1
|
Bucchi C, Bucchi A, Martínez-Rodríguez P. Biological properties of stem cells from the apical papilla exposed to lipopolysaccharides: An in vitro study. Arch Oral Biol 2024; 159:105876. [PMID: 38181490 DOI: 10.1016/j.archoralbio.2023.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE The aim of this study was to analyze the effect of lipopolysaccharides (LPS) on the biological properties of stem cells from the apical papilla (SCAPs), such as viability, adhesion to dentin, odontoblast-like differentiation, mineralization, and release of immunomodulatory cytokines. DESIGN SCAPs were isolated from immature teeth of three donors (10 to 15 years old) and cultured in mineralizing media with or without 1 μg/mL lipopolysaccharide (LPS). Cells were seeded and cultured under standardized conditions; viability was assessed by MTT assay on days 1, 3, 5, and 7; adhesion to dentin was analyzed using an environmental scanning electron microscope after 2 days; the expression of odontogenic and mineralization genes (DSPP, DMP-1, OCN, Col1A1) was evaluated through qPCR after 14 days, mineralization was evaluated with alizarin red staining after 21 days; and the release of immunomodulatory cytokines (IL-6 and IL-10) was measured by ELISA after 1 and 7 days. The Kruskal-Wallis test was performed to detect the effect of LPS on SCAPs, followed by the Dunn-Sidak test. RESULTS LPS presence in the culture media affected SCAPs viability on day 5 and increased IL-6 secretion by day 7, however, SCAPs retained the adhesion to dentin and mineralization capacities, as well as the differentiation capacity into a mineralizing phenotype. CONCLUSION In conclusion, within the limitations of this in vitro study, and under the inflammatory microenvironment simulated in this study, stem cells from the apical papilla were found with retained adhesion capacity to dentin, differentiation into a mineralizing phenotype, mineralization, and release of IL-10.
Collapse
Affiliation(s)
- Cristina Bucchi
- Integral Adult Dentistry Department, Universidad de La Frontera, Temuco, Chile; Oral Biology Center, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile.
| | - Ana Bucchi
- Integral Adult Dentistry Department, Universidad de La Frontera, Temuco, Chile
| | | |
Collapse
|
2
|
Teawcharoensopa C, Srisuwan T. The potential use of ascorbic acid to recover the cellular senescence of lipopolysaccharide-induced human apical papilla cells: an in vitro study. Clin Oral Investig 2023; 28:49. [PMID: 38153550 DOI: 10.1007/s00784-023-05455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES To examine the effect of lipopolysaccharide (LPS) on cellular senescence induction of human apical papilla cells (hAPCs) and evaluate the potential use of 50 μg/ml ascorbic acid to recover cellular senescence and regenerative functions. MATERIALS AND METHODS hAPCs were treated with LPS at 1 and 10 μg/ml either with or without 50 μg/ml ascorbic acid for 48 h. The cellular senescence biomarkers were analyzed by senescence-associated β-galactosidase (SA-β-gal) staining and senescence-related gene expression, p16 and p21. Cell migration, at 12 h and 24 h, was evaluated using a scratch wound assay. Mineralization potential was assessed at 21 days using Alizarin red S staining and dentine sialophosphoprotein (DSPP) and bone sialoprotein (BSP) gene expression. RESULTS 1 μg/ml and 10 μg/ml LPS stimulation for 48 h induced cellular senescence, as shown by remarkable SA-β-gal staining and p16 and p21 gene expression. The percentage of wound closure and mineralized formation was reduced. The co-incubation with ascorbic acid significantly down-regulated the level of SA-β-gal staining. The reduction of senescence-associated gene expressions was observed. Ascorbic acid improved cell migration, mineralized nodule formation, and the expression of DSPP and BSP genes in LPS-treated hAPCs. CONCLUSIONS LPS significantly promoted cellular senescence on hAPCs and diminished the cell function capacity. Co-presence of ascorbic acid could impede cellular senescence and possibly improve the regenerative capacity of LPS-induced senescent hAPCs in vitro. CLINICAL RELEVANCE The data support the in vitro potential benefit of ascorbic acid on cellular senescence recovery of apical papilla cells.
Collapse
Affiliation(s)
- Chananporn Teawcharoensopa
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand
- Sikhoraphum Hospital Dental Department, Surin, TH, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand.
| |
Collapse
|
3
|
Santos LM, Cardoso PES, Diniz EA, Rahhal JG, Sipert CR. Different concentrations of fetal bovine serum affect cytokine modulation in Lipopolysaccharide-activated apical papilla cells in vitro. J Appl Oral Sci 2023; 31:e20230020. [PMID: 37493700 PMCID: PMC10382075 DOI: 10.1590/1678-7757-2023-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Fetal bovine serum (FBS) is the most used supplement in culture media; however, it may interfere with in vitro assays via effects on cell proliferation and cytokine production. The ideal FBS concentration for assays using apical papilla cells (APCs) remains unknown. Therefore, this study aimed to evaluate the effects of FBS on APC activation, cell viability/proliferation, and cytokine production. METHODOLOGY Human APCs were cultured, plated, and maintained in media containing increasing concentrations of FBS for 24 h, 48 h, 72 h, 7 days, and 14 days in the presence of Lipopolysaccharide (LPS - 1 µg/mL). At each time point, the cells were subjected to the MTT assay. The cytokines transforming growth factor (TGF)-β1, osteoprotegerin (OPG), and interleukin (IL)-6, along with the chemokine CCL2, were quantified using the enzyme-linked immunosorbent assay at the 24-h time-point. Statistical analysis was performed using two-way analysis of variance (ANOVA) followed by Tukey's post-hoc test (p<0.05). RESULTS In general, APCs exhibited increasing metabolic activity in an FBS concentration-dependent fashion, regardless of the presence of LPS. In contrast, FBS interfered with the production of all the cytokines evaluated in this study, affecting the response induced by the presence of LPS. CONCLUSION FBS increased APC metabolism in a concentration-dependent manner and differentially affected the production of TGF-β1, OPG, IL-6, and CCL2 by APCs in vitro.
Collapse
Affiliation(s)
- Letícia Martins Santos
- Universidade de São Paulo, Departamento de Dentística, Faculdade de Odontologia, São Paulo, SP, Brasil
| | - Patricia E Silva Cardoso
- Universidade de São Paulo, Departamento de Dentística, Faculdade de Odontologia, São Paulo, SP, Brasil
| | - Elisa Abreu Diniz
- Universidade de São Paulo, Departamento de Dentística, Faculdade de Odontologia, São Paulo, SP, Brasil
| | - Juliana Garuba Rahhal
- Universidade de São Paulo, Departamento de Dentística, Faculdade de Odontologia, São Paulo, SP, Brasil
| | - Carla Renata Sipert
- Universidade de São Paulo, Departamento de Dentística, Faculdade de Odontologia, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Li FC, Kishen A. 3D Organoids for Regenerative Endodontics. Biomolecules 2023; 13:900. [PMID: 37371480 DOI: 10.3390/biom13060900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Apical periodontitis is the inflammation and destruction of periradicular tissues, mediated by microbial factors originating from the infected pulp space. This bacteria-mediated inflammatory disease is known to interfere with root development in immature permanent teeth. Current research on interventions in immature teeth has been dedicated to facilitating the continuation of root development as well as regenerating the dentin-pulp complex, but the fundamental knowledge on the cellular interactions and the role of periapical mediators in apical periodontitis in immature roots that govern the disease process and post-treatment healing is limited. The limitations in 2D monolayer cell culture have a substantial role in the existing limitations of understanding cell-to-cell interactions in the pulpal and periapical tissues. Three-dimensional (3D) tissue constructs with two or more different cell populations are a better physiological representation of in vivo environment. These systems allow the high-throughput testing of multi-cell interactions and can be applied to study the interactions between stem cells and immune cells, including the role of mediators/cytokines in simulated environments. Well-designed 3D models are critical for understanding cellular functions and interactions in disease and healing processes for future therapeutic optimization in regenerative endodontics. This narrative review covers the fundamentals of (1) the disease process of apical periodontitis; (2) the influence and challenges of regeneration in immature roots; (3) the introduction of and crosstalk between mesenchymal stem cells and macrophages; (4) 3D cell culture techniques and their applications for studying cellular interactions in the pulpal and periapical tissues; (5) current investigations on cellular interactions in regenerative endodontics; and, lastly, (6) the dental-pulp organoid developed for regenerative endodontics.
