1
|
Topbaş C, Kul AK. Can flowable short-fiber-reinforced resins achieve a strong adhesion to bioceramics? Microsc Res Tech 2024; 87:2964-2973. [PMID: 39072834 DOI: 10.1002/jemt.24668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
This study compared the microshear bond strength (μSBS) of four calcium silicate-based cements (CSCs), TheraCal PT (TPT), TheraCal LC (TLC), Biodentine (BD), and Dia-Root Bio MTA (DR), with a short fiber-reinforced composite resin (SFRC). Forty cylindrical acrylic blocks were used, each with a center hole (diameter 5 mm, depth 2 mm). CSCs were placed in the holes (n = 10/group), and the blocks were incubated for 48 h. G-Premio BOND, a self-etching adhesive, was applied to the CSCs surfaces using a micro-applicator for 10 s and then air-dried for 5 s, followed by light curing for 20 s. SFRC materials placed in cylindrical polyethylene capsules (diameter 2 mm, height 2 mm) were polymerized for 20 s and placed over the CSCs. The samples were then incubated at 37°C and 100% humidity for 24 h, and their μSBSs were tested using an "Instron Universal Testing Machine." Data were statistically analyzed using chi-square and Kruskal-Wallis tests. Statistically significant differences were observed between the tested CSCs. The μSBS of TPT (45.17 ± 4.56 MPa) was significantly higher (p < .05) than that of the other materials: BD, TLC, and DR had μSBSs of 29.18 ± 2.86 MPa (p < .05), 23.86 ± 2.84 MPa (p > .05), and 18.08 ± 2.69 MPa (p < .05), respectively. Considering the importance of bond strength for CSC sealing with restorative material, using SFRC over CSC was promising for improving the μSBS, adhesion, and sealing of the material. RESEARCH HIGHLIGHTS: Adhesion is critical to the success of vital pulp restorations. To achieve strong adhesion, the bioceramic material and the resin composite to which it is bonded are very important. In our study, short fiber-reinforced composite resin, which is gaining popularity, was used and found to be a promising material for improved adhesion.
Collapse
Affiliation(s)
- Celalettin Topbaş
- Faculty of Dentistry, Department of Endodontics, University of Health Sciences, Istanbul, Turkey
| | - Abdurrahman Kerim Kul
- Faculty of Dentistry, Department of Endodontics, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
2
|
Tez BÇ, Eliaçık BBK, Taşlı PN, Yılmaz H, Şahin F. Biocompatibility and Cytotoxicity of Pulp-Capping Materials on DPSCs, With Marker mRNA Expressions. Int Dent J 2024; 74:1064-1077. [PMID: 38692961 PMCID: PMC11561506 DOI: 10.1016/j.identj.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES The present study aimed to (1) investigate biocompatibility and cytotoxicity of pulp-capping materials on viability of human dental pulp stem cells (hDPSCs); (2) determine angiogenic, odontogenic, and osteogenic marker mRNA expressions; and (3) observe changes in surface morphology of the hDPSCs using scanning electron microscopy (SEM). METHODS Impacted third molars were used to isolate the hDPSCs, which were treated with extract-release fluids of the pulp-capping materials (Harvard BioCal-Cap, NeoPUTTY MTA, TheraCal LC, and Dycal). Effects of the capping materials on cell viability were assessed using 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay and the apoptotic/necrotic cell ratios and reactive oxygen species (ROS) levels from flow cytometry. Marker expressions (alkaline phosphatase [ALP], osteocalcin [OCN], collagen type I alpha 1 [Col1A], secreted protein acidic and rich in cysteine [SPARC], osteonectin [ON], and vascular endothelial growth factor [VEGF]) were determined by quantitative reverse-transcription polymerase chain reaction. Changes in surface morphology of the hDPSCs were visualised by SEM. RESULTS The MTS assay results at days 1, 3, 5, and 7 indicated that Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC did not adversely affect cell viability when compared with the control group. According to the MTS assay results at day 14, no significant difference was found amongst Dycal, Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC affecting cell viability. Dycal was the only capping material that increased ROS level. High levels of VEGF expression were observed with Harvard BioCal-Cap, TheraCal LC, and NeoPUTTY MTA. NeoPUTTY MTA, and Dycal upregulated OCN expression, whereas TheraCal LC upregulated Col1A and SPARC expression. Only Dycal increased ALP expression. HDSCs were visualized in characteristic spindle morphology on SEM when treated with TheraCal LC and Harvard BioCal-Cap. CONCLUSIONS NeoPUTTY MTA and Harvard BioCal-Cap showed suitable biocompatibility values; in particular, these pulp-capping materials were observed to support the angiogenic marker.
Collapse
Affiliation(s)
- Banu Çiçek Tez
- Department of Pediatric Dentistry, Faculty of Dentistry, Ankara Medipol University, Ankara, Türkiye
| | | | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| | - Hazal Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
3
|
Long Y, Huang G, Liu S, Xu L, Li A, Qiu D, Dong Y. Hygroscopic bioactive light-cured composite promoting dentine bridge formation. Regen Biomater 2024; 11:rbae114. [PMID: 39398285 PMCID: PMC11467188 DOI: 10.1093/rb/rbae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
A light-cured bioactive composite, TheraCal LC, is easy to handle and fast-setting. But poor water absorption restricted its bioactivity when applied in direct pulp capping (DPC). Enhancing the water absorption of resin-based bioactive materials may be key to optimizing biomineralization procedure of light-cured bioactive materials. We constructed a hygroscopic, light-cured bioactive composite made up of bioactive glass (BG), poly (ethylene glycol) (PEG) and resin in this study. BG was encapsulated into a porogen (i.e. PEG) and mixed into resin matrix. Inductively coupled plasma showed that light-cured BG (LC-BG) exhibited faster ion release and more ion exchange than TheraCal LC did. The formation of macropores and hydroxyapatite crystal coatings on the BG microparticles was observed using scanning electron microscopy. The shear bond strength between the resin and LC-BG group did not significantly differ from the TheraCal LC group. CCK-8 assay showed that the LC-BG extract was nontoxic. Real-time polymerase chain reaction revealed that LC-BG upregulated odontogenic gene expression in human dental pulp cells. DPC assay proved that the LC-BG group exhibited no significant difference in dentin tubule formation (P = 0.659) or odontoblast-like cell layer formation (P = 0.155) from the TheraCal LC group, but exhibited significantly better integrity of the calcified bridge than the TheraCal LC group (P = 0.039); more DSPP-positive and DMP-1-positive cells were detected in the LC-BG group than in the TheraCal LC group. Although no significant difference in pulpal inflammatory cell infiltration was observed between the LC-BG group and the TheraCal LC group (P = 0.476), fewer interleukin 1β-positive and tumor necrosis factor α-positive cells were detected in the LC-BG group than in the TheraCal LC group. In conclusion, the newly developed hygroscopic LC-BG composite showed better bioactivity and odontogenic differentiation than the TheraCal LC did in vitro and induced better integrity of the calcified bridge than the TheraCal LC did in vivo.
