safety profile and without requiring any change in the concomitant dopaminergic therapy. Clinically significant improvements, according to the criteria developed by Shulman et al., were seen in 46% of male and female patients for the UPDRS motor score and 43.5% of men vs. 39.1% of women for the UPDRS total score. Conclusions: Safinamide was effective in improving motor fluctuations and dyskinesia and proved to be safe in both male and female patients with PD. Further prospective studies, specifically addressing potential gender differences in response to PD therapies, are needed to develop tailored management strategies.
Collapse
Affiliation(s)
- Maria T Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Marina Picillo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Maria C Russillo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - Maria F De Pandis
- Clinical Trial Center Parkinson, San Raffaele Cassino, Cassino, Italy
| | - Erminio Bonizzoni
- Section of Medical Statistics and Biometry "GA Maccacaro", Department of Clinical Science and Community, University of Milan, Milan, Italy
| | | | | |
Collapse
|
28
|
Wei Q, Tan Y, Xu P, Tao E, Lu Z, Pan X, Wang B, Liu C, Dong X, Tian Y, Sun X, Cattaneo C, Chen S, Shang H, Shang H, Tao E, Liu C, Wu Y, Geng D, Lu Z, Xu P, Hu X, Luo Y, Zhou J, Huang W, Chen G, Tian Y, Tuo H, Wang B, Zhang M, Liu J, Sun X, Jiao L, Jin L, Feng T, Liu Y, Zhang B, Ye Q, Xu Y, Liu J, Gu S, Xu YM, Dong X, Liu D, Pan X. The XINDI Study: A Randomized Phase III Clinical Trial Evaluating the Efficacy and Safety of Safinamide as Add-On Therapy to Levodopa in Chinese Patients with Parkinson's Disease with Motor Fluctuations. CNS Drugs 2022; 36:1217-1227. [PMID: 36346534 PMCID: PMC9641300 DOI: 10.1007/s40263-022-00958-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Levodopa remains the gold standard for the treatment of Parkinson's disease, but its long-term use is associated with motor complications whose management is still a significant challenge. Safinamide is a multimodal drug with proven efficacy as an adjunct to levodopa. OBJECTIVE The objective of this study was to investigate the efficacy and safety of safinamide as an add-on to levodopa in Chinese patients with Parkinson's disease with motor fluctuations. METHODS The XINDI study was a phase III, randomized, double-blind, placebo-controlled, multicenter study, with a 2-week screening period and a 16-week treatment period. The starting dose of safinamide (or placebo) was 50 mg once daily, increased to 100 mg once daily at day 15. Patients aged ≥ 18 years, with idiopathic Parkinson's disease of >3 years duration, Hoehn and Yahr stage 1-4, and daily OFF time ≥ 1.5 h, were eligible. Patients should follow a stable oral levodopa regimen and may receive concomitant treatment with stable doses of other anti-Parkinson drugs, except monoamine oxidase-B inhibitors. Patients with severe disabling peak-dose or biphasic dyskinesia, unpredictable or widely swinging fluctuations, other forms of parkinsonism, a history of dementia or severe cognitive dysfunction, major psychiatric illnesses, and/or clinically significant medical illnesses were excluded. The primary efficacy endpoint was the change from baseline to week 16 in the mean daily OFF time. Secondary efficacy endpoints included the Unified Parkinson's Disease Rating Scale, the Numerical Rating Scale, the Clinical Global Impression scale, and the 39-Item Parkinson's Disease Questionnaire scale. The statistical analysis of the efficacy parameters was conducted using an analysis of co-variance, except for the Clinical Global Impression scale scores that were assessed using the Wilcoxon-Mann-Whitney test. Safety was evaluated through the frequency of adverse events and serious adverse events, physical examination, vital signs, 12-lead electrocardiograms, and laboratory exams. All safety endpoints were summarized using descriptive statistics. RESULTS The trial enrolled 307 patients. At week 16, the difference in the change of the mean total daily OFF time between safinamide and placebo groups was 1.10 h (p < 0.0001). This change was significantly greater in the safinamide group starting from week 2, suggesting a rapid onset of drug efficacy. ON time, Unified Parkinson's Disease Rating Scale, Clinical Global Impression scale, and the 39-Item Parkinson's Disease Questionnaire showed statistically significant improvements. There were no significant between-group differences for adverse events or serious adverse events. CONCLUSIONS Safinamide, as add-on therapy to levodopa, significantly reduced motor fluctuations and improved motor symptoms and quality of life of Chinese patients with idiopathic Parkinson's disease. The improvements observed in the Unified Parkinson's Disease Rating Scale total and motor scores were also clinically significant. No safety concerns were identified, confirming the good tolerability profile of the drug. CLINICAL TRIAL REGISTRATION NCT03881371, registered on 19 March, 2019, https://clinicaltrials.gov/NCT03881371 .