Collapse
Affiliation(s)
- Fang-Chi Li
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
5
|
Jia P, Zhang W, Shi Y. NFIC attenuates rheumatoid arthritis-induced inflammatory response in mice by regulating PTEN/SENP8 transcription. Tissue Cell 2023; 81:102013. [PMID: 36669387 DOI: 10.1016/j.tice.2023.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To explore whether nuclear factor I C (NFIC) alleviated inflammatory response of synovial fibroblasts (SFs) caused by rheumatoid arthritis (RA) by regulating transcription levels of phosphatase and tension homolog deleted on chromosome 10 (PTEN) and sentrin-specific protease 8 (SENP8). METHODS NFIC, PTEN, and SENP8 levels in RASFs and normal SFs (NSFs) were measured by qRT-PCR and western blotting. The levels of Bax, Bcl-2, MMP-3, and MMP-13, as well as the content of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined in RASFs and NSFs using western blotting and ELISA. The binding of NFIC to promoter sequences of PTEN and SENP8 was predicted and verified. A mouse model of collagen-induced arthritis (CIA) was established and evaluated according to the degree of joint swelling and arthritis index. RESULTS NFIC, PTEN, and SENP8 were downregulated in RASFs. RASFs had increased viability and MDA levels as well as decreased cell apoptosis and SOD content. NFIC was demonstrated to modulate the transcription of PTEN and SENP8 as their transcription factor. NFIC ameliorated the inflammatory response induced by RA in vivo by promoting the transcription of PTEN and SENP8. CONCLUSION NFIC acted as a transcription factor to facilitate the transcription of PTEN and SENP8, thereby inducing apoptosis of RASFs and effectively attenuating inflammatory response in CIA mice.
Collapse
Affiliation(s)
- Pengfei Jia
- Department of Spinal Surgery, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, PR China
| | - Wen Zhang
- Department of Spinal Surgery, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, PR China
| | - Yongyan Shi
- Department of Spinal Surgery, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, PR China.
| |
Collapse
|
6
|
Meneses CCB, Diogenes A, Sipert CR. Endocannabinoids modulate production of osteoclastogenic factors by stem cells of the apical papilla in vitro. J Endod 2022; 48:1511-1516. [PMID: 36174776 DOI: 10.1016/j.joen.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Many mediators are produced during pulp inflammation and necrosis, including endocannabinoids (ECbs), which might affect the function of stem cells of the apical papilla (SCAP), cells of paramount importance for root formation and regenerative endodontic treatment (RET). The aim of this study was to evaluate the production of osteoclastogenesis-related mediators by SCAP, modulated by ECbs and lipopolysaccharide (LPS) in vitro. METHODS SCAP were cultured and treated with ECbs anandamide (AEA), 2-A arachidonoylglycerol or N-arachidonoylaminophenol (AM404). All groups were incubated in the presence of vehicle or LPS and the antagonist of transient receptor potential cation channel subfamily V member 1 (TRPV-1), capsazepine (CPZ). After 24 h, the culture medium supernatants were collected for further quantification of tumor necrosis factor (TNF)-α, CCL2, macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-Β ligand (RANKL). RESULTS Small amounts of TNF-α and RANKL were detected in SCAP supernatants, and none of the experimental conditions altered their production. A downregulation in constitutive CCL2 production was observed in the AEA group compared to that in the LPS group. The production of M-CSF was significantly increased in all groups treated with AEA compared to the control and LPS-treated groups. OPG was significantly increased by AEA alone and by 2AG and AM404 in presence of LPS and CPZ. CONCLUSIONS AEA modulate some of the osteoclastogenic factors produced by SCAP in a bone resorption-protective fashion.
Collapse
Affiliation(s)
- C C B Meneses
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - A Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - C R Sipert
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
An S, Chen Y, Yang T, Huang Y, Liu Y. A role for the calcium-sensing receptor in the expression of inflammatory mediators in LPS-treated human dental pulp cells. Mol Cell Biochem 2022; 477:2871-2881. [PMID: 35699827 DOI: 10.1007/s11010-022-04486-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
The aim of this study is to investigate the role of calcium-sensing receptor (CaSR) in the expression of inflammatory mediators of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). The expression profile of CaSR in LPS-simulated hDPCs was detected using immunofluorescence, real time quantitative PCR (RT-qPCR), and Western blot analyses. Then, its regulatory effects on the expression of specific inflammatory mediators such as interleukin (IL)-1β, IL-6, cyclooxygenase 2 (COX2)-derived prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and IL-10 were determined by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). LPS significantly downregulated the gene expression of CaSR, but upregulated its protein expression level in hDPCs. Treatments by CaSR agonist R568 or its antagonist Calhex231, and their combinations with protein kinase B (AKT) inhibitor LY294002 showed obvious effects on the expression of selected inflammatory mediators in a time-dependent manner. Meanwhile, an opposite direction was found between the action of R568 and Calhex231, as well as the expression of the pro- (IL-1β, IL-6, COX2-derived PGE2, and TNF-α) and anti-inflammatory (IL-10) mediators. The results provide the first evidence that CaSR-phosphatidylinositol-3 kinase (PI3K)-AKT-signaling pathway is involved in the release of inflammatory mediators in LPS-treated hDPCs, suggesting that the activation or blockade of CaSR may provide a novel therapeutic strategy for the treatment of pulp inflammatory diseases.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yanhuo Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ting Yang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiwei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Li FC, Hussein H, Magalhaes M, Selvaganapathy PR, Kishen A. Deciphering Stem Cell from Apical Papilla - Macrophage Choreography using a Novel 3D Organoid System. J Endod 2022; 48:1063-1072.e7. [PMID: 35513088 DOI: 10.1016/j.joen.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Immune cell - mesenchymal stem cell crosstalk modulates the process of repair and regeneration. In this study, a novel heterogenous cell containing matrix based three-dimensional (3D) tissue-construct was employed to study the interactions between stem cells from apical papilla (SCAP) and macrophage for a comprehensive understanding on the cellular signalling mechanisms guiding inflammation and repair. METHODS SCAP and macrophages were seeded with collagen in 3D printed molds to generate self-assembled tissue-constructs, which were exposed to three conditions: no stimulation, lipopolysaccharide (LPS), and interleukin-4 (IL-4) from 0 to 14 days. Specimens from each group were evaluated for cellular interactions, inflammatory mediators (IL-1β, TNF-α, MDC, MIP-1β, MCP-1, IL-6, IL-8, TGF-β1, IL-1RA, IL-10), expression of surface markers (CD80, 206), transcription factors (pSTAT1, pSTAT6) and SCAP differentiation markers (DSPP, DMP-1, and alizarin red) using confocal laser scanning microscopy and multiplex cytokine profiling from 2 to 14 days. RESULTS SCAP and macrophages displayed a cytokine-mediated interaction and differentiation characteristics. The increased pro-inflammatory cytokines/chemokines: IL-1β, TNF-α, MDC and MIP-1β in the earlier phase followed by the higher ratio of pSTAT6/pSTAT1 and decreased CD206 (p<0.05), indicated a distinct polarization behavior in macrophages during repair in LPS group. Conversely, the equal ratio of pSTAT6/pSTAT1, late increase in CD206 and amplified secretion of IL-1RA, IL-10 and TGF-β1 (p<0.05) in the anti-inflammatory environment, directed alternative macrophage polarization, promoting SCAP differentiation and tissue modeling in IL-4 group. CONCLUSIONS The novel 3D organoid system developed in this study allowed a comprehensive analysis of the SCAP-macrophage interactions during inflammation and healing, providing a deeper insight on the periapical dynamics of immature tooth.
