1
|
Benedyk-Machaczka M, Mydel P, Mäder K, Kaminska M, Taudte N, Naumann M, Kleinschmidt M, Sarembe S, Kiesow A, Eick S, Buchholz M. Preclinical Validation of MIN-T: A Novel Controlled-Released Formulation for the Adjunctive Local Application of Minocycline in Periodontitis. Antibiotics (Basel) 2024; 13:1012. [PMID: 39596707 PMCID: PMC11591261 DOI: 10.3390/antibiotics13111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Adjunctive treatment of periodontitis lacks solutions which allow for enough time for wound healing in the periodontal pockets by avoiding fast re-colonization. Such a solution might be an antibiotic-containing formulation with a controlled release over a period of weeks. Here, a recently described minocycline-containing approach is qualified for further clinical development by focusing on proof-of-concept, systemic burden, resistance development, and degradation studies. Methods: Animal studies were done in two different (mouse-chamber, rat Porphyromonas gingivalis challenging) models, including effects on inflammation markers, bone loss, and bone structure. Also, serum concentrations of minocycline after local application were determined by HPLC-MS/MS. The resistance status of bacterial clinical isolates against minocycline was investigated and the degradation of the formulation was characterized by laser scanning and scanning electron microscopy. Results: Animal studies clearly demonstrated the applicability of the new formulation in the investigated models. Inflammation markers decreased in a dose-dependent manner and reduced bone loss compared to non-treated group was observed. Therefore, the systemic burden of the antibiotic was neglectable. Minocycline is still effective against oral pathogens; resistance development was not seen. The biodegradable thread was first swollen and subsequently degraded over a period of weeks. Conclusions: The results support the continued clinical development of this new formulation. A phase I clinical trial is planned to further evaluate its safety and efficacy.
Collapse
Affiliation(s)
- Małgorzata Benedyk-Machaczka
- H&G Ltd., 31-431 Krakow, Poland; (M.B.-M.)
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Mydel
- H&G Ltd., 31-431 Krakow, Poland; (M.B.-M.)
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| | - Marta Kaminska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Nadine Taudte
- PerioTrap Pharmaceuticals GmbH, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Marcel Naumann
- Department Drug Design and Analytical Chemistry, Fraunhofer IZI-MWT, Weinbergweg 22, 06120 Halle (Saale), Germany; (M.N.)
| | - Martin Kleinschmidt
- Department Drug Design and Analytical Chemistry, Fraunhofer IZI-MWT, Weinbergweg 22, 06120 Halle (Saale), Germany; (M.N.)
| | - Sandra Sarembe
- Department Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure and Systems IMWS, Walter-Huelse-Strasse 1, 06120 Halle (Saale), Germany
| | - Andreas Kiesow
- Department Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure and Systems IMWS, Walter-Huelse-Strasse 1, 06120 Halle (Saale), Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland;
| | - Mirko Buchholz
- PerioTrap Pharmaceuticals GmbH, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Reichert S, Switala H, Schulz S. Differences Between Vietnamese Living in Germany and German Periodontitis Patients in Periodontal Conditions and Subgingival Microbiota. Int Dent J 2024:S0020-6539(24)01533-8. [PMID: 39370342 DOI: 10.1016/j.identj.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION AND AIMS A number of studies have reported ethnic differences in the prevalence and severity of periodontitis. Such discrepancies could be attributed to disparities in periodontal risk factors, as well as variations in the composition of the subgingival microbiota. Given the substantial Vietnamese population residing in the former German Democratic Republic, the present study aimed to compare the clinical and microbial characteristics of periodontitis patients of Vietnamese Asian origin living in Germany with those of German Caucasian periodontitis patients. METHODS A total of 60 patients with a minimum stage II periodontitis diagnosis were included in the study. Of these, 30 were of Vietnamese origin, with an average age of 55 years and a male prevalence of 33.3%. The remaining 30 patients were of German origin, with an average age of 54.5 years and a male prevalence of 40%. The periodontal diagnosis was made in accordance with the recently revised classification of periodontal disease. The pooled subgingival plaque samples were subjected to next-generation sequencing on the MiSeq platform (Illumina). RESULTS The German patients were significantly more likely to be smokers (56.7% vs 13.3%), had significantly higher body mass index (26 vs 22.6 kg/m²), probing depth (4.1 vs 3.6 mm), and clinical attachment loss (5 vs 4.1 mm). In terms of microbiota, the Vietnamese patients exhibited significantly lower beta diversity compared to the German patients, and smokers demonstrated a significantly higher beta diversity compared to nonsmokers. The microbiota of both groups differed most significantly in the relative abundance of Porphyromonas gingivalis (Vietnamese) and Fusobacteriia (German). CONCLUSIONS German patients with periodontitis showed more severe periodontal symptoms and more pronounced periodontal risk factors compared to Vietnamese patients. Both patient groups also showed significant differences in the subgingival microbiota. CLINICAL RELEVANCE Compared to Vietnamese living in Germany, German patients have a higher need for periodontal treatment and at the same time the risk factors of smoking and obesity should be reduced. More research is needed before the differences in oral microbiota between the two groups can lead to individualised therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Reichert
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Martin-Luther University, Halle (Saale), Germany.
| | - Hiacynta Switala
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Martin-Luther University, Halle (Saale), Germany
| | - Susanne Schulz
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Martin-Luther University, Halle (Saale), Germany
| |
Collapse
|
3
|
Zhou X, Cai X, Tang Q, Zhang J, Bai J, Jing F, Gao L, Zhang H, Li T. Differences in the landscape of colonized microorganisms in different oral potentially malignant disorders and squamous cell carcinoma: a multi-group comparative study. BMC Microbiol 2024; 24:318. [PMID: 39223464 PMCID: PMC11367885 DOI: 10.1186/s12866-024-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The role of microbes in diseases, especially cancer, has garnered significant attention. However, research on the oral microbiota in oral potentially malignant disorders (OPMDs) remains limited. Our study investigates microbial communities in OPMDs. MATERIALS AND METHODS Oral biopsies from19 oral leukoplakia (OLK) patients, 19 proliferative verrucous leukoplakia (PVL) patients, 19 oral lichen planus (OLP) patients, and 19 oral lichenoid lesions (OLL) patients were obtained. 15 SCC specimens were also collected from PVL patients. Healthy individuals served as controls, and DNA was extracted from their paraffin-embedded tissues. 2bRAD-M sequencing generated taxonomic profiles. Alpha and beta diversity analyses, along with Linear Discriminant Analysis effect size analysis, were conducted. RESULTS Our results showed the microbial richness and diversity were significantly different among groups, with PVL-SCC resembling controls, while OLK exhibited the highest richness. Each disease group displayed unique microbial compositions, with distinct dominant bacterial species. Noteworthy alterations during PVL-SCC progression included a decline in Fusobacterium periodonticum and an elevation in Prevotella oris. CONCLUSIONS Different disease groups exhibited distinct dominant bacterial species and microbial compositions. These findings offer promise in elucidating the underlying mechanisms of this disease.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Xinjia Cai
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Qian Tang
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Jianyun Zhang
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Fengyang Jing
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Li Gao
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Heyu Zhang
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Tiejun Li
- Department of Oral Pathology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| |
Collapse
|
4
|
Yakar N, Unlu O, Cen L, Hasturk H, Chen T, Shi W, He X, Kantarci A. Targeted elimination of Fusobacterium nucleatum alleviates periodontitis. J Oral Microbiol 2024; 16:2388900. [PMID: 39139835 PMCID: PMC11321114 DOI: 10.1080/20002297.2024.2388900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Background Fusobacterium nucleatum, a pathobiont in periodontal disease, contributes to alveolar bone destruction. We assessed the efficacy of a new targeted antimicrobial, FP-100, in eradicating F. nucleatum from the oral microbial community in vitro and in vivo and evaluated its effectiveness in reducing bone loss in a mouse periodontitis model. Methods A multispecies bacterial community was cultured and treated with two concentrations of FP-100 over two days. Microbial profiles were examined at 24-h intervals using 16S rRNA sequencing. A ligature-induced periodontitis mouse model was employed to test FP-100 in vivo. Results FP-100 significantly reduced Fusobacterium spp. within the in vitro community (p < 0.05) without altering microbial diversity at a 2 μM concentration. In mice, cultivable F. nucleatum was undetectable in FP-100-treated ligatures but persistent in controls. Beta diversity plots showed distinct microbial structures between treated and control mice. Alveolar bone loss was significantly reduced in the FP-100 group (p = 0.018), with concurrent decreases in gingival IL-1β and TNF-α expression (p = 0.052 and 0.018, respectively). Conclusion FP-100 effectively eliminates F. nucleatum from oral microbiota and significantly reduces bone loss in a mouse periodontitis model, demonstrating its potential as a targeted therapeutic agent for periodontal disease.