Collapse
Affiliation(s)
- Yunzi Long
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Siyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Liju Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Ailing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10019, PR China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| |
Collapse
|
4
|
Wang S, Tu Y, Yu H, Li Z, Feng J, Liu S. Animal models and related techniques for dentin study. Odontology 2024:10.1007/s10266-024-00987-1. [PMID: 39225758 DOI: 10.1007/s10266-024-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
The intricate and protracted process of dentin formation has been extensively explored, thanks to the significant advancements facilitated by the use of animal models and related techniques. Despite variations in their effectiveness, taking into account factors such as sensitivity, visibility, and reliability, these models or techniques are indispensable tools for investigating the complexities of dentin formation. This article focuses on the latest advances in animal models and related technologies, shedding light on the key molecular mechanisms that are essential in dentin formation. A deeper understanding of this phenomenon enables the careful selection of appropriate animal models, considering their suitability in unraveling the underlying molecular intricacies. These insights are crucial for the advancement of clinical drugs targeting dentin-related ailments and the development of comprehensive treatment strategies throughout the duration of the disease.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Hao Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China
| | - Zhen Li
- Shanghai Fengxian District Dental Disease Prevention Institute, Shanghai, 201499, People's Republic of China
| | - Jinqiu Feng
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Department of Pediatrics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People's Republic of China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, 365 Beijing Road, Shanghai, 200001, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
5
|
Amrollahi N, Karimi R, Shariati F. Clinical and radiographic success of TheraCal versus Formocresol in primary teeth pulpotomy: A systematic review and meta-analysis. Saudi Dent J 2024; 36:1058-1065. [PMID: 39176161 PMCID: PMC11337966 DOI: 10.1016/j.sdentj.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 08/24/2024] Open
Abstract
Background Various dressing materials have been evaluated for pulpotomy of primary teeth. However, an ideal pulp dressing material has not been identified yet. This systematic review investigated the effectiveness of TheraCal compared to Formocresol in pulpotomy of primary teeth. Materials and methods This research was conducted in the form of a secondary study, with a systematic search of texts until 2023 in Scopus, Web of Science, PubMed and Google Scholar databases. The articles were selected based on the inclusion and exclusion criteria and, finally the search results were reported in the PRISMA chart. The quality of the studies was evaluated based on the NIH checklist. The extracted information was entered into Stata17 software. Heterogeneity was evaluated using Cochran's chi-square test and I2 statistics. Egger's tests were used to detect publication bias. Results After removing duplicate articles and articles that did not meet the inclusion criteria, 4 studies were selected for qualitative analysis. The odds' ratio of success rate between Formocresol and TheraCal pulpotomy for absence of the pain, abscess, Mobility, internal root resorption and bone radiolucency was obtained 1.12 (95 % CI: 0.32, 3.85, P = 0.86), 0.47 (95 % CI: 0.1, 2.14, P = 0.33), 0.82 (95 % CI: 0.21, 3.21, P = 0.78), 0.89 (95 % CI: 0.3, 2.67, P = 0.84), and 1.96 (95 % CI: 0.68, 5.62, P = 0.21) respectively. Conclusion The study results revealed that there was no significant difference in clinical and radiographic success between pulpotomy with TheraCal and Formocresol.
Collapse
Affiliation(s)
- Narjes Amrollahi
- Dental Research Center, Department of Pediatric Dentistry, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rahele Karimi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Shariati
- Dental Students’ Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Ali N, Scheven BA, Palin WM, Camilleri J. Proposing new standards for testing solubility of pulp preservation materials. Dent Mater 2024; 40:1252-1258. [PMID: 38876829 DOI: 10.1016/j.dental.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES Quality control testing of dental materials requires a standard to enable the generation of reproducible and comparable data. Currently there are no standards for testing materials used for vital pulp therapy. The aim of this study was to develop a new standard to evaluate solubility of pulp preservation materials. METHODS The solubility of three materials used for vital pulp therapy: Biodentine, TheraCal and Activa was evaluated using two international standards for dental materials ISO 4049:2019 (S1) and ISO 6876:2012 (S2). For both standards, a modified methodology was evaluated. This included changing the volume of the solution used (S1M, S2M), using Dulbecco's modified eagle medium (DMEM) as an alternative to water (S1D, S2D) and periodic solution change for the ISO 4049 method (S1P, S1MP). Materials were characterised before and after completion of solubility test using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. RESULTS The test materials exhibited different solubility values depending on the methodology used. Biodentine exhibited significantly lower solubility when lower volumes of solution were used when tested using both ISO methods (p ≤ 0.05). TheraCal and Activa showed negative solubility values after desiccation when tested using ISO 4049:2019. The Biodentine exhibited changes in its microstructure which was dependent on the method used to test solubility. CONCLUSIONS The solubility values obtained were dependent on the method used. It is thus important to use methods that replicate the clinical environment for meaningful evaluations.
Collapse
Affiliation(s)
- Nesma Ali
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ben A Scheven
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - William M Palin
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Josette Camilleri
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
7
|
Park SH, Ye JR, Asiri NM, Chae YK, Choi SC, Nam OH. Biocompatibility and Bioactivity of a Dual-Cured Resin-Based Calcium Silicate Cement: In Vitro and in vivo Evaluation. J Endod 2024; 50:235-242. [PMID: 37995904 DOI: 10.1016/j.joen.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION This study aimed to assess the biocompatibility and bioactivity of a dual-cured resin-based calcium silicate cement in vitro and in vivo. METHODS For in vitro analyses, standardized samples were prepared using TheraCal LC, TheraCal PT, and ProRoot MTA. The amount of residual monomer released from TheraCal LC and TheraCal PT was assessed using liquid chromatography/mass spectrometry. Calcium ion release from the materials was evaluated using inductively coupled plasma-optical emission spectroscopy. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to determine the calcium weight volume in the materials. For in vivo analysis, a rat direct pulp capping model with TheraCal LC, TheraCal PT, and ProRoot MTA groups (n = 16 per group) was used. The rats were euthanized after 7 or 28 days, and histological and immunohistochemical analyses (CD68 and DSPP) were performed. RESULTS Bisphenol A-glycidyl methacrylate and polyethylene glycol dimethacrylate release from TheraCal PT was lower than that from TheraCal LC (P < .05). Similar results were obtained for calcium-ion release and calcium weight volume, with ProRoot MTA showing the highest values. In the in vivo evaluation, TheraCal PT showed significantly greater hard tissue formation than TheraCal LC (P < .017). TheraCal PT showed lower CD68 expression and greater DSPP expression than TheraCal LC (P < .017). There were no significant differences in the expression of CD68 or DSPP between the TheraCal PT and ProRoot MTA groups. CONCLUSIONS Within the limitations of this study, the biocompatibility and bioactivity of TheraCal PT could be comparable to those of ProRoot MTA.