Collapse
Affiliation(s)
- Fang-Chi Li
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Hebatullah Hussein
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Faculty of Dentistry, Ain Shams University, Endodontics Department, Cairo, Egypt
| | - Marco Magalhaes
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - P Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Comparative effects of concentrated growth factors on the biological characteristics of periodontal ligament cells and stem cells from apical papilla. J Endod 2022; 48:1029-1037. [DOI: 10.1016/j.joen.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/30/2022] [Accepted: 05/01/2022] [Indexed: 12/14/2022]
|
10
|
Yang S, Liu Q, Chen S, Zhang F, Li Y, Fan W, Mai L, He H, Huang F. Extracellular vesicles delivering nuclear factor I/C for hard tissue engineering: Treatment of apical periodontitis and dentin regeneration. J Tissue Eng 2022; 13:20417314221084095. [PMID: 35321254 PMCID: PMC8935403 DOI: 10.1177/20417314221084095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/13/2022] [Indexed: 12/19/2022] Open
Abstract
Apical periodontitis (AP) causes arrest of tooth root development, which is associated with impaired odontoblastic differentiation of stem cells from apical papilla (SCAPs), but the underlying mechanism remains unclear. Here, we investigated roles of extracellular vesicle (EV) in AP and odontoblastic differentiation of SCAPs, moreover, a novel nuclear factor I/C (NFIC)-encapsulated EV was developed to promote dentin regeneration. We detected a higher expression of EV marker CD63 in inflamed apical papilla, and found that EVs from LPS-stimulated dental pulp cells suppressed odontoblastic differentiation of SCAPs through downregulating NFIC. Furthermore, we successfully constructed the NFIC-encapsulated EV by overexpressing NFIC in HEK293FT cells, which could upregulate cellular NFIC level in SCAPs, promoting the proliferation and migration of SCAPs, as well as dentinogenesis both in vitro and in vivo. Collectively, based on pathological roles of EV in AP, our study provides a novel strategy for dentin regeneration by exploiting EV to deliver NFIC.
Collapse
Affiliation(s)
- Shengyan Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shijing Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fuping Zhang
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaoyin Li
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Chen Z, Li L, Li Z, Wang X, Han M, Gao Z, Wang M, Hu G, Xie X, Du H, Xie Z, Zhang H. Identification of key serum biomarkers for the diagnosis and metastatic prediction of osteosarcoma by analysis of immune cell infiltration. Cancer Cell Int 2022; 22:78. [PMID: 35151325 PMCID: PMC8841093 DOI: 10.1186/s12935-022-02500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/30/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The role of circular RNAs (circRNAs) and microRNAs (miRNAs) in osteosarcoma (OS) development has not been fully elucidated. Further, the contribution of the immune response to OS progression is not well defined. However, it is known that circRNAs and miRNAs can serve as biomarkers for the diagnosis, prognosis, and therapy of many cancers. Thus, the aim of this study was to identify novel key serum biomarkers for the diagnosis and metastatic prediction of OS by analysis of immune cell infiltration and associated RNA molecules.
Methods
Human OS differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified by analysis of microarray data downloaded from Gene Expression Omnibus (GEO) datasets. Further, characteristic patterns of OS-infiltrating immune cells were analyzed. On this basis, we identified statistically significant transcription factors. Moreover we performed pathway enrichment analysis, constructed protein–protein interaction networks, and devised competitive endogenous RNA (ceRNA) networks. Biological targets of the ceRNA networks were evaluated and potential OS biomarkers confirmed by RT-qPCR analysis of the patients’ serum.
Results
Seven differentially expressed circRNAs, 166 differentially expressed miRNAs, and 175 differentially expressed mRNAs were identified. An evaluation of cellular OS infiltration identified the highest level of infiltration by M0 macrophages, M2 macrophages, and CD8+ T cells, with M0 macrophages and CD8+ T cells as the most prominent. Significant patterns of tumor-infiltrating immune cells were identified by principal component analysis. Moreover, 185 statistically significant transcription factors were associated with OS. Further, in association with immune cell infiltration, hsa-circ-0010220, hsa-miR-326, hsa-miR-338-3p, and FAM98A were identified as potential novel biomarkers for OS diagnosis. Of these, FAM98A had the most promise as a diagnostic marker for OS and OS metastasis. Most importantly, a novel diagnostic model consisting of these four biomarkers (hsa-circ-0010220, hsa-miR-326, hsa-miR-338-3p, and FAM98A) was established with a 0.928 AUC value.
Conclusions
In summary, potential serum biomarkers for OS diagnosis and metastatic prediction were identified based on an analysis of immune cell infiltration. A novel diagnostic model consisting of these four promising serum biomarkers was established. Taken together, the results of this study provide a new perspective by which to understand immunotherapy of OS.
Collapse
|
12
|
Andrukhov O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. FRONTIERS IN ORAL HEALTH 2022; 2:648901. [PMID: 35048000 PMCID: PMC8757738 DOI: 10.3389/froh.2021.648901] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application in and beyond dentistry. These cells possess multilineage differentiation potential and immunomodulatory properties. Due to their localization in the oral cavity, these cells could sometimes be exposed to different bacteria and viruses. Dental MSCs express various Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms. The engagement of TLRs in dental MSCs by various ligands might change their properties and function. The differentiation capacity of dental MSCs might be either inhibited or enhanced by TLRs ligands depending on their nature and concentrations. Activation of TLR signaling in dental MSCs induces the production of proinflammatory mediators. Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs physiology is essential to assess their role in oral homeostasis, inflammatory diseases, and tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
CircNFIC Balances Inflammation and Apoptosis by Sponging miR-30e-3p and Regulating DENND1B Expression. Genes (Basel) 2021; 12:genes12111829. [PMID: 34828435 PMCID: PMC8622209 DOI: 10.3390/genes12111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Disordered inflammation and apoptosis are closely related to diseases, and inflammation can also promote cell apoptosis, where growing evidence has shown that circular RNAs (circRNAs) play important roles. Lipopolysaccharide (LPS) is the main component of the cytoderm of gram-negative bacterium, which can cause inflammatory responses in macrophages. We constructed an inflammatory model by exposing chicken macrophage cell lines (also known as HD11) to LPS for in vitro experiments. In this study, we validated a novel circRNA-circNFIC-which was dramatically up-regulated in tissues infected by coccidia and cells exposed to LPS. Besides, circNFIC could significantly promote the expression levels of pro-inflammation factors, including (IL-1β, TNFα, and IFNγ) and pro-apoptosis maker genes (caspase 3 and caspase 8) in HD11 exposed to LPS or not. In terms of mechanism, circNFIC exerted notable effects on DENND1B to regulate cell inflammation and apoptosis by sponging miR-30e-3p. The molecular functions played by miR-30e-3p and DENND1B have been explored, respectively. In addition, the effects of circNFIC knockdown suppressing the expression of pro-inflammatory and pro-apoptosis functions could be reversed by a miR-30e-3p inhibitor. On the whole, circNFIC promoted cell inflammation and apoptosis via the miR-30e-3p/DENND1B axis.