Collapse
Affiliation(s)
- Nil Yakar
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Faculty of Science, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Ozge Unlu
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Faculty of Medicine, Department of Medical Microbiology, Istanbul Atlas University, Istanbul, Turkey
| | - Lujia Cen
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Hatice Hasturk
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Tsute Chen
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Wenyuan Shi
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Saskianti T, Wardhani KK, Fadhila N, Wahluyo S, Dewi AM, Nugraha AP, Ernawati DS, Kanawa M. Polymethylmethacrylate-hydroxyapatite antibacterial and antifungal activity against oral bacteria: An in vitro study. J Taibah Univ Med Sci 2024; 19:190-197. [PMID: 38229827 PMCID: PMC10790095 DOI: 10.1016/j.jtumed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 01/18/2024] Open
Abstract
Objective Reconstruction of alveolar bone defects resulting from aging, trauma, ablative surgery or pathology, remains a significant clinical challenge. The objective of this study was to investigate the antibacterial and antifungal activities of mixed polymethylmethacrylate-hydroxyapatite (PMMA-HA) against oral microorganisms. Our findings could provide valuable insights into the prospective application of PMMA-HA as a synthetic bone graft material to manage alveolar bone defects via tissue engineering. Methods HA powder was obtained from the Center for Ceramics in Indonesia and PMMA granules were obtained from HiMedia Laboratories; these were prepared in 20:80, 30:70, and 40:60 ratios. The antibacterial diffusion method was then performed against Staphylococcusaureus, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Fusobacterium nucleatum, while the antifungal diffusion method was used to test against Candida albicans. Standardized protocols were used for microbial culturing and inhibition zones were measured with digital calipers. Statistical analyses included one-way ANOVA and Kruskal-Wallis tests, supplemented by post-hoc Tukey HSD tests. Results A PMMA-HA scaffold with a 20:80 ratio demonstrated the highest antibacterial activity against S. aureus, A. actinomycetemcomitans, P. gingivalis, and F. nucleatum. This was followed by the 30:70 and 40:60 ratios in terms of antibacterial activity. Statistical significance was achieved with p < 0.05 in comparison to controls. However, none of the PMMA-HA ratios showed antifungal activity against C. albicans. Conclusion PMMA-HA scaffolds have significant activity against bacteria, but not against fungi.
Collapse
Affiliation(s)
- Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Karina K. Wardhani
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Naura Fadhila
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Soegeng Wahluyo
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Ardianti M. Dewi
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Alexander P. Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Diah S. Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Masami Kanawa
- Department of Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
6
|
Díaz-Basabe A, Lattanzi G, Perillo F, Amoroso C, Baeri A, Farini A, Torrente Y, Penna G, Rescigno M, Ghidini M, Cassinotti E, Baldari L, Boni L, Vecchi M, Caprioli F, Facciotti F, Strati F. Porphyromonas gingivalis fuels colorectal cancer through CHI3L1-mediated iNKT cell-driven immune evasion. Gut Microbes 2024; 16:2388801. [PMID: 39132842 PMCID: PMC11321422 DOI: 10.1080/19490976.2024.2388801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.
Collapse
Affiliation(s)
- Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Boni
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
7
|
Kendlbacher FL, Bloch S, Hager‐Mair FF, Bacher J, Janesch B, Thurnheer T, Andrukhov O, Schäffer C. Multispecies biofilm behavior and host interaction support the association of Tannerella serpentiformis with periodontal health. Mol Oral Microbiol 2023; 38:115-133. [PMID: 35964247 PMCID: PMC10947601 DOI: 10.1111/omi.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022]
Abstract
The recently identified bacterium Tannerella serpentiformis is the closest phylogenetic relative of Tannerella forsythia, whose presence in oral biofilms is associated with periodontitis. Conversely, T. serpentiformis is considered health-associated. This discrepancy was investigated in a comparative study of the two Tannerella species. The biofilm behavior was analyzed upon their addition and of Porphyromonas gingivalis-each bacterium separately or in combinations-to an in vitro five-species oral model biofilm. Biofilm composition and architecture was analyzed quantitatively using real-time PCR and qualitatively by fluorescence in situ hybridization/confocal laser scanning microscopy, and by scanning electron microscopy. The presence of T. serpentiformis led to a decrease of the total cell number of biofilm bacteria, while P. gingivalis was growth-promoting. This effect was mitigated by T. serpentiformis when added to the biofilm together with P. gingivalis. Notably, T. serpentiformis outcompeted T. forsythia numbers when the two species were simultaneously added to the biofilm compared to biofilms containing T. forsythia alone. Tannerella serpentiformis appeared evenly distributed throughout the multispecies biofilm, while T. forsythia was surface-located. Adhesion and invasion assays revealed that T. serpentiformis was significantly less effective in invading human gingival epithelial cells than T. forsythia. Furthermore, compared to T. forsythia, a higher immunostimulatory potential of human gingival fibroblasts and macrophages was revealed for T. serpentiformis, based on mRNA expression levels of the inflammatory mediators interleukin 6 (IL-6), IL-8, monocyte chemoattractant protein-1 and tumor necrosis factor α, and production of the corresponding proteins. Collectively, these data support the potential of T. serpentiformis to interfere with biological processes relevant to the establishment of periodontitis.
Collapse
Affiliation(s)
- Fabian L. Kendlbacher
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Susanne Bloch
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Fiona F. Hager‐Mair
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Johanna Bacher
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Bettina Janesch
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive DentistryDivision of Clinical Oral Microbiology and ImmunologyCenter of Dental MedicineUniversity of ZürichZürichSwitzerland
| | - Oleh Andrukhov
- Competence Center for Periodontal ResearchUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
| | - Christina Schäffer
- NanoGlycobiology Unit, Department of NanoBiotechnologyUniversität für Bodenkultur WienViennaAustria
| |
Collapse
|
8
|
Yamaguchi-Kuroda Y, Kikuchi Y, Kokubu E, Ishihara K. Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J Oral Microbiol 2023; 15:2165001. [PMID: 36687169 PMCID: PMC9848294 DOI: 10.1080/20002297.2023.2165001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Periodontitis is caused by a dysbiotic shift in the dental plaque microbiome. Fusobacterium nucleatum is involved in the colonization of Porphyromonas gingivalis, which plays a key role in dysbiosis, via coaggregation and synergy with this microorganism. Aim We investigated the effect of diffusible signaling molecules from P. gingivalis ATCC 33277 on F. nucleatum TDC 100 to elucidate the synergistic mechanisms involved in dysbiosis. Methods The two species were cocultured separated with an 0.4-µm membrane in tryptic soy broth, and F. nucleatum gene expression profiles in coculture with P. gingivalis were compared with those in monoculture. Results RNA sequencing revealed 139 genes differentially expressed between the coculture and monoculture. The expression of 52 genes was upregulated, including the coaggregation ligand-coding gene. Eighty-seven genes were downregulated. Gene Ontology analysis indicated enrichment for the glycogen synthesis pathway and a decrease in de novo synthesis of purine and pyrimidine. Conclusion These results indicate that diffusible signaling molecules from P. gingivalis induce metabolic changes in F. nucleatum, including an increase in polysaccharide synthesis and reduction in de novo synthesis of purine and pyrimidine. The metabolic changes may accelerate biofilm formation by F. nucleatum with P. gingivalis. Further, the alterations may represent potential therapeutic targets for preventing dysbiosis.