Collapse
Affiliation(s)
- Seung Hwan Park
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Ju Ri Ye
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Naif Mohammed Asiri
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Yong Kwon Chae
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea; Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea; Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
8
|
Sedek EM, Abdelkader S, Fahmy AE, Kamoun EA, Nouh SR, Khalil NM. Histological evaluation of the regenerative potential of a novel photocrosslinkable gelatin-treated dentin matrix hydrogel in direct pulp capping: an animal study. BMC Oral Health 2024; 24:114. [PMID: 38243218 PMCID: PMC10799547 DOI: 10.1186/s12903-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND To assess histologically the success of the pulp capping approach performed in traumatically exposed dogs' teeth using a novel injectable gelatin-treated dentin matrix light cured hydrogel (LCG-TDM) compared with LCG, MTA and TheraCal LC. METHODS Sixty-four dogs' teeth were divided into two groups (each including 32 teeth) based on the post-treatment evaluation period: group I: 2 weeks and group II: 8 weeks. Each group was further subdivided according to the pulp capping material into four subgroups (n = 8), with subgroup A (light-cured gelatin hydrogel) as the control subgroup, subgroup B (LCG-TDM), subgroup C (TheraCal LC), and subgroup D (MTA). Pulps were mechanically exposed in the middle of the cavity floor and capped with different materials. An assessment of periapical response was performed preoperatively and at 8 weeks. After 2 and 8-week intervals, the dogs were sacrificed, and the teeth were stained with hematoxylin-eosin and graded by using a histologic scoring system. Statistical analysis was performed using the chi-square and Kruskal-Wallis tests (p = 0.05). RESULTS All subgroups showed mild inflammation with normal pulp tissue at 2 weeks with no significant differences between subgroups (p ≤ 0.05), except for the TheraCal LC subgroup, which exhibited moderate inflammation (62.5%). Absence of a complete calcified bridge was reported in all subgroups at 2 weeks, while at 8 weeks, the majority of samples in the LCG-TDM and MTA-Angelus subgroups showed complete dentin bridge formation and absence of inflammatory pulp response with no significant differences between them (p ≤ 0.05). However, the formed dentin in the LCG-TDM group was significantly thicker, with layers of ordered odontoblasts identified to create a homogeneous tubular structure and numerous dentinal tubule lines suggesting a favourable trend towards dentin regeneration. TheraCal LC samples revealed a reasonably thick dentin bridge with moderate inflammation (50%) and LCG showed heavily fibrous tissue infiltrates with areas of degenerated pulp with no signs of hard tissue formation. CONCLUSIONS LCG-TDM, as an extracellular matrix-based material, has the potential to regenerate dentin and preserve pulp vitality, making it a viable natural alternative to silicate-based cements for healing in vivo dentin defects in direct pulp-capping procedures.
Collapse
Affiliation(s)
- Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Sally Abdelkader
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Amal E Fahmy
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt, El-Shreouk City, Cairo, Egypt
| | - Samir R Nouh
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Park SY, Kim D, Jung JW, An HJ, Lee J, Park Y, Lee D, Lee S, Kim JM. Targeting class A GPCRs for hard tissue regeneration. Biomaterials 2024; 304:122425. [PMID: 38100905 DOI: 10.1016/j.biomaterials.2023.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play important roles in various pathogeneses and physiological regulations. Owing to their functional diversity, GPCRs are considered one of the primary pharmaceutical targets. However, drugs targeting GPCRs have not been developed yet to regenerate hard tissues such as teeth and bones. Mesenchymal stromal cells (MSCs) have high proliferation and multi-lineage differentiation potential, which are essential for hard tissue regeneration. Here, we present a strategy for targeting class A GPCRs for hard tissue regeneration by promoting the differentiation of endogenous MSCs into osteogenic and odontogenic progenitor cells. Through in vitro screening targeted at class A GPCRs, we identified six target receptors (LPAR1, F2R, F2RL1, F2RL2, S1PR1, and ADORA2A) and candidate drugs with potent biomineralization effects. Through a combination of profiling whole transcriptome and accessible chromatin regions, we identified that p53 acts as a key transcriptional activator of genes that modulate the biomineralization process. Moreover, the therapeutic potential of class A GPCR-targeting drugs was demonstrated in tooth pulpotomy and calvarial defect models. The selected drugs revealed potent regenerative effects in both tooth and bone defects, represented by newly formed highly mineralized regions. Consequently, this study provides translational evidence for a new regenerative strategy for damaged hard tissue.
Collapse
Affiliation(s)
- So Young Park
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Ju Won Jung
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Yeji Park
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dasun Lee
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang-gu, Seongnam-si, 13496, Republic of Korea.
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Mohamed M, Hashem AAR, Obeid MF, Abu-Seida A. Histopathological and immunohistochemical profiles of pulp tissues in immature dogs' teeth to two recently introduced pulpotomy materials. Clin Oral Investig 2023; 27:3095-3103. [PMID: 36781475 PMCID: PMC10264498 DOI: 10.1007/s00784-023-04915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVE The pulpal response to Hoffmann's Pulpine mineral (PMIN) and Pulpine NE (PNE) was compared to mineral trioxide aggregate (MTA) when used as pulpotomy materials in immature permanent teeth in dogs. MATERIALS AND METHODS Immature premolars were randomly divided according to the observation period into three equal groups (n = 24) (10 days, 30 days, and 90 days) then furtherly subdivided into 3 subgroups according to the material used. Histopathological analysis regarding inflammatory cell infiltration and dentin bridge (DB) formation was done. Immunohistochemical analysis was performed using osteopontin marker. RESULTS The results showed that after 90 days, both MTA and PMIN subgroups had 100% complete thick DB without inflammation in 87.5% of the samples, while the PNE subgroup failed to form DB in 37.5% of the samples and 50% of samples showed thin initial DB with heavy inflammation in 62.5% of the samples. There was no significant difference between MTA and PMIN, while there was a statistically significant difference between PNE and the two other subgroups in DB formation and inflammatory cell infiltration (P > 0.05). After 90 days, MTA showed the highest mean value of osteopontin positive fraction area followed by PMIN without statistically significant differences, while the least value was recorded in PNE subgroup with statistically significant difference with the remaining subgroups (P < 0.05). CONCLUSION PMIN is a promising alternative to MTA when used for pulpotomy. CLINICAL RELEVANCE Vital pulp therapy in immature teeth can be done using PMIN as an alternative to MTA.