Collapse
|
14
|
Shi Y, Yu Y, Zhou Y, Zhao J, Zhang W, Zou D, Song W, Wang S. A single-cell interactome of human tooth germ from growing third molar elucidates signaling networks regulating dental development. Cell Biosci 2021; 11:178. [PMID: 34600587 PMCID: PMC8487529 DOI: 10.1186/s13578-021-00691-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023] Open
Abstract
Background Development of dental tissue is regulated by extensive cell crosstalk based on various signaling molecules, such as bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) pathways. However, an intact network of the intercellular regulation is still lacking. Result To gain an unbiased and comprehensive view of this dental cell interactome, we applied single-cell RNA-seq on immature human tooth germ of the growing third molar, discovered refined cell subtypes, and applied multiple network analysis to identify the central signaling pathways. We found that immune cells made up over 80% of all tooth germ cells, which exhibited profound regulation on dental cells via Transforming growth factor-β, Tumor necrosis factor (TNF) and Interleukin-1. During osteoblast differentiation, expression of genes related to extracellular matrix and mineralization was continuously elevated by signals from BMP and FGF family. As for the self-renewal of apical papilla stem cell, BMP-FGFR1-MSX1 pathway directly regulated the G0-to-S cell cycle transition. We also confirmed that Colony Stimulating Factor 1 secreted from pericyte and TNF Superfamily Member 11 secreted from osteoblast regulated a large proportion of genes related to osteoclast transformation from macrophage and monocyte. Conclusions We constructed the intercellular signaling networks that regulated the essential developmental process of human tooth, which served as a foundation for future dental regeneration engineering and the understanding of oral pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00691-5.
Collapse
Affiliation(s)
- Yueqi Shi
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yejia Yu
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiong Zhou
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhao
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Zhang L, Zhang L, Li S, Zhang Q, Luo Y, Zhang C, Huan Q, Zhang C. Overexpression of mm9_circ_013935 alleviates renal inflammation and fibrosis in diabetic nephropathy via the miR-153-3p/NFIC axis. Can J Physiol Pharmacol 2021; 99:1199-1206. [PMID: 34197715 DOI: 10.1139/cjpp-2021-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Circ-RBM4 (mm9_circ_013935) has been revealed to be low-expressed in the renal tissues of diabetic nephropathy (DN) mice while its underlying regulatory mechanism remains unexplored. METHODS The high glucose (HG)-treated mouse podocytes were used to establish the DN cell models. A CCK-8 assay was used to examine the viability of mouse podocytes. The expression of proteins related to fibrosis (Collagen I, Collagen III, fibronectin) was detected using western blot. The concentration of inflammation cytokines (TNF-α, IL-1β, IL-8) in mouse podocytes was assessed by ELISA. The interaction between genes was explored by luciferase reporter assays. RESULTS HG treatement decreased the viability and elevated the expression of fibrosis and inflammation factors in mouse podocytes. Circ-RBM4 expression was downregulated in HG-treated mouse podocytes. Circ-RBM4 overexpression reversed HG-induced increase in levels of proteins related to fibrosis and the concentration of inflammation factors. MiR-153-3p was revealed to bind with circ-RBM4 and directly targeted nuclear factor I/C (NFIC) in mouse podocytes. Rescue assays indicated that circ-RBM4 attenuated HG-induced fibrosis and inflammation response in mouse podocytes by inhibiting miR-153-3p expression or upregulating NFIC expression. CONCLUSION Circ-RBM4 alleviated the renal inflamation and renal fibrosis in DN by targeting the miR-153-3p/NFIC axis.
Collapse
Affiliation(s)
- Li Zhang
- Shandong Provincial Third Hospital,Cheeloo College of Medicine, Shandong University,, Jinan, China;
| | - Lei Zhang
- Shandong Provincial Third Hospital,Cheeloo College of Medicine, Shandong University,, Jinan, China;
| | - Shancheng Li
- The Third Affiliated hospital of Shandong First Medical University, Jinan, China;
| | - Qin Zhang
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan , China;
| | - Yonggang Luo
- Office of big data, College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai, China;
| | - Chunhong Zhang
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan , China;
| | - Qin Huan
- Shandong Provincial Third Hospital,Cheeloo College of Medicine, Shandong University,, Jinan, China;
| | - Chunling Zhang
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan , China;
| |
Collapse
|
16
|
Knockdown of TRIM52 alleviates LPS-induced inflammatory injury in human periodontal ligament cells through the TLR4/NF-κB pathway. Biosci Rep 2021; 40:225951. [PMID: 32735017 PMCID: PMC7418211 DOI: 10.1042/bsr20201223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Tripartite motif-containing (TRIM) 52 (TRIM52) is a vital regulator of inflammation. However, the function and mechanisms of TRIM52 in lipopolysaccharide (LPS)-induced inflammatory injury of human periodontal ligament cells (HPDLCs) in periodontitis remain undefined. In the present research, gene expression was determined using a quantitative polymerase chain reaction and Western blot. The effect of TRIM52 on LPS-induced inflammatory injury was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and enyzme-linked immunosorbent assay (ELISA). We found that TRIM52 expression was up-regulated in LPS-treated HPDLCs. Knockdown of TRIM52 alleviated LPS-induced proliferative inhibition and apoptosis promotion in HPDLCs, as evidenced by a decrease in cleaved caspase-3 expression and caspase-3 activity. Silencing TRIM52 suppressed LPS-induced inflammatory response of HPDLCs, as indicated by the decrease in interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α) levels, and increase in IL-10 levels. TRIM52 knockdown inhibited LPS-induced activation of TLR4/nuclear factor-κ B (NF-κB) signaling pathway. Taken together, knockdown of TRIM52 mitigated LPS-induced inflammatory injury via the TLR4/NF-κB signaling pathway, providing an effective therapeutic target for periodontitis.
Collapse
|
17
|
Shen Z, Tsao H, LaRue S, Liu R, Kirkpatrick TC, Souza LCD, Letra A, Silva RM. Vascular Endothelial Growth Factor and/or Nerve Growth Factor Treatment Induces Expression of Dentinogenic, Neuronal, and Healing Markers in Stem Cells of the Apical Papilla. J Endod 2021; 47:924-931. [PMID: 33652017 DOI: 10.1016/j.joen.2021.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The goal of regenerative endodontic procedures is to preserve and stimulate stem cells from the apical papilla (SCAPs) to develop the pulp-dentin complex using various growth factors and scaffolds. We hypothesized that the treatment of SCAPs with vascular endothelial growth factor (VEGF) or nerve growth factor (NGF) may impact the expression of osteogenic and dentinogenic markers. METHODS The optimum concentration of VEGF and NGF on SCAP viability was assessed and introduced to SCAPs for 6-24 hours. SCAPs were also challenged with Escherichia coli lipopolysaccharide (LPS). Messenger RNA (mRNA) expression of DSPP, DMP1, TGFB1, OCN, SP7, and TWIST1 was examined via quantitative reverse transcription polymerase chain reaction. Immunohistochemistry was used to verify protein expression. In addition, total RNA from NGF-treated SCAPs in the presence or absence of LPS was extracted for RNA sequencing. RESULTS Compared with untreated cells, NGF-treated SCAPs showed markedly higher levels of DSPP, DMP1, and TGFB1 mRNAs (>9-fold change, P < .05), and SCAPs treated with both VEGF and NGF showed a significant increase of DSPP and TGFB1 mRNAs (P < .05). In addition, in LPS-challenged SCAPs, treatment with these growth factors also exhibited increased expression of DSPP, DMP1, and TGFB1 mRNAs, with the most significant change induced by VEGF (P < .05). Immunohistochemistry confirmed increased dentin sialophosphoprotein, dentin matrix acidic phosphoprotein 1, and transforming growth factor beta 1 protein expression in treated SCAPs. RNA sequencing revealed multiple pathways regulated by NGF, including TGF-β and neurogenic pathways. CONCLUSIONS VEGF- and NGF-induced dentinogenic/neuronal/healing marker expression in SCAPs indicates the potential value of applying these growth factors in regenerative endodontic procedures.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Helen Tsao
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Sean LaRue
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Richard Liu
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Timothy C Kirkpatrick
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Letícia Chaves de Souza
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Renato M Silva
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas.