Collapse
Affiliation(s)
- Yukiko Yamaguchi-Kuroda
- Department of Endodontics, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Tokyo 101-0061, Chiyoda-ku, Japan,CONTACT Kazuyuki Ishihara Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo101-0061, Japan
| |
Collapse
|
9
|
Tonon CC, Panariello B, Chorilli M, Spolidorio DMP, Duarte S. Effect of curcumin-loaded photoactivatable polymeric nanoparticle on peri-implantitis-related biofilm. Photodiagnosis Photodyn Ther 2022; 40:103150. [PMID: 36244678 DOI: 10.1016/j.pdpdt.2022.103150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Curcumin has been used as a photosensitizer (PS) for antimicrobial photodynamic chemotherapy (PACT). However, its low solubility, instability, and poor bioavailability challenge its in vivo application. This study aimed to synthesize curcumin-loaded polymeric nanoparticles (curcumin-NP) and determine their antimicrobial and cytotoxic effects. Nanoparticles (NP) were synthesized using polycaprolactone (PCL) as a polymer by the nanoprecipitation method. Curcumin-NP was characterized by particle size, polydispersity index and zeta potential, scanning electron microscopy, and curcumin encapsulation efficiency (EE). Curcumin-NP was compared to free curcumin solubilized in 10% DMSO as photosensitizers for PACT in single and multispecies Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus oralis biofilms. Chlorhexidine 0.12% (CHX) and ultrapure water were used as positive and negative controls. The cytotoxic effect of curcumin-NP was evaluated on human periodontal ligament fibroblast cells (HPLF). Data were analyzed by ANOVA (α=0.05). Curcumin-NP exhibited homogeneity and stability in solution, small particle size, and 67.5% EE of curcumin. Curcumin-NP presented reduced antibiofilm activity at 500 µg/ml, although in planktonic cultures it showed inhibitory and bactericidal effect. Curcumin-NP and curcumin with and without photoactivation were not cytotoxic to HPLF cells. Curcumin-NP has antimicrobial and antibiofilm properties, with better effects when associated with blue light, being a promising therapy for preventing and treating peri-implant diseases.
Collapse
Affiliation(s)
- Caroline Coradi Tonon
- Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Beatriz Panariello
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Marlus Chorilli
- Department of Drugs and Pharmaceuticals, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Simone Duarte
- American Dental Association Science and Research Institute, 211 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Protoporphyrin IX derived from dual-species anaerobic biofilms of Fusobacterium necrophorum and Porphyromonas levii attenuates bovine neutrophil function. Biofilm 2022; 4:100095. [DOI: 10.1016/j.bioflm.2022.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
|
11
|
Lenka S, Bhuyan SK, Bhuyan R. Understanding the characteristics of the host genome and microbiome interaction in oral squamous cell carcinoma: a narrative review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Oral health status is directly associated with microbes present within it. The abundance of microbes at the OSCC site is more than at its control site, representing its possible role in the progression of OSCC development. Dysbiosis of oral microbiota could be a crucial etiological risk factor in the elevation of OSCC. This study aimed to analyze and assess: a) positive regulator microbes of oral cancer and their abundance at the cancer site, b) pathways involved in positive regulator microbes, and c) identification of the most virulent oral oncogenic microbe.
Main body
It is obtained from several studies that microbes belonging to Prevotella, Fusobacterium, Alloprevotella, Capnocytophaga, Porphyromonas, Campylobacter, and Aggregatibacter are detected to be more in number contrast to healthy sites. Fusobacterium nucleatum, Porphyromonas gingivalis, and Candida albicans show molecular pathways linked with OSCC development. Genes encoding for virulent factors like FimA, Gingipains, lipopolysaccharide (P. gingivalis), FadA, Fap2 (F. nucleatum), and zymosan (C. Albicans) are directly involved in elevating oral cancer.
Conclusion
Mostly, the genes that are involved in promoting oral cancer are the genes that generally encode cell wall proteins. The cell wall proteins that is FadA, Fap, and FimA interact with the host's cell and hamper the normal regulation pathway, which leads to activation of cell proliferating pathways, down-regulates apoptotic pathways, cytoskeleton rearrangement, and upregulates the cell cycle checkpoint regulators; as a result, progression of oral cancer occurs.
Collapse
|
12
|
Porphyromonas gingivalis Tyrosine Kinase Is a Fitness Determinant in Polymicrobial Infections. Infect Immun 2022; 90:e0017022. [PMID: 35575504 PMCID: PMC9202411 DOI: 10.1128/iai.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pathogenic microbial ecosystems are polymicrobial, and community function can be shaped by interbacterial interactions. Little is known, however, regarding the genetic determinants required for fitness in heterotypic community environments. In periodontal diseases, Porphyromonas gingivalis is a primary pathogen, but only within polymicrobial communities. Here, we used a transposon sequencing (Tn-Seq) library of P. gingivalis to screen for genes that influence fitness of the organism in a coinfection murine abscess model with the oral partner species Streptococcus gordonii and Fusobacterium nucleatum. Genes impacting fitness with either organism were involved in diverse processes, including metabolism and energy production, along with cell wall and membrane biogenesis. Despite the overall similarity of function, the majority of identified genes were specific to the partner species, indicating that synergistic mechanisms of P. gingivalis vary to a large extent according to community composition. Only two genes were identified as essential for P. gingivalis fitness in abscess development with both S. gordonii and F. nucleatum: ptk1, encoding a tyrosine kinase, and inlJ, encoding an internalin family surface protein. Ptk1, but not InlJ, is required for community development with S. gordonii, and we found that the action of this kinase is similarly required for P. gingivalis to accumulate in a community with F. nucleatum. A limited number of P. gingivalis genes are therefore required for species-independent synergy, and the Ptk1 tyrosine kinase network may integrate and coordinate input from multiple organisms.
Collapse
|
13
|
Zhao T, Wang X, Fu L, Yang K. Fusobacterium nucleatum: a new player in regulation of cancer development and therapeutic response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:436-450. [PMID: 35800370 PMCID: PMC9255244 DOI: 10.20517/cdr.2021.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
A dysbiosis in microbial diversity or functionality can promote disease development. Emerging preclinical and clinical evidence emphasizes the interplay between microbiota and both disease evolution and the treatment response of different cancers. One bacterium that has garnered much attention in a few cancer microbiota studies is Fusobacterium nucleaum (Fn). To provide updated knowledge of the functional role of Fn in cancer prevention and management, this review summarizes the relationship among Fn, cancer, and chemoimmunotherapy response, with the potential mechanisms of action also intensively discussed, which will benefit the development of strategies to prevent or treat cancer via Fn-based therapeutic interventions.
Collapse
Affiliation(s)
- Tengda Zhao
- Department of Oral and Maxillofacial Surgery, Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xueping Wang
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Liwu Fu
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Ke Yang
- Department of Oral and Maxillofacial Surgery, Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
14
|
Zhang Z, Liu S, Zhang S, Li Y, Shi X, Liu D, Pan Y. Porphyromonas gingivalis outer membrane vesicles inhibit the invasion of Fusobacterium nucleatum into oral epithelial cells by downregulating FadA and FomA. J Periodontol 2021; 93:515-525. [PMID: 34458990 PMCID: PMC9415117 DOI: 10.1002/jper.21-0144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023]
Abstract
Background Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) participate in the formation and progression of periodontitis. They can exert virulence by invading into host cells, but the interaction between them and their specific mechanisms remain unclear. The purpose of this study was to study the effect of P. gingivalis outer membrane vesicles (OMVs) on the ability of F. nucleatum to invade oral epithelial cells, and the reasons for the influence. Methods The invasion abilities of the two bacteria were detected separately after mixed infection of P. gingivalis and F. nucleatum. Next, P. gingivalis OMVs were extracted with the kit, and their influence on the invasion ability of F. nucleatum was tested. The effects of P. gingivalis OMVs on F. nucleatum were evaluated by assessment of bacterial morphology, growth curves, auto‐aggregation morphology, and the expression of adhesion‐related proteins FadA and FomA. Results Our results showed that P. gingivalis inhibited the invasion of F. nucleatum into oral epithelial cells but F. nucleatum promoted the invasion of P. gingivalis. In subsequent experiments, we extracted P. gingivalis OMVs successfully and revealed that proteases in P. gingivalis OMVs inhibited the invasion of F. nucleatum into oral epithelial cells. Furthermore, P. gingivalis OMVs did not affect the morphology and proliferation of F. nucleatum, but proteases inside decreased the auto‐aggregation of F. nucleatum. Additionally, proteases in P. gingivalis OMVs reduced the expression levels of F. nucleatum surface adhesion‐related proteins FadA and FomA. Conclusion Our study demonstrated that proteases in P. gingivalis OMVs inhibited the invasion of F. nucleatum into oral epithelial cells by downregulating FadA and FomA.