Collapse
Affiliation(s)
- Mai Mohamed
- Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | | | | | | |
Collapse
|
11
|
Jung JW, Park SY, Seo EJ, Jang IH, Park Y, Lee D, Kim D, Kim JM. Functional expression of oxytocin receptors in pulp-dentin complex. Biomaterials 2023; 293:121977. [PMID: 36580714 DOI: 10.1016/j.biomaterials.2022.121977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Dental pulp-derived stromal cells (DPSCs) are a crucial cell population for maintaining the tissue integrity of the pulp-dentin complex. The oxytocin receptor (OXTR), a member of the G protein-coupled receptor (GPCR) superfamily, plays versatile roles in diverse biological contexts. However, the role of OXTR in dental pulp has not yet been fully understood. Here, we demonstrate the biological functions and significance of OXTR in DPSCs through a multidisciplinary approach. Microarray data of 494 GPCR genes revealed high OXTR expression in human DPSCs (hDPSCs). Blocking OXTR activity increased the expression of osteogenic and odontogenic marker genes, promoting hDPSC differentiation. Additionally, we found that OXTR is involved in extracellular matrix (ECM) remodeling through the regulation of the gene expression related to ECM homeostasis. We further demonstrated that these genetic changes are mediated by trascriptional activity of Yes-associated protein (YAP). Based on the results, a preclinical experiment was performed using an animal model, demonstrating that the application of an OXTR inhibitor to damaged pulp induced significant hard tissue formation. These results provide new insight into the oxytocin-OXTR system in the regenerative process of pulp-dentin complex.
Collapse
Affiliation(s)
- Ju Won Jung
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - So Young Park
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Jin Seo
- Department of Oral Biochemistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Il Ho Jang
- Department of Oral Biochemistry, Pusan National University, Yangsan, 50612, Republic of Korea; Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yeji Park
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dasun Lee
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
GERÇEKCİOĞLU ŞN, BAYRAM M, BAYRAM E. Kan kontaminasyonunun farklı kök ucu dolgu materyallerinin dentine bağlanma dayanımına etkisi. ACTA ODONTOLOGICA TURCICA 2023. [DOI: 10.17214/gaziaot.995648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Amaç: Bu in vitro çalışmanın amacı, kan kontaminasyonunun farklı kök ucu dolgu materyallerinin dentine bağlanma dayanımına etkisinin değerlendirilmesiydi.
Gereç ve Yöntem: Bu çalışmada tek köklü 90 adet maksiler santral diş kullanıldı. Dişlere endodontik tedavi uygulandıktan sonra kök uçları rezeke edildi ve kök ucu kaviteleri hazırlandı. Öncelikle örnekler, kavitelerin kanla kontaminasyonuna göre (+/-) 2 gruba ayrıldı. Daha sonra kök ucu dolgu malzemelerine göre üç alt gruba ayrıldı: MTA Repair HP, RetroMTA, MTA Flow (n=15). Bu malzemeler üreticinin talimatları doğrultusunda kaviteye yerleştirildi. Örnekler 21 gün boyunca 37 °C’de %100 nemli ortamda bekletildi. 1.0±0.1 mm kesitler elde edildikten sonra itme-bağlanma dayanımı testi gerçekleştirildi. Başarısızlık tipini değerlendirmek için her kesit stereomikroskop altında incelendi. Veriler tek yönlü varyans analizi ve bağımsız örneklem t-testi kullanılarak analiz edildi.
Bulgular: Bağlanma dayanımı, kan kontaminasyonunun varlığından önemli ölçüde olumsuz yönde etkilendi (p<0.05). En yüksek bağlanma dayanımı MTA Flow (-) grubunda, en düşük bağlanma dayanımı ise MTA Repair HP (+) grubunda gözlendi (p<0.05). Hem kanla kontamine olan grupta hem de kanla kontamine olmayan grupta MTA Repair HP en düşük bağlanma dayanımını gösterirken (p<0.001), MTA Flow ve RetroMTA arasında anlamlı farklılık bulunmadı (p>0.05).
Sonuç: Kan kontaminasyonu dentine bağlanma dayanımını azalttı. Materyaller arasında en yüksek bağlanma dayanımını MTA Flow gösterdi.
Collapse
Affiliation(s)
| | | | - Emre BAYRAM
- Tokat Gaziosmanpaşa Üniversitesi Diş Hek. Fak
| |
Collapse
|
13
|
Hassanpour S, Aminabadi NA, Rahbar M, Erfanparast L. Comparison between the Radiographic and Clinical Rates of Success for TheraCal and MTA in Primary Tooth Pulpotomy within a 12-Month Follow-Up: A Split-Mouth Clinical Trial. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8735145. [PMID: 37124935 PMCID: PMC10132897 DOI: 10.1155/2023/8735145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 05/02/2023]
Abstract
Background The present study was conducted for contrasting the efficacy of TheraCal and MTA for primary molar pulpotomy. Methods During the current split-mouth randomized clinical trial, 90 bilateral primary molars from 45 healthy 5- to 8-year-old children were pulpotomized using TheraCal in one bilateral tooth and MTA in the other, randomly. Glass ionomer (GI) was used to cover these materials. Then, the treated teeth were restored with stainless steel crowns (SSC) and followed up clinically and radiographically at months 6 and 12 after treatment for any pulpotomy failure indications. Finally, data were analyzed by chi-square test considering p value < 0.05 as statistically significant. Results Among 82 teeth available at the final follow-up session, the total success rates were 98.1% and 99.3% for TheraCal and MTA, respectively, showing no significant difference between the two groups (p > 0.05). Conclusion TheraCal can be used as an alternative material for pulpotomy of primary teeth instead of MTA.