| |
Collapse
|
18
|
Jariyamana N, Chuveera P, Dewi A, Leelapornpisid W, Ittichaicharoen J, Chattipakorn S, Srisuwan T. Effects of N-acetyl cysteine on mitochondrial ROS, mitochondrial dynamics, and inflammation on lipopolysaccharide-treated human apical papilla cells. Clin Oral Investig 2021; 25:3919-3928. [PMID: 33404763 DOI: 10.1007/s00784-020-03721-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES N-Acetyl cysteine (NAC), a well-known antioxidant molecule, has been used to modulate oxidative stress and inflammation. However, no studies have examined the effect of NAC in regenerative endodontic procedures (REPs). Therefore, the aim of this study was to investigate the effects of NAC on cell survival, mitochondrial reactive oxygen species (mtROS) production, and inflammatory and mitochondria-related gene expression on lipopolysaccharide (LPS)-treated apical papilla cells (APCs). MATERIALS AND METHODS To assess the NAC concentration, 5 and 10 mM NAC were administered to LPS-treated APCs. Cell proliferation was measured at 24, 48, and 72 h by using AlamarBlue® assay. The 5-mM concentration was further analyzed using different treatment durations: 10 min, 24 h, and the entire study period. The mtROS production was quantified using MitoSOX™ Red and MitoTracker™ Green. RT-PCR was used to detect the expression of IL-6 and TNF-α inflammatory genes and mitochondrial morphology-related genes (Mfn-2/Drp-1 and Bcl-2/Bax) at 6 and 24 h. The statistical significance level was set at 0.05. RESULTS Five-millimolar NAC promoted the highest LPS-treated APC proliferation. The use of 24-h NAC stimulated cell proliferation, whereas the entire-period NAC application (> 48 h) significantly reduced the cell number. The mtROS levels were slightly altered after NAC induction. Ten-minute NAC treatment downregulated the IL-6 and TNF-α expression, whereas the expression of Bcl-2/Bax and Mfn-2/Drp-1 ratios was upregulated at 6 h. CONCLUSIONS Under the LPS-induced inflammatory condition, NAC stimulated APC survival and decreased inflammation. Ten-minute NAC treatment was sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. CLINICAL RELEVANCE Ten-minute NAC application is sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. Therefore, NAC may be considered as a potential adjunctive irrigation solution in REPs.
Collapse
Affiliation(s)
- Nutcha Jariyamana
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchanee Chuveera
- Department of Family and Community Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anat Dewi
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Warat Leelapornpisid
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jitjiroj Ittichaicharoen
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
19
|
Aguilar P, Mahanonda R, Sa-Ard-Iam N, Lertchirakarn V. Effects of lipopolysaccharide on proliferation, migration and osteogenic differentiation of apical papilla cells from early and late stage of root development. AUST ENDOD J 2020; 47:281-289. [PMID: 33296134 DOI: 10.1111/aej.12475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the effects of lipopolysaccharide on cell proliferation, migration and osteogenic differentiation of apical papilla cells from early and late stage of root development. After challenging with various lipopolysaccharide concentrations to apical papilla cells from both stages of root development for 168 h, cell proliferation and migration were investigated. Osteogenic differentiation was examined by Alizarin red staining, and gene expressions of bone/cementum or dentin-related genes were examined by polymerase chain reaction. Lipopolysaccharide did not affect cell proliferation and migration in both groups. Lipopolysaccharide at 1 and 5 µg mL-1 increased Alizarin red staining in apical papilla cells from early-stage but not the late-stage cells. Bone sialoprotein (bone/cementum marker) gene expression increased in both early and late stage of root development at 5 µg mL-1 . These results might explain bone/cementum generation in regenerative endodontic procedures.
Collapse
Affiliation(s)
- Panuroot Aguilar
- Oral Biology Program, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Rangsini Mahanonda
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Veera Lertchirakarn
- Faculty of Dentistry, Department of Microbiology and, RU on Oral Microbiology and Immunology, Chulalongkorn University, Patumwan, Bangkok, Thailand
| |
Collapse
|
20
|
Geng F, Liu Z, Chen X, Chen H, Liu Y, Yang J, Zheng M, Yang L, Teng Y. High mobility group nucleosomal binding 2 reduces integrin α5/β1-mediated adhesion of Klebsiella pneumoniae on human pulmonary epithelial cells via nuclear factor I. Microbiol Immunol 2020; 64:825-834. [PMID: 33034909 DOI: 10.1111/1348-0421.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
It has been reported that high mobility group nucleosomal binding domain 2 (HMGN2) is a nucleus-related protein that regulates gene transcription and plays a critical role in bacterial clearance. An elevated level of HMGN2 reduced integrin α5/β1 expression of human pulmonary epithelial A549 cells was demonstrated during Klebsiella pneumoniae infection, thus weakening bacterial adhesion and invasion. However, the mechanism by which HMGN2 regulates integrin expression remains unclear. This study found that a transcription factor-nuclear factor I (NFI), which serves as the potential target of HMGN2 regulated integrin expression. The results showed that HMGN2 was able to promote NFIA and NFIB expression by increasing H3K27 acetylation of NFIA/B promoter regions. The integrin α5/β1 expression was significantly enhanced by knockdown of NFIA/B via a siRNA approach. Meanwhile, NFIA/B silence could also compromise the inhibition effect of HMGN2 on the integrin α5/β1 expression. Mechanistically, it was demonstrated that HMGN2 facilitated the recruitment of NFI on the promoter regions of integrin α5/β1 according to the chromatin immunoprecipitation assay. In addition, it was further demonstrated that the knockdown of NFIA/B induced more adhesion of Klebsiella pneumoniae on pulmonary epithelial A549 cells, which could be reversed by the application of an integrin inhibitor RGD. The results revealed a regulatory role of HMGN2 on the transcription level of integrin α5/β1, indicating a potential treatment strategy against Klebsiella pneumoniae-induced infectious lung diseases.
Collapse
Affiliation(s)
- Fan Geng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhihao Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Huan Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jing Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Min Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
21
|
Effect of Naturally Occurring Biogenic Materials on Human Dental Pulp Stem Cells (hDPSC): an In Vitro Study. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00170-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Fehrmann C, Dörfer CE, Fawzy El-Sayed KM. Toll-like Receptor Expression Profile of Human Stem/Progenitor Cells Form the Apical Papilla. J Endod 2020; 46:1623-1630. [PMID: 32827509 DOI: 10.1016/j.joen.2020.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Stem/progenitor cells from the apical papilla (SCAPs) demonstrate remarkable regenerative and immunomodulatory properties. During their regenerative events, SCAPs, similar to other stem/progenitor cells, could interact with their local inflammatory microenvironment via their expressed toll-like receptors (TLRs). The present study aimed to describe for the first time the unique TLR expression profile of SCAPs. METHODS Cells were isolated from the apical papilla of extracted wisdom teeth (n = 8), STRO-1 immunomagnetically sorted, and cultured to obtain single colony-forming units. The expression of CD14, 34, 45, 73, 90, and 105 were characterized on the SCAPs, and their multilineage differentiation potential was examined to prove their multipotent aptitude. After their incubation in basic or inflammatory medium (25 ng/mL interleukin 1 beta, 103 U/mL interferon gamma, 50 ng/mL tumor necrosis factor alpha, and 3 × 103 U/mL interferon alpha), a TLR expression profile for SCAPs under uninflamed as well as inflamed conditions was respectively generated. RESULTS SCAPs demonstrated all predefined stem/progenitor cell characteristics. In basic medium, SCAPs expressed TLRs 1-10. The inflammatory microenvironment up-regulated the expression of TLR1, TLR2, TLR4, TLR5, TLR6, and TLR9 and down-regulated the expression of TLR3, TLR7, TLR8, and TLR10 in SCAPs under the inflamed condition. CONCLUSIONS The present study defines for the first time a distinctive TLR expression profile for SCAPs under uninflamed and inflamed conditions. This profile could greatly impact SCAP responsiveness to their inflammatory microenvironmental agents under regenerative conditions in vivo.