Collapse
Affiliation(s)
- Zhiying Zhang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Sai Liu
- Department of Dental Materials, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yuchao Li
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiaoting Shi
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Huang X, She L, Liu H, Liu P, Chen J, Chen Y, Zhou W, Lu Y, Lin J. Study of oral microorganisms contributing to non-carious cervical lesions via bacterial interaction and pH regulation. J Cell Mol Med 2021; 25:3103-3112. [PMID: 33591640 PMCID: PMC7957269 DOI: 10.1111/jcmm.16370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
There is a lack of evidence about the relationship between microorganisms and non‐carious cervical lesions (NCCLs) due to limited technologies. A group of 78 patients was enrolled for microbial 16S rRNA sequencing of dental plaques on normal and defective cervical surfaces. Parallel data from 39 patients were analysed with paired t tests, and Fusobacteriales exhibited significantly less distribution on NCCLs than on normal surfaces. As a result, Fusobacterium nucleatum, the most common oral bacterial strain belonging to the order Fusobacteriales, was selected for further research. From a scanning electron microscopy (SEM) scan, the tooth surface with Fusobacterium nucleatum and Streptococcus mutans culture was more intact than that without Fusobacterium nucleatum. Furthermore, the calcium contents in groups with Fusobacterium nucleatum were significantly higher than that without it. In further mechanistic research, Fusobacterium nucleatum was demonstrated to adhere to and disturb other organisms as well as producing alkaline secretions to neutralize the deleterious acidic environment, protecting the tooth structure. In conclusion, microorganisms and NCCLs were confirmed directly related through adherent bacterial interactions and pH regulation. The research provides a new perspective and experimental evidence for the relation between microorganisms and NCCLs, which guides clinical treatment and preventive dentistry in the future.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lin She
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huanhuan Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Pingping Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jue Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| | - Yingcong Chen
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wenjie Zhou
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Lin
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
16
|
Gui Q, Ramsey KW, Hoffman PS, Lewis JP. Amixicile depletes the ex vivo periodontal microbiome of anaerobic bacteria. J Oral Biosci 2020; 62:195-204. [PMID: 32278683 DOI: 10.1016/j.job.2020.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Although periodontal diseases result from overgrowth of anaerobic bacteria, the effect of a specific knockdown of anaerobes on the disease outcome has yet to be examined. We have reported that amixicile, a non-toxic, readily bioavailable, and novel antimicrobial, specifically targets selected oral anaerobes through inhibition of the activity of pyruvate ferredoxin oxidoreductase (PFOR), a major enzyme mediating oxidative decarboxylation of pyruvate. METHODS Here, we generated an ex vivo microbiome derived from gingival pockets of human subjects with chronic periodontal disease and evaluated the efficacy of amixicile in generating a specific knockdown of anaerobic bacteria present in the microbiome. RESULTS Our bioinformatics analysis identified PFOR-like coding capacity in over 100 genomes available from the HOMD database. Many of those bacteria were present in our ex vivo microbiome. Significantly, the anaerobic pathogens relying on PFOR for energy generation were specifically reduced in abundance following treatment with amixicile while non-PFOR bacteria were spared. Specifically, Prevotella, Veillonella, Slackia, Porphyromonas, Treponema, Megasphera, and Atobium were reduced in abundance. Such treatment resulted in the conversion of a microbiome resembling a microbiome derived from sites with periodontal disease to one resembling a microbiome present at healthy sites. We also compared the inhibitory spectrum of amixicile to that of metronidazole and showed that the antibiotics have a similar inhibitory spectrum. CONCLUSIONS This work further demonstrates that amixicile has the potential to reverse and prevent the outgrowth of anaerobic pathogens observed in subjects with periodontal disease.
Collapse
Affiliation(s)
- Qin Gui
- Philips Institute for Oral Health Research, Virginia Commonwealth University, 521 North 11th Street, Richmond, VA, 23298, USA.
| | - Kane W Ramsey
- Philips Institute for Oral Health Research, Virginia Commonwealth University, 521 North 11th Street, Richmond, VA, 23298, USA; Department of Periodontics, Virginia Commonwealth University, 521 North 11th Street, Richmond, VA, 23298, USA.
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | - Janina P Lewis
- Philips Institute for Oral Health Research, Virginia Commonwealth University, 521 North 11th Street, Richmond, VA, 23298, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, 521 North 11th Street, Richmond, VA, 23298, USA; Department of Biochemistry Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2020; 17:156-166. [PMID: 30546113 DOI: 10.1038/s41579-018-0129-6] [Citation(s) in RCA: 635] [Impact Index Per Article: 158.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fusobacterium nucleatum has long been found to cause opportunistic infections and has recently been implicated in colorectal cancer; however, it is a common member of the oral microbiota and can have a symbiotic relationship with its hosts. To address this dissonance, we explore the diversity and niches of fusobacteria and reconsider historic fusobacterial taxonomy in the context of current technology. We also undertake a critical reappraisal of fusobacteria with a focus on F. nucleatum as a mutualist, infectious agent and oncogenic microorganism. In this Review, we delve into recent insights and future directions for fusobacterial research, including the current genetic toolkit, our evolving understanding of its mechanistic role in promoting colorectal cancer and the challenges of developing diagnostics and therapeutics for F. nucleatum.
Collapse
Affiliation(s)
| | - Wendy S Garrett
- Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Gui Q, Hoffman PS, Lewis JP. Amixicile targets anaerobic bacteria within the oral microbiome. J Oral Biosci 2019; 61:226-235. [PMID: 31706024 PMCID: PMC7550198 DOI: 10.1016/j.job.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Anaerobic bacteria are the major causative agents of periodontal disease. However, so far, targeted therapy aimed at reducing those pathogens has not been widely implemented. We have previously reported on a novel antimicrobial, amixicile, that targets anaerobic bacteria through inhibition of the function of the major anaerobic metabolic enzyme pyruvate ferredoxin oxidoreductase (PFOR), while not affecting aerotolerant organisms. It effectively inhibited the growth of oral anaerobes both in monocultures as well as in mixed in vitro mixed cultured however, amixicile's activity in in vivo-like conditions remained to be established. METHODS Here, we expand our study using an ex vivo oral microbiome combined with metagenomic sequencing to determine the effect of amixicile treatment on the composition of the microbiome and compare it to that of metronidazole. RESULTS Our results show that in the complex microbiomes, anaerobic bacteria are selectively inhibited, while the growth of aerotolerant ones, such as Streptococcus, Klebsiella, Neisseria, and Rothia is unaffected. Veillonella was the most abundant anaerobic genus in our ex vivo microbiome, and we observed complete inhibition of its growth. In addition, growth of other anaerobes, Fusobacterium and Prevotella, was significantly inhibited. It is noteworthy that a change in abundance of bacteriophages, such as Siphoviridae and Myoviridae, associated with the oral microbiome was observed. CONCLUSIONS Collectively, our data expand on the so far reported inhibitory spectrum of amixicile and demonstrates that it inhibits anaerobic bacteria, including both clinical isolates and laboratory strains.
Collapse
Affiliation(s)
- Qin Gui
- Philips Institute of Oral Health Research, Richmond, VA, USA
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Janina P Lewis
- Philips Institute of Oral Health Research, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Fusobacterium nucleatum Facilitates Apoptosis, ROS Generation, and Inflammatory Cytokine Production by Activating AKT/MAPK and NF- κB Signaling Pathways in Human Gingival Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1681972. [PMID: 31737164 PMCID: PMC6815639 DOI: 10.1155/2019/1681972] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 12/20/2022]
Abstract
Fusobacterium nucleatum (F. nucleatum) plays key roles in the initiation and progression of periodontitis. However, the pathogenic effect of F. nucleatum on human oral tissues and cells has not been fully evaluated. In this study, we aimed to analyze the pathogenic effects of F. nucleatum on human gingival fibroblasts (GFs) and clarify the potential mechanisms. RNA-sequencing analysis confirmed that F. nucleatum significantly altered the gene expression of GF as the stimulation time increased. Cell counting and EdU-labeling assays indicated that F. nucleatum inhibited GF proliferation and promoted cell apoptosis in a time- and dose-dependent manner. In addition, cell apoptosis, intracellular reactive oxygen species (ROS) generation, and proinflammatory cytokine production were dramatically elevated after F. nucleatum stimulation. Furthermore, we found that the AKT/MAPK and NF-κB signaling pathways were significantly activated by F. nucleatum infection and that a large number of genes related to cellular proliferation, apoptosis, ROS, and inflammatory cytokine production downstream of AKT/MAPK and NF-κB signaling pathways were significantly altered in F. nucleatum-stimulated GFs. These findings suggest that F. nucleatum inhibits GF proliferation and promotes cell apoptosis, ROS generation, and inflammatory cytokine production partly by activating the AKT/MAPK and NF-κB signaling pathways. Our study opens a new window for understanding the pathogenic effects of periodontal pathogens on the host oral system.