Collapse
Affiliation(s)
- Sedigheh Hassanpour
- Department of Pediatric Dentistry, School of Dentistry, Bandar Abbas University of Medical Sciences, Bandar Abbas, Iran
| | - Naser Asl Aminabadi
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Kumar N, Maher N, Amin F, Ghabbani H, Zafar MS, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Biomimetic Approaches in Clinical Endodontics. Biomimetics (Basel) 2022; 7:biomimetics7040229. [PMID: 36546929 PMCID: PMC9775094 DOI: 10.3390/biomimetics7040229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, biomimetic concepts have been widely adopted in various biomedical fields, including clinical dentistry. Endodontics is an important sub-branch of dentistry which deals with the different conditions of pulp to prevent tooth loss. Traditionally, common procedures, namely pulp capping, root canal treatment, apexification, and apexigonesis, have been considered for the treatment of different pulp conditions using selected materials. However, clinically to regenerate dental pulp, tissue engineering has been advocated as a feasible approach. Currently, new trends are emerging in terms of regenerative endodontics which have led to the replacement of diseased and non-vital teeth into the functional and healthy dentine-pulp complex. Root- canal therapy is the standard management option when dental pulp is damaged irreversibly. This treatment modality involves soft-tissue removal and then filling that gap through the obturation technique with a synthetic material. The formation of tubular dentine and pulp-like tissue formation occurs when stem cells are transplanted into the root canal with an appropriate scaffold material. To sum up tissue engineering approach includes three components: (1) scaffold, (2) differentiation, growth, and factors, and (3) the recruitment of stem cells within the pulp or from the periapical region. The aim of this paper is to thoroughly review and discuss various pulp-regenerative approaches and materials used in regenerative endodontics which may highlight the current trends and future research prospects in this particular area.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
- Correspondence: ; Tel.: +92-333-2818500
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | | | - Ricardo E. Oñate-Sánchez
- Department of Special Care in Dentistry, Hospital Morales Meseguer, IMIB-Arrixaca, University of Murcia, 30008 Murcia, Spain
| |
Collapse
|
15
|
LIGHT-CURED CALCIUM SILICATE BASED-CEMENTS AS PULP THERAPEUTIC AGENTS: A META-ANALYSIS OF CLINICAL STUDIES. J Evid Based Dent Pract 2022; 22:101776. [PMID: 36494107 DOI: 10.1016/j.jebdp.2022.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To determine the clinical performance of light-cured calcium silicate-based cement for direct or indirect pulp capping. The research question was as follows: in teeth with deep caries lesions, does the use of resin-modified calcium silicate-containing composites improve the radiological success and prevent irreversible pulpitis and pulpal necrosis compared with other pulp-capping agents? MATERIALS AND METHODS The following databases were screened until September 2021: PubMed, Web of Science, Scielo, Scopus, Embase, and The Cochrane Library. Randomized clinical trials reporting the clinical evaluation of a resin-modified calcium silicate material as an agent for pulp therapy were included. Meta-analysis was performed using the Rev Manager v5.4.1 software. The risk difference and 95% confidence interval of the dichotomous outcome (restoration failure or success) were calculated for comparison. RESULTS Ten studies were considered for qualitative analysis and meta-analysis. Studies evaluating the performance of light-cured calcium silicate-based cement from 1 month to a maximum follow-up period of 36 months and comparing it with the performance of CaOH, mineral trioxide aggregate, or Biodentine were included. In the global analysis for direct pulp capping at 6-month follow-up, no statistical differences were observed between the experimental group using the light-cured calcium silicate-based cement and control group (P = .28). However, at 12-month follow-up, global analysis favored the control group (P < .001). For indirect pulp capping, at 6- and 24-month follow-ups, no statistically significant differences were observed between the experimental and control groups (P = .88; P = .21). CONCLUSIONS Light-cured calcium silicate-based cement showed a limited clinical performance as a direct pulp capping agent, especially when evaluated in the long term. However, using it as an indirect pulp capping agent may be a reliable and easy-to-use option for restoring teeth with deep caries. CLINICAL SIGNIFICANCE This systematic review provides evidence that supports the use of light-cured calcium silicate-based cement as an indirect pulp capping agent.
Collapse
|
16
|
ASSADIAN H, KHOJASTEH A, EBRAHIMIAN Z, AHMADINEJAD F, BOROOJENI HSH, BOHLOULI M, NEKOOFAR MH, MH DUMMER P, NOKHBATOLFOGHAHAEI H. Comparative evaluation of the effects of three hydraulic calcium silicate cements on odontoblastic differentiation of human dental pulp stem cells: an in vitro study. J Appl Oral Sci 2022; 30:e20220203. [PMID: 36350874 PMCID: PMC9651926 DOI: 10.1590/1678-7757-2022-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/02/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The study aimed to compare the response of human dental pulp stem cells (hDPSCs) towards three hydraulic calcium silicate cements (HCSCs) by measuring cytotoxicity and expression of dentinogenic genes. METHODOLOGY Dental pulps of five impacted mandibular third molars were extirpated as a source for hDPSCs. Next to culturing, hDPSCs were subjected to fluorescence-activated cell sorting after the third passage to validate stemness of the cells. Human DPSCs were exposed to diluted supernatants of OrthoMTA (OMTA), Biodentine (BD) and Calcium-Enriched Mixture (CEM) at concentrations 10, 25, 50 and 100% at the first, third and fifth day of culture. Then, cells were exposed to 10% concentrations supernatant of HCSCs to determine DSPP and DMP1 gene expression, using a quantitative polymerase-chain reaction. Data were analyzed using one-way and three-way ANOVA, followed by Tukey post hoc statistical tests. RESULTS Optimal cell proliferation was observed in all groups, regardless of concentration and time-point. HCSC supernatants were non-cytotoxic to hDPSCs at all three time-points, except for 100% Biodentine on day five. On day seven, OMTA group significantly upregulated the expression of DSPP and DMP1 genes. On day 14, expression of DMP1 and DSPP genes were significantly higher in BD and OMTA groups, respectively. CONCLUSION Biodentine significantly upregulated DMP1 gene expression over 14 days, whereas CEM was associated with only minimal expression of DSPP and DMP1 .