Collapse
Affiliation(s)
- Christian Fehrmann
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
23
|
Lei S, Liu XM, Liu Y, Bi J, Zhu S, Chen X. Lipopolysaccharide Downregulates the Osteo-/Odontogenic Differentiation of Stem Cells From Apical Papilla by Inducing Autophagy. J Endod 2020; 46:502-508. [DOI: 10.1016/j.joen.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
|
24
|
Meneses CCB, Pizzatto LN, Andrade FFF, Sipert CR. Prostaglandin E2 Affects Interleukin 6 and Monocyte Chemoattractant Protein 1/CCL2 Production by Cultured Stem Cells of Apical Papilla. J Endod 2020; 46:413-418. [DOI: 10.1016/j.joen.2019.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
|
25
|
Andrukhov O, Behm C, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World J Stem Cells 2019; 11:604-617. [PMID: 31616538 PMCID: PMC6789188 DOI: 10.4252/wjsc.v11.i9.604] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability. Dental tissue-derived MSCs can be isolated from different sources, such as the dental pulp, periodontal ligament, deciduous teeth, apical papilla, dental follicles and gingiva. According to numerous in vitro studies, the effect of dental MSCs on immune cells might depend on several factors, such as the experimental setting, MSC tissue source and type of immune cell preparation. Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects, leading to the dampening of immune cell activation. Thus, the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression. Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro, its role in vivo remains obscure. A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability. Moreover, the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity. MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues. Therefore, immunomodulation-based strategies may be a very promising tool in regenerative dentistry.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
26
|
Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019; 2019:9159605. [PMID: 31636679 PMCID: PMC6766151 DOI: 10.1155/2019/9159605] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Collapse
|
27
|
Liu XM, Liu Y, Yu S, Jiang LM, Song B, Chen X. Potential immunomodulatory effects of stem cells from the apical papilla on Treg conversion in tissue regeneration for regenerative endodontic treatment. Int Endod J 2019; 52:1758-1767. [DOI: 10.1111/iej.13197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Affiliation(s)
- X. M. Liu
- Department of Paediatric Dentistry School of Stomatology China Medical University ShenyangChina
- Liaoning Province Key Laboratory of Oral Disease ShenyangChina
- State Key Laboratory of Military Stomatology Xi'an China
| | - Y. Liu
- Department of Paediatric Dentistry School of Stomatology China Medical University ShenyangChina
- Liaoning Province Key Laboratory of Oral Disease ShenyangChina
- State Key Laboratory of Military Stomatology Xi'an China
| | - S. Yu
- Department of Paediatric Dentistry School of Stomatology China Medical University ShenyangChina
- Liaoning Province Key Laboratory of Oral Disease ShenyangChina
| | - L. M. Jiang
- Department of Paediatric Dentistry School of Stomatology China Medical University ShenyangChina
- Liaoning Province Key Laboratory of Oral Disease ShenyangChina
| | - B. Song
- School of Dentistry Cardiff University Cardiff UK
| | - X. Chen
- Department of Paediatric Dentistry School of Stomatology China Medical University ShenyangChina
- Liaoning Province Key Laboratory of Oral Disease ShenyangChina
| |
Collapse
|
28
|
Zhao Z, Dong Q, Liu X, Wei L, Liu L, Li Y, Wang X. Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest. Genomics 2019; 112:1309-1317. [PMID: 31376528 DOI: 10.1016/j.ygeno.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/14/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Cellular senescence is an irreversible cell cycle arrest process associated with aging and senescence-related diseases. DNA damage is an extensive feature of cellular senescence and aging. Different levels of DNA damage could lead to cellular senescence or transient cell-cycle arrest, but the genetic regulatory mechanisms determining cell fate are still not clear. In this work, high-resolution time course analysis of gene expression in DNA damage-induced cellular senescence and transient cell-cycle arrest was used to explore the transcriptomic differences between different cell fates after DNA damage response and to investigate the key regulatory factors affecting senescent cell fates. Pathways such as the cell cycle, DNA repair and cholesterol metabolism showed characteristic differential response. A number of key transcription factors were predicted to regulating cell cycle and DNA repair. Our study provides genome-wide insights into the molecular-level mechanisms of senescent cell fate decisions after DNA damage response.
Collapse
Affiliation(s)
- Zhen Zhao
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiongye Dong
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuehui Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Liyang Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanda Li
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Liu J, Du J, Chen X, Yang L, Zhao W, Song M, Wang Z, Wang Y. The Effects of Mitogen-activated Protein Kinase Signaling Pathways on Lipopolysaccharide-mediated Osteo/Odontogenic Differentiation of Stem Cells from the Apical Papilla. J Endod 2019; 45:161-167. [PMID: 30711172 DOI: 10.1016/j.joen.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/16/2018] [Accepted: 10/18/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Odontogenic differentiation of human stem cells from the apical papilla (SCAPs) is a prerequisite step in the root development of immature permanent teeth. However, little is known about the effects of an inflammatory environment on osteo/odontogenic differentiation of SCAPs. The purpose of this study was to investigate the effects of lipopolysaccharide (LPS) on the proliferation and osteo/odontogenic differentiation of SCAPs and the role of mitogen-activated protein kinase (MAPK) signaling pathways in LPS-mediated osteo/odontogenic differentiation of SCAPs. METHODS SCAPs of human third permanent molars were cultured. Cell viability was analyzed. Alkaline phosphatase activity and mineralization ability were investigated. Gene expression of osteo/odontogenic differentiation and MAPK signaling pathways was evaluated during osteo/odontogenic differentiation of SCAPs. RESULTS In the 0.1 μg/mL LPS-treated group, cell proliferation, alkaline phosphatase activity, and mineralization of SCAPs were up-regulated. Real-time quantitative polymerase chain reaction revealed that dentin sialophosphoprotein, runt-related transcription factor 2, and bone sialoprotein were increased. However, we did not detect any change of osteocalcin expression. In addition, the expression of p-ERK and p-p38 in SCAPs was enhanced by LPS treatment, whereas the inhibition of ERK and p38 MAPK pathways markedly suppressed the differentiation of LPS-treated SCAPs. CONCLUSIONS Our findings showed that LPS at the appropriate concentration promoted the proliferation and osteo/odontogenic differentiation of SCAPs. ERK and p38 MAPK signaling pathways are involved in LPS-mediated osteo/odontogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Junqing Liu
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Jing Du
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Xinyu Chen
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China; Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Lin Yang
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China; Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Wei Zhao
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Mengxiao Song
- Department of Pathology, School and Hospital of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Zhifeng Wang
- Department of Pediatrics, School and Hospital of Stomatology, Shandong University, Jinan, China
| | - Yan Wang
- VIP Center, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
30
|