Collapse
|
20
|
Yang L, Jing L, Jiao Y, Wang L, Marchesan JT, Offenbacher S, Schoenfisch MH. In Vivo Antibacterial Efficacy of Nitric Oxide-Releasing Hyperbranched Polymers against Porphyromonas gingivalis. Mol Pharm 2019; 16:4017-4023. [PMID: 31361146 PMCID: PMC6752707 DOI: 10.1021/acs.molpharmaceut.9b00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The in vivo antibacterial activity of NO-releasing hyperbranched polymers was evaluated against Porphyromonas gingivalis, a key oral pathogen associated with periodontitis, using a murine subcutaneous chamber model. Escalating doses of NO-releasing polymers (1.5, 7.5, and 37.5 mg/kg) were administered into a P. gingivalis-infected chamber once a day for 3 days. Chamber fluids were collected on day 4, with microbiological evaluation indicating a dose-dependent bactericidal action. In particular, NO-releasing polymers at 37.5 mg/kg (1170 μg of NO/kg) achieved complete bacterial eradication (>6-log reduction in bacterial viability), demonstrating greater efficacy than amoxicillin (∼4-log reduction in bacterial viability), a commonly used antibiotic. Time-kill assays further revealed that largest dose (37.5 mg/kg; 1170 μg of NO/kg) resulted in ∼3-log killing of P. gingivalis after only a single dose. Based on these results, the potential clinical utility of NO-releasing hyperbranched polymers appears promising, particularly for oral health applications.
Collapse
Affiliation(s)
| | | | | | - Lufei Wang
- Oral and Craniofacial Biomedicine Program, School of Dentistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | | | | |
Collapse
|
21
|
Thänert R, Itzek A, Hoßmann J, Hamisch D, Madsen MB, Hyldegaard O, Skrede S, Bruun T, Norrby-Teglund A, Medina E, Pieper DH. Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nat Commun 2019; 10:3846. [PMID: 31451691 PMCID: PMC6710258 DOI: 10.1038/s41467-019-11722-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Necrotizing soft tissue infections (NSTIs) are devastating infections caused by either a single pathogen, predominantly Streptococcus pyogenes, or by multiple bacterial species. A better understanding of the pathogenic mechanisms underlying these different NSTI types could facilitate faster diagnostic and more effective therapeutic strategies. Here, we integrate microbial community profiling with host and pathogen(s) transcriptional analysis in patient biopsies to dissect the pathophysiology of streptococcal and polymicrobial NSTIs. We observe that the pathogenicity of polymicrobial communities is mediated by synergistic interactions between community members, fueling a cycle of bacterial colonization and inflammatory tissue destruction. In S. pyogenes NSTIs, expression of specialized virulence factors underlies infection pathophysiology. Furthermore, we identify a strong interferon-related response specific to S. pyogenes NSTIs that could be exploited as a potential diagnostic biomarker. Our study provides insights into the pathophysiology of mono- and polymicrobial NSTIs and highlights the potential of host-derived signatures for microbial diagnosis of NSTIs.
Collapse
Affiliation(s)
- Robert Thänert
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Itzek
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Jörn Hoßmann
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Domenica Hamisch
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Martin Bruun Madsen
- Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trond Bruun
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Eva Medina
- Infection Immunity Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
22
|
Interplay between P. gingivalis, F. nucleatum and A. actinomycetemcomitans in murine alveolar bone loss, arthritis onset and progression. Sci Rep 2018; 8:15129. [PMID: 30310087 PMCID: PMC6181973 DOI: 10.1038/s41598-018-33129-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence supports the association of periodontitis with rheumatoid arthritis. Even though a prominent role has been postulated for Porphyromonas gingivalis, many bacterial species contribute to the pathogenesis of periodontal disease. We therefore investigated the impact of Porphyromonas gingivalis as well as other major pathobionts on the development of both, periodontitis and arthritis in the mouse. Pathobionts used - either alone or in combination - were Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomintans. Periodontitis was induced via oral gavage in SKG, DBA/1 and F1 (DBA/1 × B10.Q) mice and collagen-induced arthritis was provoked via immunization and boost with bovine collagen type II. Alveolar bone loss was quantified via micro computed tomography, arthritis was evaluated macroscopically and histologically and serum antibodies were assessed. Among the strains tested, only F1 mice were susceptible to P. gingivalis induced periodontitis and showed significant alveolar bone loss. Bone loss was paralleled by antibody titers against P. gingivalis. Of note, mice inoculated with the mix of all three pathobionts showed less alveolar bone loss than mice inoculated with P. gingivalis alone. However, oral inoculation with either F. nucleatum or A. actinomycetemcomintans alone accelerated subsequent arthritis onset and progression. This is the first report of a triple oral inoculation of pathobionts combined with collagen-induced arthritis in the mouse. In this interplay and this particular genetic setting, F. nucleatum and A. actinomycetemcomitans exerted a protective impact on P. gingivalis induced alveolar bone loss. By themselves they did not induce periodontitis yet accelerated arthritis onset and progression.
Collapse
|
23
|
Johnson L, Almeida-da-Silva CLC, Takiya CM, Figliuolo V, Rocha GM, Weissmüller G, Scharfstein J, Coutinho-Silva R, Ojcius DM. Oral infection of mice with Fusobacterium nucleatum results in macrophage recruitment to the dental pulp and bone resorption. Biomed J 2018; 41:184-193. [PMID: 30080658 PMCID: PMC6138822 DOI: 10.1016/j.bj.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/01/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum is a Gram-negative anaerobic bacterium associated with periodontal disease. Some oral bacteria, like Porphyromonas gingivalis, evade the host immune response by inhibiting inflammation. On the other hand, F. nucleatum triggers inflammasome activation and release of danger-associated molecular patterns (DAMPs) in infected gingival epithelial cells. METHODS In this study, we characterized the pro-inflammatory response to F. nucleatum oral infection in BALB/c mice. Western blots and ELISA were used to measure cytokine and DAMP (HMGB1) levels in the oral cavity after infection. Histology and flow cytometry were used to observe recruitment of immune cells to infected tissue and pathology. RESULTS Our results show increased expression and production of pro-inflammatory cytokines during infection. Furthermore, we observe that F. nucleatum infection leads to recruitment of macrophages in different tissues of the oral cavity. Infection also contributes to osteoclast recruitment, which could be involved in the observed bone resorption. CONCLUSIONS Overall, our findings suggest that F. nucleatum infection rapidly induces inflammation, release of DAMPs, and macrophage infiltration in gingival tissues and suggest that osteoclasts may drive bone resorption at early stages of the inflammatory process.
Collapse
Affiliation(s)
- Larry Johnson
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cássio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Figliuolo
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Miranda Rocha
- Molecular and Structural Biology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Weissmüller
- Molecular and Structural Biology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Tavares LJ, Klein MI, Panariello BHD, Dorigatti de Avila E, Pavarina AC. An in vitro model of Fusobacterium nucleatum and Porphyromonas gingivalis in single- and dual-species biofilms. J Periodontal Implant Sci 2018. [PMID: 29535887 PMCID: PMC5841263 DOI: 10.5051/jpis.2018.48.1.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose The goal of this study was to develop and validate a standardized in vitro pathogenic biofilm attached onto saliva-coated surfaces. Methods Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) strains were grown under anaerobic conditions as single species and in dual-species cultures. Initially, the bacterial biomass was evaluated at 24 and 48 hours to determine the optimal timing for the adhesion phase onto saliva-coated polystyrene surfaces. Thereafter, biofilm development was assessed over time by crystal violet staining and scanning electron microscopy. Results The data showed no significant difference in the overall biomass after 48 hours for P. gingivalis in single- and dual-species conditions. After adhesion, P. gingivalis in single- and dual-species biofilms accumulated a substantially higher biomass after 7 days of incubation than after 3 days, but no significant difference was found between 5 and 7 days. Although the biomass of the F. nucleatum biofilm was higher at 3 days, no difference was found at 3, 5, or 7 days of incubation. Conclusions Polystyrene substrates from well plates work as a standard surface and provide reproducible results for in vitro biofilm models. Our biofilm model could serve as a reference point for studies investigating biofilms on different surfaces.