Collapse
Affiliation(s)
- Qianqian Wei
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuyan Tan
- grid.16821.3c0000 0004 0368 8293Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingyi Xu
- grid.470124.4Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Enxiang Tao
- grid.412536.70000 0004 1791 7851Department of Neurology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Zuneng Lu
- grid.412632.00000 0004 1758 2270Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Pan
- grid.413432.30000 0004 1798 5993Department of Neurology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Baojun Wang
- Department of Neurology, Baotou City Central Hospital, Baotou, China
| | - Chunfeng Liu
- grid.452666.50000 0004 1762 8363Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueshuang Dong
- grid.452354.10000 0004 1757 9055Department of Neurology, Daqing Oilfield General Hospital, Daqing, China
| | - Yuling Tian
- grid.452461.00000 0004 1762 8478Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Sun
- grid.64924.3d0000 0004 1760 5735Department of Neurology, The First Bethune Hospital of Jilin University, Jilin, China
| | - Carlo Cattaneo
- grid.476824.bMedical Department, Zambon SpA, Bresso, Italy
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 2000001, China.
| | - Huifang Shang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou, Sichuan, 610041, Chengdu, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Characteristics of wearing-off and motor symptoms improved by safinamide adjunct therapy in patients with Parkinson's disease: A post hoc analysis of a Japanese phase 2/3 study. J Neurol Sci 2021; 434:120083. [PMID: 35007919 DOI: 10.1016/j.jns.2021.120083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Patients with Parkinson's disease (PD) experience various motor and non-motor symptoms. We conducted a post hoc analysis of a Japanese phase 2/3 study of safinamide (50 or 100 mg/day) in patients with Parkinson's disease and wearing-off to evaluate response according to background factors. Safinamide efficacy against major motor symptoms was also assessed. METHODS Multiple regression analyses in safinamide-treated patients (50 or 100 mg/day) assessed changes in daily ON-time without troublesome dyskinesia (hereafter referred to as ON-time) according to baseline clinical variables. Subgroup analyses by baseline Unified Parkinson's Disease Rating Scale (UPDRS) part III score were also conducted. We evaluated cardinal motor symptoms using the UPDRS. RESULTS In the multiple regression analysis, changes in ON-time were related to baseline non-motor symptoms (UPDRS part I score) and ON-time in the 50-mg group, but no relationships with non-motor symptoms were observed in the 100-mg group. Additionally, in the subgroup analysis of patients with more severe motor symptoms (UPDRS part III score > 20), a significant improvement in ON-time was observed only with 100 mg/day (p = 0.01). At both doses, safinamide significantly improved cardinal motor symptom scores (bradykinesia, rigidity, tremor, axial symptoms, and gait disturbances). CONCLUSIONS The observed response profile to the 50-mg/day dose may be related to baseline non-motor symptoms, but this was not true for the 100-mg/day dose. Both safinamide doses improved major motor symptoms in levodopa-treated patients with PD.
Collapse
|