Xu F, Qiao L, Zhao Y, Chen W, Hong S, Pan J, Jiang B. The potential application of concentrated growth factor in pulp regeneration: an in vitro and in vivo study. Stem Cell Res Ther 2019; 10:134. [PMID: 31109358 PMCID: PMC6528367 DOI: 10.1186/s13287-019-1247-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Concentrated growth factor (CGF), as a natural biomaterial, is known to contain platelets, cytokines, and growth factors to facilitate the healing process, but there has been little information acquired in regenerative endodontics. The purpose of this study was to investigate the effects of CGF on proliferation, migration, and differentiation in human dental stem pulp cells (hDPSCs) exposed to lipopolysaccharide (LPS) in vitro and its potential role in pulp regeneration of the immature teeth in vivo. Methods In vitro experiments: CGF-conditioned medium were extracted by freeze-dried method. hDPSCs were isolated and identified. The proliferative potential of hDPSCs with different concentration of CGF and LPS was evaluated by Cell Counting Kit-8. Migration capacity was analyzed by Transwell assays, odonto/osteoblastic differentiation was determined by measuring alkaline phosphatase (ALP) activity using ALP staining, and the extent of mineralization was evaluated by using Alizarin red S staining. The mRNA expression level of DMP-1, DSPP, OPN, Runx2, and OCN were determined by quantitative polymerase chain reaction (qPCR). In vivo experiments: CGF were used as root canal filling agent of the immature single-rooted teeth in the beagle dogs. The teeth were then radiographed, extracted, fixed, demineralized, and subjected to histologic analyses at 8 weeks. The newly formed dentine-pulp complex and the development of apical foramen were evaluated by the hematoxylin-eosin (HE) and Masson trichrome technique. Soft tissues were analyzed by immunohistochemical staining of vascular endothelial growth factor (VEGF) and Nestin. Results In vitro experiments: The cultured cells exhibited the characteristics of mesenchymal stem cell. The treatment of LPS significantly increased the expression of TNF-α, IL-1β, IL-6, and IL-8 in hDPSCs, and CGF inhibited the mRNA expression of IL-8 in LPS-stimulated hDPSCs. The proliferation values of the CGF group in LPS-stimulated hDPSCs were significantly higher than that of the control group from day 3 to day 7 (P < 0.05). In addition, the number of migratory cells of the CGF group was greater than that of the control group at 24 h with or without LPS treatment. ALP activities increased gradually in both groups from day 4 to day 7. The mineralized nodules and the expression of odontogenesis-related genes DMP-1 and DSPP, osteogenesis-related genes OPN, Runx2, and OCN were dramatically enhanced by CGF in LPS-stimulated hDPSCs at days 21 and 28. In vivo experiments: In CGF treated group, the results of radiograph, HE, and Masson trichrome staining showed a continuing developed tooth of the immature teeth in the beagle dogs (i.e., the ingrowth of soft tissues into the root canal, the thickened internal root dentin walls, and the closed apex), which resembled the normal tooth development in the positive control group. The immunohistochemical staining showed that VEGF and Nestin were both moderately expressed in the regenerated pulp-like tissues which indicating the vascularization and innervation. Conclusions CGF has a positive effect on the proliferation, migration, and differentiation of hDPSCs exposed to LPS in vitro, and it can also promote the regeneration of dentine-pulp complex of the immature teeth in the beagle dogs in vivo. Therefore, CGF could be a promising alternative biomaterial in regenerative endodontics.
Collapse
Affiliation(s)
- Fangfang Xu
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Lu Qiao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yumei Zhao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Weiting Chen
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Shebing Hong
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Jing Pan
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China
| | - Beizhan Jiang
- Department of Operative Dentistry and Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yan Chang Road, Shanghai, 200072, China.
| |
Collapse
|
31
|
Sipert CR, Oliveira AP, Caldeira CL. Cytotoxicity of intracanal dressings on apical papilla cells differ upon activation with E. faecalis LTA. J Appl Oral Sci 2019; 27:e20180291. [PMID: 30810637 PMCID: PMC6382323 DOI: 10.1590/1678-7757-2018-0291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/18/2018] [Indexed: 04/10/2023] Open
Abstract
Objective The aim of this study was to investigate the cytotoxic effects of modified triple antibiotic paste and an experimental composition using calcium hydroxide on lipoteichoic acid (LTA)-primed apical papilla cells (APC). Material and Methods Human APC were tested for in vitro cytotoxicity of modified Triple Antibiotic Paste (mTAP – Ciprofloxacin, Metronidazole and Cefaclor at 1:1:1) and of a paste of Ciprofloxacin, Metronidazole and Calcium hydroxide (CMC – 1:1:2) and modified CMC (mCMC – 2:2:1) by using MTT assay. The substances were reconstituted in DMEM at 1,000 µg/mL and ¼ serially diluted before being kept in contact with cells for 1, 3, 5 and 7 days. Further, cells were primed with 1 µg/mL of Enterococcus faecalis LTA for 7 days prior to the viability test with 1,000 µg/mL of each substance. Statistical analysis was performed using one-way analysis of variance (ANOVA) and two-way ANOVA respectively followed by Tukey’s post-test. Significance levels were set at p<0.05. Results In the first assay, the higher cytotoxic rates were reached by mTAP for all experimental periods. CMC was found toxic for APC at 5 and 7 days, whereas mCMC did not affect the cell viability. Only CMC and mCMC were able to induce some cellular proliferation. In the second assay, when considering the condition with medium only, LTA-primed cells significantly proliferated in comparison to LTA-untreated ones. At this context, mTAP and CMC showed similar cytotoxicity than the observed for LTA-untreated cells, while mCMC was shown cytotoxic at 7 days only for LTA-primed APC. Comparing the medications, mTAP was more cytotoxic than CMC and mCMC. Conclusion mTAP showed higher cytotoxicity than CMC and mCMC and the effect of topic antimicrobials might differ when tested against apical papilla cells under physiological or activated conditions.
Collapse
Affiliation(s)
- Carla Renata Sipert
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Dentística, São Paulo, Brasil
| | - Aline Pereira Oliveira
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Dentística, São Paulo, Brasil
| | - Celso Luiz Caldeira
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Dentística, São Paulo, Brasil
| |
Collapse
|
32
|
Lipoxin A 4 Attenuates the Inflammatory Response in Stem Cells of the Apical Papilla via ALX/FPR2. Sci Rep 2018; 8:8921. [PMID: 29892010 PMCID: PMC5995968 DOI: 10.1038/s41598-018-27194-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Similar to the onset phase of inflammation, its resolution is a process that unfolds in a manner that is coordinated and regulated by a panel of mediators. Lipoxin A4 (LXA4) has been implicated as an anti-inflammatory, pro-resolving mediator. We hypothesized that LXA4 attenuates or prevents an inflammatory response via the immunosuppressive activity of Stem Cells of the Apical Papilla (SCAP). Here, we report for the first time in vitro that in a SCAP population, lipoxin receptor ALX/FPR2 was constitutively expressed and upregulated after stimulation with lipopolysaccharide and/or TNF-α. Moreover, LXA4 significantly enhanced proliferation, migration, and wound healing capacity of SCAP through the activation of its receptor, ALX/FPR2. Cytokine, chemokine and growth factor secretion by SCAP was inhibited in a dose dependent manner by LXA4. Finally, LXA4 enhanced immunomodulatory properties of SCAP towards Peripheral Blood Mononuclear Cells. These findings provide the first evidence that the LXA4-ALX/FPR2 axis in SCAP regulates inflammatory mediators and enhances immunomodulatory properties. Such features of SCAP may also support the role of these cells in the resolution phase of inflammation and suggest a novel molecular target for ALX/FPR2 receptor to enhance a stem cell-mediated pro-resolving pathway.
Collapse
|
33
|
Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL. Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol Int 2018; 42:832-840. [PMID: 29363846 DOI: 10.1002/cbin.10938] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the effect of inflammatory stimuli on dental pulp stem cells (DPSCs) by assessing their proliferation and expression of genes as well as proteins in lipopolysaccharide (LPS)-induced microenvironment (iDPSCs). DPSCs were first characterized for their mesenchymal properties prior to challenging them with a series of LPS concentrations from 12 to 72 h. Following to this, their proliferation and inflammatory based genes as well as protein expression were assessed. iDPSCs had demonstrated significant expression of mesenchymal markers. Upon exposure to LPS, the viability dropped distinctly with increasing concentration, as compared to control (P < 0.05). The expression of pro-inflammatory genes such as interleukin 6, interleukin 8 were augmented with exposure to LPS (P < 0.05). Similarly, cytokines like tumour necrosis factor (TNF) α and interleukin 1α had increased in dose dependant manner upon LPS exposure (P < 0.05). Our results suggest that LPS concentration between 1 and 2 μg/mL demonstrated inflammation induction in DPSCs that may simulate inflamed microenvironment of dental pulp in clinical scenario. Thus, optimizing iDPSCs secretome profile could be a promising approach to test various regenerative protocols in inflamed microenvironment.