Collapse
Affiliation(s)
- Lívia Jacovassi Tavares
- Department of Dental Materials and Prosthodontics, São Paulo State University - UNESP School of Dentistry at Araraquara, Araraquara, Sao Paulo, Brazil
| | - Marlise Inêz Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University - UNESP School of Dentistry at Araraquara, Araraquara, Sao Paulo, Brazil
| | - Beatriz Helena Dias Panariello
- Department of Dental Materials and Prosthodontics, São Paulo State University - UNESP School of Dentistry at Araraquara, Araraquara, Sao Paulo, Brazil
| | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, São Paulo State University - UNESP School of Dentistry at Araraquara, Araraquara, Sao Paulo, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, São Paulo State University - UNESP School of Dentistry at Araraquara, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
25
|
Baek K, Ji S, Choi Y. Complex Intratissue Microbiota Forms Biofilms in Periodontal Lesions. J Dent Res 2017; 97:192-200. [PMID: 28945499 DOI: 10.1177/0022034517732754] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is caused by dysbiotic subgingival bacterial communities that may lead to increased bacterial invasion into gingival tissues. Although shifts in community structures associated with transition from health to periodontitis have been well characterized, the nature of bacteria present within the gingival tissue of periodontal lesions is not known. To characterize microbiota within tissues of periodontal lesions and compare them with plaque microbiota, gingival tissues and subgingival plaques were obtained from 7 patients with chronic periodontitis. A sequencing analysis of the 16S rRNA gene revealed that species richness and diversity were not significantly different between the 2 groups. However, intersubject variability of intratissue communities was smaller than that of plaque communities. In addition, when compared with the plaque communities, intratissue communities were characterized by decreased abundance of Firmicutes and increased abundance of Fusobacteria and Chloroflexi. In particular, Fusobacterium nucleatum and Porphyromonas gingivalis were highly enriched within the tissue, composing 15% to 40% of the total bacteria. Furthermore, biofilms, as visualized by alcian blue staining and atomic force microscopy, were observed within the tissue where the degradation of connective tissue fibers was prominent. In conclusion, very complex bacterial communities exist in the form of biofilms within the gingival tissue of periodontal lesions, which potentially serve as a reservoir for persistent infection. This novel finding may prompt new research on therapeutic strategies to treat periodontitis.
Collapse
Affiliation(s)
- K Baek
- 1 Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - S Ji
- 2 Department of Periodontology, Anam Hospital, Korea University, Seoul, Korea.,3 Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| | - Y Choi
- 1 Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
26
|
Jung YJ, Jun HK, Choi BK. Porphyromonas gingivalis suppresses invasion of Fusobacterium nucleatum into gingival epithelial cells. J Oral Microbiol 2017; 9:1320193. [PMID: 28748028 PMCID: PMC5508355 DOI: 10.1080/20002297.2017.1320193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/01/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023] Open
Abstract
Invasion of periodontal pathogens into periodontal tissues is an important step that can cause tissue destruction in periodontal diseases. Porphyromonas gingivalis is a keystone pathogen and its gingipains are key virulence factors. Fusobacterium nucleatum is a bridge organism that mediates coadhesion of disease-causing late colonizers such as P. gingivalis and early colonizers during the development of dental biofilms. The aim of this study was to investigate how P. gingivalis, in particular its gingipains, influences the invasion of coinfecting F. nucleatum into gingival epithelial cells. When invasion of F. nucleatum was analyzed after 4 h of infection, invasion of F. nucleatum was suppressed in the presence of P. gingivalis compared with during monoinfection. However, coinfection with a gingipain-null mutant of P. gingivalis did not affect invasion of F. nucleatum. Inhibition of PI3K reduced invasion of F. nucleatum. P. gingivalis inactivated the PI3K/AKT pathway, which was also dependent on gingipains. Survival of intracellular F. nucleatum was promoted by P. gingivalis with Arg gingipain mutation. The results suggest that P. gingivalis, in particular its gingipains, can affect the invasion of coinfecting F. nucleatum through modulating intracellular signaling of the host cells.
Collapse
Affiliation(s)
- Young-Jung Jung
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA
| | - Hye-Kyoung Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA.,Dental Research Institute;Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Cortés-Acha B, Figueiredo R, Seminago R, Roig FJ, Llorens C, Valmaseda-Castellón E. Microbiota Analysis of Biofilms on Experimental Abutments Mimicking Dental Implants: An In Vivo Model. J Periodontol 2017; 88:1090-1104. [PMID: 28492362 DOI: 10.1902/jop.2017.170051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The microbiota colonizing dental implants has been said to be similar to the microbiome surrounding teeth. In the absence of inflammation, a biofilm with pathologic bacteria can cover implant surfaces exposed to the oral cavity, for example, due to a remodeling process. The aim of the present study is to identify microbiota surrounding exposed dental implants in patients with and without a history of periodontitis through a deep-sequencing approach. METHODS An experimental abutment with the same surface and structure as a commercially available dental implant was used. Bacterial DNA was isolated, and the 16S ribosomal RNA gene was amplified and sequenced. Multiplexed tag-encoded sequencing of DNA from the samples was performed, and the reads were processed by metagenomic rapid annotation. RESULTS A wide variety of bacteria, 96 species, were identified. The most frequently found bacteria were Fusobacterium nucleatum and Prevotella denticola. Some species generally associated with periodontitis were found to a greater extent in patients without a history of periodontitis. Some bacteria that have never been described as part of the oral microbiome were identified in the present sample. CONCLUSIONS Analysis of data suggests that the bacteria surrounding exposed dental implants form a diverse microbiome regardless of the periodontal profile of patients. Further research is needed to clarify the role of these microorganisms in the oral environment.
Collapse
Affiliation(s)
- Berta Cortés-Acha
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rui Figueiredo
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Ramón Seminago
- Unit of Genomics, Scientific and Technological Centers, University of Barcelona
| | | | - Carlos Llorens
- Unit of Genomics, Scientific and Technological Centers, University of Barcelona.,Biotechvana, Valencia, Spain
| | - Eduard Valmaseda-Castellón
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute, Barcelona, Spain
| |
Collapse
|
28
|
Hendrickson EL, Beck DAC, Miller DP, Wang Q, Whiteley M, Lamont RJ, Hackett M. Insights into Dynamic Polymicrobial Synergy Revealed by Time-Coursed RNA-Seq. Front Microbiol 2017; 8:261. [PMID: 28293219 PMCID: PMC5329018 DOI: 10.3389/fmicb.2017.00261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/07/2017] [Indexed: 01/31/2023] Open
Abstract
Many bacterial infections involve polymicrobial communities in which constituent organisms are synergistically pathogenic. Periodontitis, a commonly occurring chronic inflammatory disorder, is induced by multispecies bacterial communities. The periodontal keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii exhibit polymicrobial synergy in animal models of disease. Mechanisms of co-adhesion and community formation by P. gingivalis and S. gordonii are well-established; however, little is known regarding the basis for increased pathogenicity. In this study we used time-coursed RNA-Seq to comprehensively and quantitatively examine the dynamic transcriptional landscape of P. gingivalis in a model consortium with S. gordonii. Genes encoding a number of potential virulence determinants had higher relative mRNA levels in the context of dual species model communities than P. gingivalis alone, including adhesins, the Type IX secretion apparatus, and tetratricopeptide repeat (TPR) motif proteins. In contrast, genes encoding conjugation systems and many of the stress responses showed lower levels of expression in P. gingivalis. A notable exception to reduced abundance of stress response transcripts was the genes encoding components of the oxidative stress-related OxyR regulon, indicating an adaptation of P. gingivalis to detoxify peroxide produced by the streptococcus. Collectively, the results are consistent with evolutionary adaptation of P. gingivalis to a polymicrobial oral environment, one outcome of which is increased pathogenic potential.