Collapse
Affiliation(s)
- Hadi ASSADIAN
- Tehran University of Medical SciencesSchool of DentistryDepartment of EndodonticsTehranIranTehran University of Medical Sciences, School of Dentistry, Department of Endodontics, Tehran, Iran.
| | - Arash KHOJASTEH
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| | | | - Fereshteh AHMADINEJAD
- Shahrekord University of Medical ScienceCellular and Molecular Research CenterShahrekordIranShahrekord University of Medical Science, Cellular and Molecular Research Center, Shahrekord, Iran.
| | - Helia Sadat Haeri BOROOJENI
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| | - Mahboubeh BOHLOULI
- Shahid Beheshti University of Medical SciencesSchool of Advanced Technologies in MedicineDepartment of Tissue Engineering and Applied Cell SciencesTehranIranShahid Beheshti University of Medical Sciences, School of Advanced Technologies in Medicine, Department of Tissue Engineering and Applied Cell Sciences, Tehran, Iran.
| | - Mohammad Hossein NEKOOFAR
- Tehran University of Medical SciencesSchool of DentistryDepartment of EndodonticsTehranIranTehran University of Medical Sciences, School of Dentistry, Department of Endodontics, Tehran, Iran.
| | - Paul MH DUMMER
- Cardiff UniversityCollege of Biomedical and Life SciencesSchool of DentistryCardiffUKCardiff University, College of Biomedical and Life Sciences, School of Dentistry, Cardiff, UK.
| | - Hanieh NOKHBATOLFOGHAHAEI
- Shahid Beheshti University of Medical SciencesResearch Institute of Dental SciencesDental Research CenterTehranIranShahid Beheshti University of Medical Sciences, Research Institute of Dental Sciences, Dental Research Center, Tehran, Iran.
| |
Collapse
|
17
|
Kim Y, Lee D, Kye M, Ha YJ, Kim SY. Biocompatible Properties and Mineralization Potential of Premixed Calcium Silicate-Based Cements and Fast-Set Calcium Silicate-Based Cements on Human Bone Marrow-Derived Mesenchymal Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7595. [PMID: 36363187 PMCID: PMC9654067 DOI: 10.3390/ma15217595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Premixed calcium silicate-based cements (CSCs) and fast-set CSCs were developed for the convenience of retrograde filling during endodontic microsurgery. The aim of this study was to analyze the biocompatible properties and mineralization potential of premixed CSCs, such as Endocem MTA Premixed (EM Premixed) and EndoSequence BC RRM putty (EndoSequence), and fast-set RetroMTA on human bone marrow-derived mesenchymal stem cells (BMSCs) compared to ProRoot MTA. Using CCK-8, a significantly higher proliferation of BMSCs occurred only in the EM Premixed group on days 2 and 4 (p < 0.05). On day 6, the ProRoot MTA group had significantly higher cell proliferation than the control group (p < 0.05). Regardless of the experimental materials, all groups had complete cell migration by day 4. Alizarin Red-S staining and alkaline phosphatase assay demonstrated higher mineralization potential of all CSCs similar to ProRoot MTA (p < 0.05). The EndoSequence group showed more upregulation of SMAD1 and OSX gene expression than the other experimental groups (p < 0.05), and all experimental cements upregulated osteogenic gene expression more than the control group (p < 0.05). Therefore, using premixed CSCs and fast-set CSCs as retrograde filling cements may facilitate satisfactory biological responses and comparable osteogenic potential to ProRoot MTA.
Collapse
Affiliation(s)
- Yemi Kim
- Department of Conservative Dentistry, College of Medicine, Ewha Womans University, Seoul 07986, Korea
| | - Donghee Lee
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Minjoo Kye
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yun-Jae Ha
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sin-Young Kim
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
18
|
Kim B, Lee YH, Kim IH, Lee KE, Kang CM, Lee HS, Choi HJ, Cheon K, Song JS, Shin Y. Biocompatibility and mineralization potential of new calcium silicate cements. J Dent Sci 2022. [PMID: 37404639 PMCID: PMC10316440 DOI: 10.1016/j.jds.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background/purpose As calcium silicate cements (CSCs) have been successfully used in various types of vital pulp therapy, many new CSC products have been developed. The aim of this study was to evaluate the biocompatibilities and mineralization potential of new CSC. The experimental materials were NeoMTA Plus and EndoSequence Root Repair Material-Fast Set Putty (ERRM-FS) which were compared to ProRoot MTA. Materials and methods In vitro, the effects of the new CSC on stem cells were evaluated. Each CSC was prepared for cell viability testing, alkaline phosphatase (ALP) assay, and calcium ion release assay. In vivo, the exposed pulp model was used for the partial pulpotomy procedure. Thirty-six teeth were treated with three materials: ProRoot MTA, NeoMTA Plus, or ERRM-FS. After four weeks, the teeth were extracted and processed for histologic analysis. Dentin bridge formation, pulp inflammation, and odontoblastic cell layer were evaluated and the area of newly formed calcific barrier of each group was measured. Results Three CSCs demonstrated similar cell viability on stem cells and the levels of ALP and calcium release were not significantly different between tested materials. ProRoot MTA and ERRM-FS showed better tissue healing process than NeoMTA Plus after partial pulpotomy, in terms of quality of calcific barrier and pulp inflammation. The outcomes from measuring newly formed calcific area demonstrated no significant differences between the materials. Conclusion NeoMTA Plus and ERRM-FS displayed similar biocompatibilities and mineralization potential compared to ProRoot MTA. Therefore, these new CSCs can be used as desirable alternatives to ProRoot MTA.
Collapse
|
19
|
Physicochemical and biological properties of four calcium silicate-based endodontic cements. J Dent Sci 2022; 17:1586-1594. [PMID: 36299316 PMCID: PMC9588830 DOI: 10.1016/j.jds.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background/purpose Materials and methods Results Conclusion
Collapse
|
20
|
Franzin NRS, Sostena MMDS, Santos ADD, Moura MR, Camargo ERD, Hosida TY, Delbem ACB, Moraes JCS. Novel pulp capping material based on sodium trimetaphosphate: synthesis, characterization, and antimicrobial properties. J Appl Oral Sci 2022; 30:e20210483. [PMID: 35352770 PMCID: PMC8963389 DOI: 10.1590/1678-7757-2021-0483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES To evaluate the mechanical, physicochemical, and antimicrobial properties of four different formulations containing micro- or nanoparticles of sodium trimetaphosphate (mTMP and nTMP, respectively). METHODOLOGY Four experimental groups were used in this investigation: two mTMP groups and two nTMP groups, each containing zirconium oxide (ZrO2), and solution containing either chitosan or titanium oxide (TiO2) nanoparticles (NPs). Setting time, compression resistance, and radiopacity were estimated. The agar diffusion test was used to assess the antimicrobial activity of the formulations against five different microbial strains: Streptococcus mutans, Lactobacillus casei, Actinomyces israelii, Candida albicans, and Enterococcus faecalis. Parametric and nonparametric tests were performed after evaluating homoscedasticity data (p<0.05). RESULTS From the properties evaluated, nTMP cements required less setting time and showed greater resistance to compression. Cements containing TiO2 showed greater radiopacity for both nTMP and mTMP. All four cement formulations showed antimicrobial activity against S. mutans and L. casei. CONCLUSION Formulations containing nTMP have shorter setting times and higher compressive strength, and those with TiO2 nanoparticles showed antimicrobial activities. Clinical relevance: The cement containing nTMP, ZrO2, and TiO2 could be an alternative material for protecting the pulp complex.