Collapse
Affiliation(s)
- Priyadarshini Bindal
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Thamil Selvee Ramasamy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nareshwaran Gnanasegaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
34
|
Lin LM, Kim SG, Martin G, Kahler B. Continued root maturation despite persistent apical periodontitis of immature permanent teeth after failed regenerative endodontic therapy. AUST ENDOD J 2018; 44:292-299. [DOI: 10.1111/aej.12252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Louis M. Lin
- Department of Endodontics; College of Dentistry; New York University; New York New York USA
| | - Sahng G. Kim
- Division of Endodontics; College of Dental Medicine; Columbia University; New York New York USA
| | - Gabriela Martin
- Department of Endodontics; School of Health Sciences; Catholic University of Cordoba; Cordoba Argentina
| | - Bill Kahler
- School of Dentistry; University of Queensland; Brisbane Australia
| |
Collapse
|
35
|
Shrestha A, Friedman S, Torneck CD, Kishen A. Bioactivity of Photoactivated Functionalized Nanoparticles Assessed in Lipopolysaccharide-contaminated Root Canals In Vivo. J Endod 2017; 44:104-110. [PMID: 29153731 DOI: 10.1016/j.joen.2017.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The persistence of dentin-bound lipopolysaccharides (LPS) in disinfected root canals impedes treatment outcomes of endodontic procedures. This study assessed the effects of photoactivated rose bengal-functionalized chitosan nanoparticles (CSRBnps) on LPS-contaminated root dentin in vivo using an intraosseous implantation model and neotissue formation as a marker. METHODS Fifty human, 3-mm-long root segments with a 1.2-mm canal lumen were divided into 5 groups (n = 10): group 1, canals not contaminated; group 2, canals contaminated with Pseudomonas aeruginosa LPS; group 3, canals contaminated and disinfected with sodium hypochlorite (NaOCl); group 4, canals contaminated and disinfected with NaOCl and calcium hydroxide; and group 5, canals contaminated and disinfected with NaOCl and CSRBnps (300 μg/mL) with photoactivation (λ = 540 nm, 40 J/cm2). Specimens were implanted into mandibles of guinea pigs, block dissected after 4 weeks, and the canal content evaluated histologically and immunohistochemically. The ingrown neotissue interface (50 μm) with dentin was characterized for fibroblasts, osteoclasts, inflammatory markers, dentin resorption, mineralization, and angiogenesis and dichotomized as type 1 (no inflammation and resorption, indicative of LPS inactivation) or type 2 (inflammation and resorption). The frequency of the observed parameters was analyzed using the Fisher exact test. RESULTS The outcome was categorized as type 1 in groups 1 and 5, type 2 in group 2, and mixed type 1 and 2 in groups 3 and 4. The outcomes in groups 1 and 5 (P > .05) differed significantly (P < .05) from those in groups 2, 3, and 4. CONCLUSIONS Disinfection of LPS-contaminated root canals with photoactivated CSRBnps in vivo supported ingrowth of neotissue without signs of inflammation or resorption, suggestive of effective inactivation of dentin-bound LPS.
Collapse
Affiliation(s)
- Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Shimon Friedman
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Calvin D Torneck
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Effects of Lipopolysaccharide on the Proliferation and Osteogenic Differentiation of Stem Cells from the Apical Papilla. J Endod 2017; 43:1835-1840. [DOI: 10.1016/j.joen.2017.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/09/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023]
|
37
|
Luo Z, Wang Z, He X, Liu N, Liu B, Sun L, Wang J, Ma F, Duncan H, He W, Cooper P. Effects of histone deacetylase inhibitors on regenerative cell responses in human dental pulp cells. Int Endod J 2017; 51:767-778. [DOI: 10.1111/iej.12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 03/30/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Z. Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
- Department of Operative Dentistry and Endodontics; School of Stomatology; The Guizhou Medical University; Guiyang China
| | - Z. Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - X. He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - N. Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - B. Liu
- Department of Stomatology; the Lishilu out-patient Department of the Chinese PLA Second Artillery Corps; Beijing China
| | - L. Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - J. Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - F. Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - H. Duncan
- Division of Restorative Dentistry and Periodontology; Dublin Dental University Hospital; Dublin Ireland
| | - W. He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Key Laboratory of Stomatology; Department of Operative Dentistry and Endodontics; School of Stomatology; The Fourth Military Medical University; Xi'an China
| | - P. Cooper
- Oral Biology; School of Dentistry; University of Birmingham; Birmingham UK
| |
Collapse
|
38
|
Abstract
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Collapse
|
39
|
Liu Y, Gao Y, Zhan X, Cui L, Xu S, Ma D, Yue J, Wu B, Gao J. TLR4 Activation by Lipopolysaccharide and Streptococcus mutans Induces Differential Regulation of Proliferation and Migration in Human Dental Pulp Stem Cells. J Endod 2014; 40:1375-81. [DOI: 10.1016/j.joen.2014.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/22/2014] [Accepted: 03/10/2014] [Indexed: 12/28/2022]
|
40
|
Luo Z, Li D, Kohli MR, Yu Q, Kim S, He WX. Effect of Biodentine™ on the proliferation, migration and adhesion of human dental pulp stem cells. J Dent 2014; 42:490-7. [PMID: 24440605 DOI: 10.1016/j.jdent.2013.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To investigate the proliferative, migratory and adhesion effect of Biodentine™, a new tricalcium silicate cement formulation, on the human dental pulp stem cells (hDPSCs). METHODS The cell cultures of hDPSCs obtained from impacted third molars were treated with Biodentine™ extract at four different concentrations: Biodentine™ 0.02mg/ml (BD 0.02), Biodentine™ 0.2mg/ml (BD 0.2), Biodentine™ 2mg/ml (BD 2) and Biodentine™ 20mg/ml (BD 20). Human dental pulp stem cells proliferation was evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) viability analysis at different times. Migration was investigated by microphotographs of wound healing and transwell migration assays. Adhesion assay was performed as well in presence of BD 0.2, BD 2 and blank control, while qRT-PCR (quantitative real-time reverse-transcriptase polymerase chain) was used for further analysis of the mRNA expression of chemokine and adhesion molecules in hDPSCs. RESULTS Biodentine™ significantly increased proliferation of stem cells at BD 0.2 and BD 2 concentrations while decreased significantly at higher concentration of BD 20. BD 0.2 concentration had a statistically significant increased migration and adhesion abilities. In addition, qRT-PCR results showed that BD 0.2 could have effect on the mRNA expression of chemokines and adhesion molecules in human dental pulp stem cells. CONCLUSIONS The data imply that Biodentine™ is a bioactive and biocompatible material capable of enhancing hDPSCs proliferation, migration and adhesion abilities. CLINICAL SIGNIFICANCE Biodentine™ when placed in direct contact with the pulp during pulp exposure can positively influence healing by enhancing the proliferation, migration and adhesion of human dental pulp stem cells.
Collapse
Affiliation(s)
- Zhirong Luo
- Department of Operative Dentistry & Endodontics, Fourth Military Medical University, Xian, China
| | - Dongmei Li
- Department of VIP Dental Care, Fourth Military Medical University, Xian, China
| | - Meetu R Kohli
- Department of Endodontics, University of Pennsylvania, Philadelphia, USA
| | - Qing Yu
- Department of Operative Dentistry & Endodontics, Fourth Military Medical University, Xian, China
| | - Syngcuk Kim
- Department of Endodontics, University of Pennsylvania, Philadelphia, USA
| | - Wen-Xi He
- Department of Operative Dentistry & Endodontics, Fourth Military Medical University, Xian, China.
| |
Collapse
|