Collapse
Affiliation(s)
- Erik L Hendrickson
- Center for Microbial Proteomics and Chemical Engineering, University of Washington Seattle, WA, USA
| | - David A C Beck
- Center for Microbial Proteomics and Chemical Engineering, University of WashingtonSeattle, WA, USA; eScience Institute, University of WashingtonSeattle, WA, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin Austin, TX, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Murray Hackett
- Center for Microbial Proteomics and Chemical Engineering, University of Washington Seattle, WA, USA
| |
Collapse
|
29
|
Yilmaz Ö, Lee KL. The inflammasome and danger molecule signaling: at the crossroads of inflammation and pathogen persistence in the oral cavity. Periodontol 2000 2017; 69:83-95. [PMID: 26252403 DOI: 10.1111/prd.12084] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/27/2022]
Abstract
Inflammasomes are an oligomeric assembly of multiprotein complexes that activate the caspase-1-dependent maturation and the subsequent secretion of inflammatory interleukin-1beta and interleukin-18 cytokines in response to a 'danger signal' in vertebrates. The assessment of their significance continues to grow rapidly as the complex biology of various chronic inflammatory conditions is better dissected. Increasing evidence strongly links inflammasomes and host-derived small 'danger molecule ATP' signaling with the modulation of the host immune response by microbial colonizers as well as with potential altering of the microbiome structure and intermicrobial interactions in the host. All of these factors eventually lead to the destructive chronic inflammatory disease state. In the oral cavity, a highly dynamic and multifaceted interplay takes place between the signaling of endogenous danger molecules and colonizing microbes on the mucosal surfaces. This interaction may redirect the local microenvironment to favor the conversion of the resident microbiome toward pathogenicity. This review outlines the major components of the known inflammasome complexes/mechanisms and highlights their regulation, in particular, by oral microorganisms, in relation to periodontal disease pathology. Better characterization of the cellular and molecular biology of the inflammasome will probably identify important potential therapeutic targets for the treatment and prevention of periodontal disease, as well as for other debilitating chronic diseases.
Collapse
|
30
|
Ahn SH, Song JE, Kim S, Cho SH, Lim YK, Kook JK, Kook MS, Lee TH. NOX1/2 activation in human gingival fibroblasts by Fusobacterium nucleatum facilitates attachment of Porphyromonas gingivalis. Arch Microbiol 2016; 198:573-83. [PMID: 27071620 DOI: 10.1007/s00203-016-1223-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
Periodontal diseases are infectious polymicrobial inflammatory diseases that lead to destruction of the periodontal ligament, gingiva, and alveolar bone. Sequential colonization of a broad range of bacteria, including Fusobacterium nucleatum and Porphyromonas gingivalis, is an important phenomenon in this disease model. F. nucleatum is a facultative anaerobic species thought to be a key mediator of dental plaque maturation due to its extensive coaggregation with other oral bacteria, while P. gingivalis is an obligate anaerobic species that induces gingival inflammation by secreting various virulence factors. The formation of a bacterial complex by these two species is central to the pathogenesis of periodontal disease. Reactive oxygen species (ROS) are produced during bacterial infections and are involved in intracellular signaling. However, the impact of oral bacteria-induced ROS on the ecology of F. nucleatum and P. gingivalis has yet to be clarified. In the present study, we investigated ROS production induced in primary human oral cells by F. nucleatum and P. gingivalis and its effect on the formation of their bacterial complexes and further host cell apoptosis. We found that in primary human gingival fibroblasts (GFs), two NADPH oxidase isoforms, NOX1 and NOX2, were activated in response to F. nucleatum infection but not P. gingivalis infection. Accordingly, increased NADPH oxidase activity and production of superoxide anion were observed in GFs after F. nucleatum infection, but not after P. gingivalis infection. Interestingly, in NOX1, NOX2, or NOX1/NOX2 knockdown cells, the number of P. gingivalis decreased when the cells were coinfected with F. nucleatum. A similar pattern of host cell apoptosis was observed. This implies that F. nucleatum contributes to attachment of P. gingivalis by triggering activation of NADPH oxidase in host cells, which may provide an environment more favorable to strict anaerobic bacteria and have a subsequent effect on apoptosis of host cells.
Collapse
Affiliation(s)
- Sun Hee Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Eun Song
- Department of Molecular Medicine (BK21plus), Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Suhee Kim
- Department of Molecular Medicine (BK21plus), Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Hyun Cho
- Department of Molecular Medicine (BK21plus), Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Yun Kyong Lim
- Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Joong-Ki Kook
- Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Min-Suk Kook
- Department of Oral and Maxillofacial Surgery, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea. .,Department of Molecular Medicine (BK21plus), Graduate School, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
31
|
Olsen I, Yilmaz Ö. Modulation of inflammasome activity by Porphyromonas gingivalis in periodontitis and associated systemic diseases. J Oral Microbiol 2016; 8:30385. [PMID: 26850450 PMCID: PMC4744328 DOI: 10.3402/jom.v8.30385] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Inflammasomes are large multiprotein complexes localized in the cytoplasm of the cell. They are responsible for the maturation of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 as well as for the activation of inflammatory cell death, the so-called pyroptosis. Inflammasomes assemble in response to cellular infection, cellular stress, or tissue damage; promote inflammatory responses and are of great importance in regulating the innate immune system in chronic inflammatory diseases such as periodontitis and several chronic systemic diseases. In addition to sensing cellular integrity, inflammasomes are involved in the homeostatic mutualism between the indigenous microbiota and the host. There are several types of inflammasomes of which NLRP3 is best characterized in microbial pathogenesis. Many opportunistic bacteria try to evade the innate immune system in order to survive in the host cells. One of these is the periodontopathogen Porphyromonas gingivalis which has been shown to have several mechanisms of modulating innate immunity by limiting the activation of the NLRP3 inflammasome. Among them, ATP-/P2X7- signaling is recently associated not only with periodontitis but also with development of several systemic diseases. The present paper reviews multiple mechanisms through which P. gingivalis can modify innate immunity by affecting inflammasome activity.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway;
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Liu Z, Lin S, Piantadosi S. Network construction and structure detection with metagenomic count data. BioData Min 2015; 8:40. [PMID: 26692900 PMCID: PMC4676895 DOI: 10.1186/s13040-015-0072-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022] Open
Abstract
Background The human microbiome plays a critical role in human health. Massive amounts of metagenomic data have been generated with advances in next-generation sequencing technologies that characterize microbial communities via direct isolation and sequencing. How to extract, analyze, and transform these vast amounts of data into useful knowledge is a great challenge to bioinformaticians. Microbial biodiversity research has focused primarily on taxa composition and abundance and less on the co-occurrences among different taxa. However, taxa co-occurrences and their relationships to environmental and clinical conditions are important because network structure may help to understand how microbial taxa function together. Results We propose a systematic robust approach for bacteria network construction and structure detection using metagenomic count data. Pairwise similarity/distance measures between taxa are proposed by adapting distance measures for samples in ecology. We also extend the sparse inverse covariance approach to a sparse inverse of a similarity matrix from count data for network construction. Our approach is efficient for large metagenomic count data with thousands of bacterial taxa. We evaluate our method with real and simulated data. Our method identifies true and biologically significant network structures efficiently. Conclusions Network analysis is crucial for detecting subnetwork structures with metagenomic count data. We developed a software tool in MATLAB for network construction and biologically significant module detection. Software MetaNet can be downloaded from http://biostatistics.csmc.edu/MetaNet/.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, 90048 CA USA
| | - Shili Lin
- Department of Statistics, The Ohio State University, Columbus, 43210 OH USA
| | - Steven Piantadosi
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, 90048 CA USA
| |
Collapse
|
33
|
Filifactor alocis infection and inflammatory responses in the mouse subcutaneous chamber model. Infect Immun 2013; 82:1205-12. [PMID: 24379289 DOI: 10.1128/iai.01434-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recent microbiome studies have implicated a role for Filifactor alocis in periodontal disease. In this study, we investigated the colonization and survival properties of F. alocis in a mouse subcutaneous chamber model of infection and characterized host innate immune responses. An infection of 10(9) F. alocis successfully colonized all chambers; however, the infection was cleared after 72 h. F. alocis elicited a local inflammatory response with neutrophils recruited into the chambers at 2 h postinfection along with an increase in levels of the proinflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumor necrosis factor (TNF). F. alocis also induced apoptosis in chamber epithelial cells and neutrophils. Consistent with resolution of infection, neutrophil numbers and cytokine levels returned to baseline by 72 h. Fluorescent in situ hybridization (FISH) and quantitative PCR demonstrated that F. alocis exited the chambers and spread to the spleen, liver, lung, and kidney. Massive neutrophil infiltration was observed in the spleen and lungs, and the recruited neutrophils were in close proximity to the infecting bacteria. Significant epithelial injury was observed in the kidneys. Infection of all tissues was resolved after 7 days. This first in vivo study of the pathogenicity of F. alocis shows that in the chamber model the organism can establish a proinflammatory, proapoptotic local infection which is rapidly resolved by the host concordant with neutrophil influx. Moreover, F. alocis can spread to, and transiently infect, remote tissues where neutrophils can also be recruited.