Collapse
Affiliation(s)
| | | | | | - Marcia Regina Moura
- Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteira, SP, Brasil
| | | | - Thayse Yumi Hosida
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araçatuba, SP, Brasil
| | | | | |
Collapse
|
21
|
Edanami N, Ibn Belal RS, Yoshiba K, Yoshiba N, Ohkura N, Takenaka S, Noiri Y. Effect of a resin-modified calcium silicate cement on inflammatory cell infiltration and reparative dentin formation after pulpotomy in rat molars. AUST ENDOD J 2021; 48:297-304. [PMID: 34599767 DOI: 10.1111/aej.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 11/26/2022]
Abstract
Resin monomers and polymerisation initiators have been shown to be cytotoxic for pulp cells and to disturb odontoblast differentiation. This study aimed to compare the effect of a resin-modified calcium silicate cement (TheraCal LC; TC) and a resin-free calcium silicate cement (ProRoot MTA; PR) on pulpal healing after pulpotomy. Pulpotomy was performed on the maxillary first molars of 8-week-old rats using either PR or TC. After 1, 3, 7, 14 and 28 days, pulpal responses were assessed by micro-computed tomography, haematoxylin-eosin staining and immunostaining against CD68, which is a pan-macrophage marker. The results showed that pulpotomy with TC induced persistent infiltration of inflammatory cells, including CD68-positive macrophages, and delayed the formation of reparative dentin as compared with that with PR, although both materials allowed pulpal healing over the long term. Therefore, resin-modified TC was not as biocompatible nor bioinductive as resin-free PR when applied on the healthy pulp of rat molars.
Collapse
Affiliation(s)
- Naoki Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Razi Saifullah Ibn Belal
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kunihiko Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
22
|
Kwon W, Kim IH, Kang CM, Kim B, Shin Y, Song JS. Comparative study of pulpal responses to ProRoot MTA, Vitapex, and Metapex in canine teeth. J Dent Sci 2021; 16:1274-1280. [PMID: 34484596 PMCID: PMC8403786 DOI: 10.1016/j.jds.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/25/2020] [Indexed: 11/29/2022] Open
Abstract
Background/purpose ProRoot MTA, Vitapex, and Metapex are widely used for pulp treatment of primary tooth. The aim of this study was to compare the pulpal responses to ProRoot MTA, Vitapex, and Metapex in a canine model of pulpotomy. Materials and methods Pulpotomy procedure was performed to 34 teeth (21 incisors and 13 premolars) and ProRoot MTA, Vitapex or Metapex was applicated to artificially exposed pulp tissues. After 13 weeks, the teeth were extracted and processed with hematoxylin-eosin staining for histologic evaluation. All specimens were evaluated in several categorys related to calcific barrier, inflammatory responses and the area of calcific barrier formation was measured. Results Most of the specimens in the ProRoot MTA group developed a calcific barrier at the pulp amputation site and showed a low level of inflammatory response. However, in comparison to ProRoot MTA group, a small amount of calcific barrier formed in Vitapex and Metapex groups. Conclusion This in vivo study found that Vitapex and Metapex induced similar pulpal responses but showed poor outcomes compared with using ProRoot MTA. Vitapex and Metapex are therefore not good substitutes for ProRoot MTA in direct pulp capping and pulpotomy.
Collapse
Affiliation(s)
- Woojin Kwon
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Ik-Hwan Kim
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Chung-Min Kang
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Byurira Kim
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Yooseok Shin
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea.,Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Je Seon Song
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea.,Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Bakir EP, Yildirim ZS, Bakir Ş, Ketani A. Are resin-containing pulp capping materials as reliable as traditional ones in terms of local and systemic biological effects? Dent Mater J 2021; 41:78-86. [PMID: 34483201 DOI: 10.4012/dmj.2021-065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to compare the local and systemic effects of current pulp capping materials containing resin with those of traditional materials in an animal study. A total of 48 rats were used: a control group (n=12) (sub-control and negative control), a resin-containing group (n=18) (Calcimol LC, Theracal LC, Activa-BioActive Base/Liner), and a traditional group (n=18) (Biodentine, ProRoot MTA, Dycal). The materials which had been placed in polyethylene tubes were implanted in subcutaneous pockets. The rats were sacrificed at 1, 2, or 4 weeks. Evaluations were made of subcutaneous connective tissue, the left kidney, liver, and blood samples. Of all the study groups, MTA demonstrated biocompatibility at a level close to that of the control groups. Inflammation was observed to be more severe in resin-containing materials, but Activa Base/Liner showed a more successful local and systemic tissue response.