Collapse
|
34
|
Antiabong JF, Boardman W, Smith I, Brown MH, Ball AS, Goodman AE. A molecular survey of a captive wallaby population for periodontopathogens and the co-incidence of Fusobacterium necrophorum subspecies necrophorum with periodontal diseases. Vet Microbiol 2013; 163:335-43. [DOI: 10.1016/j.vetmic.2013.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
35
|
Ali Mohammed MM, Nerland AH, Al-Haroni M, Bakken V. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K. J Oral Microbiol 2013; 5:20015. [PMID: 23372876 PMCID: PMC3559756 DOI: 10.3402/jom.v5i0.20015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 11/17/2022] Open
Abstract
Background Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM), often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I) and proteinase K. Methods F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Results Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA) was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. Conclusion DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions.
Collapse
|
36
|
Taxman DJ, Swanson KV, Broglie PM, Wen H, Holley-Guthrie E, Huang MTH, Callaway JB, Eitas TK, Duncan JA, Ting JPY. Porphyromonas gingivalis mediates inflammasome repression in polymicrobial cultures through a novel mechanism involving reduced endocytosis. J Biol Chem 2012; 287:32791-9. [PMID: 22843689 DOI: 10.1074/jbc.m112.401737] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis.
Collapse
Affiliation(s)
- Debra J Taxman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Maciel KF, Neves de Brito LC, Tavares WLF, Moreira G, Nicoli JR, Vieira LQ, Ribeiro Sobrinho AP. Cytokine expression in response to root canal infection in gnotobiotic mice. Int Endod J 2012; 45:354-62. [DOI: 10.1111/j.1365-2591.2011.01983.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
The role of aggregation in Fusobacterium nucleatum- induced immune cell death. J Endod 2011; 37:1531-5. [PMID: 22000457 DOI: 10.1016/j.joen.2011.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Fusobacterium nucleatum, an anaerobic oral bacterium, has been shown to be highly abundant in endodontic infections. Its role in these infections remains unclear. Previous studies have shown that F. nucleatum could aggregate immune cells. We have demonstrated that F. nucleatum can induce significant apoptosis in peripheral blood mononuclear cells (PBMCs). In this in vitro study, we sought to determine what role this aggregation phenomenon has on the induction of apoptosis in PBMCs. METHODS F. nucleatum bacteria were treated as follows: formaldehyde-fixed, heat-treated, or sonicated before co-culturing with PBMCs. Cell aggregation and apoptosis of the PBMCs were assessed under light microscopy and analyzed by flow cytometry, respectively. PBMCs were then immobilized with a Matrigel matrix before treatment with F. nucleatum. Aggregation and apoptosis were assessed as before. Surface staining of activation marker CD69 was assessed by flow cytometry. The apoptosis and CD69 data underwent one-way analysis of variance, followed by post hoc Bonferroni test and χ(2) test, respectively, to determine statistical significance. RESULTS Viable and formaldehyde-treated but not sonicated or heat-treated F. nucleatum bacteria were able to cause severe aggregation and apoptosis of the immune cells. Disruption of F. nucleatum mediated aggregation by immobilization of the cells with a Matrigel matrix resulted in a significant diminution of cell death but not cell activation when assessed by using surface expression of CD69 early activation antigen. CONCLUSIONS F. nucleatum's ability to induce cell death in immune cells appears to be mediated through the immune cells being aggregated, which might have important implications for its pathogenesis.
Collapse
|
39
|
|
40
|
Verma RK, Bhattacharyya I, Sevilla A, Lieberman I, Pola S, Nair M, Wallet SM, Aukhil I, Kesavalu L. Virulence of major periodontal pathogens and lack of humoral immune protection in a rat model of periodontal disease. Oral Dis 2010; 16:686-95. [PMID: 20846155 DOI: 10.1111/j.1601-0825.2010.01678.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE This study was designed to test the hypothesis that periodontal pathogens Tannerella forsythia and Porphyromonas gingivalis are synergistic in terms of virulence potential using a model of mixed-microbial infection in rats. MATERIALS AND METHODS Three groups of rats were infected orally with either T. forsythia or P. gingivalis in mono-bacterial infections or as mixed-microbial infections for 12 weeks and a sham-infected group were used as a control. This study examined bacterial infection, inflammation, immunity, and alveolar bone loss changes with disease progression. RESULTS Tannerella forsythia and P. gingivalis genomic DNA was detected in microbial samples from infected rats by PCR indicating their colonization in the rat oral cavity. Primary infection induced significantly high IgG, IgG2b, IgG1, and IgG2a antibody levels indicating activation of mixed Th1 and Th2 immune responses. Rats infected with the mixed-microbial consortium exhibited significantly increased palatal horizontal and interproximal alveolar bone loss. Histological examinations indicated significant hyperplasia of the gingival epithelium with moderate inflammatory infiltration and apical migration of junctional epithelium. The results observed differ compared to uninfected controls. CONCLUSION Our results indicated that T. forsythia and P. gingivalis exhibit virulence, but not virulence synergy, resulting in the immuno-inflammatory responses and lack of humoral immune protection during periodontitis in rats.
Collapse
Affiliation(s)
- R K Verma
- Department of Periodontology, Collegeof Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kebschull M, Demmer RT, Papapanou PN. "Gum bug, leave my heart alone!"--epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J Dent Res 2010; 89:879-902. [PMID: 20639510 DOI: 10.1177/0022034510375281] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence from epidemiologic studies suggests that periodontal infections are independently associated with subclinical and clinical atherosclerotic vascular disease. Although the strength of the reported associations is modest, the consistency of the data across diverse populations and a variety of exposure and outcome variables suggests that the findings are not spurious or attributable only to the effects of confounders. Analysis of limited data from interventional studies suggests that periodontal treatment generally results in favorable effects on subclinical markers of atherosclerosis, although such analysis also indicates considerable heterogeneity in responses. Experimental mechanistic in vitro and in vivo studies have established the plausibility of a link between periodontal infections and atherogenesis, and have identified biological pathways by which these effects may be mediated. However, the utilized models are mostly mono-infections of host cells by a limited number of 'model' periodontal pathogens, and therefore may not adequately portray human periodontitis as a polymicrobial, biofilm-mediated disease. Future research must identify in vivo pathways in humans that may (i) lead to periodontitis-induced atherogenesis, or (ii) result in treatment-induced reduction of atherosclerosis risk. Data from these studies will be essential for determining whether periodontal interventions have a role in the primary or secondary prevention of atherosclerosis.
Collapse
Affiliation(s)
- M Kebschull
- Division of Periodontics, Section of Oral and Diagnostic Sciences, College of Dental Medicine, 630 W 168th Street, PH-7-E-110, New York, NY 10032, USA
| | | | | |
Collapse
|
42
|
Liu PF, Shi W, Zhu W, Smith JW, Hsieh SL, Gallo RL, Huang CM. Vaccination targeting surface FomA of Fusobacterium nucleatum against bacterial co-aggregation: Implication for treatment of periodontal infection and halitosis. Vaccine 2010; 28:3496-505. [PMID: 20189489 DOI: 10.1016/j.vaccine.2010.02.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/26/2009] [Accepted: 02/11/2010] [Indexed: 11/16/2022]
Abstract
The mechanical therapy with multiple doses of antibiotics is one of modalities for treatment of periodontal diseases. However, treatments using multiple doses of antibiotics carry risks of generating resistant strains and misbalancing the resident body flora. We present an approach via immunization targeting an outer membrane protein FomA of Fusobacterium nucleatum (F. nucleatum), a central bridging organism in the architecture of oral biofilms. Neutralization of FomA considerably abrogated the enhancement of bacterial co-aggregation, biofilms and production of volatile sulfur compounds mediated by an inter-species interaction of F. nucleatum with Porphyromonas gingivalis (P. gingivalis). Vaccination targeting FomA also conferred a protective effect against co-infection-induced gum inflammation. Here, we advance a novel infectious mechanism by which F. nucleatum co-opts P. gingivalis to exacerbate gum infections. FomA is highlighted as a potential target for development of new therapeutics against periodontal infection and halitosis in humans.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Medicine, Division of Dermatology, University of California, San Diego, CA 92161, USA
| | | | | | | | | | | | | |
Collapse
|