Collapse
Affiliation(s)
- Elif Pinar Bakir
- Dicle University, Faculty of Dentistry, Restorative Dentistry Department
| | | | - Şeyhmus Bakir
- Dicle University, Faculty of Dentistry, Restorative Dentistry Department
| | - Aydin Ketani
- Dicle University, Faculty of Veterinary Medicine, Histology and Embryology Department
| |
Collapse
|
24
|
Sanz JL, Soler-Doria A, López-García S, García-Bernal D, Rodríguez-Lozano FJ, Lozano A, Llena C, Forner L, Guerrero-Gironés J, Melo M. Comparative Biological Properties and Mineralization Potential of 3 Endodontic Materials for Vital Pulp Therapy: Theracal PT, Theracal LC, and Biodentine on Human Dental Pulp Stem Cells. J Endod 2021; 47:1896-1906. [PMID: 34425148 DOI: 10.1016/j.joen.2021.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The aim of this study was to assess the biological properties and mineralization potential of the new Theracal PT (Bisco Inc, Schaumburg, IL) compared with its predecessor Theracal LC (Bisco Inc) and the hydraulic silicate-based cement Biodentine (Septodont, Saint-Maur-des-Fossés, France) on human dental pulp stem cells (hDPSCs) in vitro. METHODS Standardized sample discs were obtained for each material (n = 30) together with 1:1, 1:2, and 1:4 material eluates. Previously characterized hDPSCs were cultured with the different materials in standardized conditions, and the following assays were performed: a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a wound healing assay, Annexin-V-FITC and 7-AAD staining (BD Biosciences, San Jose, CA), reactive oxygen species production analysis, cell adhesion and morphology evaluation via scanning electron microscopy and immunofluorescence, quantification of the expression of osteo/odontogenic markers via real-time quantitative reverse-transcriptase polymerase chain reaction, and alizarin red S staining. Statistical significance was established at P < .05. RESULTS All of the tested dilutions of Theracal LC exhibited a significantly higher cytotoxicity and reactive oxygen species production (P < .001) and a lower cell migration rate than the control group (hDPSCs cultured in growth medium without material extracts) at all of the measured time points (P < .001). Both 1:4 Theracal PT and Biodentine-treated hDPSCs exhibited similar levels of cytocompatibility to that of the control group, a significant up-regulation of at least 1 odontogenic marker (Biodentine: dentin sialophosphoprotein (P < .05); Theracal PT: osteonectin and runt-related transcription factor 2 [P < .001]), and a significantly higher mineralized nodule formation (P < .001). CONCLUSIONS The newly introduced TheraCal PT offers an improved in vitro cytocompatibility and mineralization potential on hDPSCs compared with its predecessor, TheraCal LC, and comparable biological properties to Biodentine.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Anna Soler-Doria
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Sergio López-García
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, IMIB Arrixaca, University of Murcia, Murcia, Spain; Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, IMIB Arrixaca, University of Murcia, Murcia, Spain
| | - Francisco J Rodríguez-Lozano
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, IMIB Arrixaca, University of Murcia, Murcia, Spain; Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Adrián Lozano
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Carmen Llena
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Julia Guerrero-Gironés
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, Murcia, Spain.
| | - María Melo
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| |
Collapse
|
25
|
Tucker RL, Ha WN. A Systematic Review Comparing Mineral Trioxide Aggregate to Other Commercially Available Direct Pulp Capping Agents in Dogs. J Vet Dent 2021; 38:34-45. [PMID: 34192968 DOI: 10.1177/08987564211024905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vital pulp therapy (VPT) and direct pulp capping (DPC) are procedures regularly performed in dogs for the management of acute tooth fractures and as part of management for traumatic malocclusions. The purpose of this review is to apply an evidence-based medicine approach to systematically review and evaluate the scientific literature evaluating the efficacy of mineral trioxide aggregate (MTA) to other commercially available materials used for VPT in the permanent teeth of dogs. The 9 studies meeting inclusion criteria were reviewed and each studies evidence was classified using a grading system modified from the Oxford Centre for Evidence-Based Medicine. For the studies meeting inclusion criteria, MTA consistently performed as well or better than other commercially available products in terms of calcific barrier formation and biocompatibility. This review found a lack of consistency between the studies making a direct comparison of the results unreliable. Future studies would benefit from the implementation of a standard scoring system for histology, equivalent and longer study duration times and the correlation of histological and radiographic data.
Collapse
Affiliation(s)
- Rebecca Lee Tucker
- Advanced Animal Dentistry, Veterinary Specialist Services, Underwood, Queensland, Australia
| | - William Nguyen Ha
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
26
|
Mena-Álvarez J, Rico-Romano C, Gutiérrez-Ortega C, Arias-Sanz P, Castro-Urda J. A Comparative Study of Biocompatibility in Rat Connective Tissue of a New Mineral Trioxide Compound (Theracal) versus MTA and a Bioactive G3 Glass. J Clin Med 2021; 10:jcm10122536. [PMID: 34201005 PMCID: PMC8226538 DOI: 10.3390/jcm10122536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this paper was to assess the differences in tissue response to implantation during 15, 30 and 45 days in the subcutaneous connective tissue of Wistar rats from three biomaterials: Angelus MTA®, Theracal LC®, and Angelus MTA® to which 25% bioglass G3 was added. Twenty-four Wistar rats were used, the materials were inserted into the rat’s dorsal area in silicone tubes 5 mm long by 1.5 mm diameter. Histological reaction was assessed at 15, 30, and 45 days after implantation. They were then stained with hematoxylin eosin and evaluated by two observers. Data were analyzed using Fisher’s exact test and Mann–Whitney’s U test was used to determine the association between variables. Angelus MTA induced the formation of dystrophic calcifications twice as much as Theracal LC (p < 0.05). The addition of G3 did not affect the greater or lesser occurrence of calcifications (p > 0.05). Theracal LC and MTA plus G3 caused an inflammatory reaction, which was chronic at 15 days and decreased in intensity, almost disappearing after 45 days. Theracal LC, as well as Angelus MTA plus G3, were well tolerated when implanted in the subcutaneous connective tissue of rat. Histologically, no inconvenience was found for the use by direct contact of Theracal LC, and the mixture of MTA with 25% bioactive glass G3, in the tissue of Wistar rats.
Collapse
Affiliation(s)
- Jesús Mena-Álvarez
- Department of Endodontics, Faculty of Dentistry, Alfonso X El Sabio University, 28691 Madrid, Spain;
- Correspondence: or
| | - Cristina Rico-Romano
- Department of Endodontics, Faculty of Dentistry, Alfonso X El Sabio University, 28691 Madrid, Spain;
| | | | - Pablo Arias-Sanz
- Veterinary Service, Central Defense Hospital “Gomez Ulla”, 28047 Madrid, Spain;
| | - Javier Castro-Urda
- Department of Veterinary, Faculty of Veterinary, Alfonso X El Sabio University, 28691 Madrid, Spain;
| |
Collapse
|
27
|
Kang TY, Choi JW, Seo KJ, Kim KM, Kwon JS. Physical, Chemical, Mechanical, and Biological Properties of Four Different Commercial Root-End Filling Materials: A Comparative Study. MATERIALS 2021; 14:ma14071693. [PMID: 33808262 PMCID: PMC8036496 DOI: 10.3390/ma14071693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
Commercial mineral trioxide aggregate (MTA) materials such as Endocem MTA (EC), Dia-Root Bio MTA (DR), RetroMTA (RM), and ProRoot MTA (PR) are increasingly used as root-end filling materials. The aim of this study was to assess and compare the physicochemical and mechanical properties and cytotoxicity of these MTAs. The film thicknesses of EC and DR were considerably less than that of PR; however, RM’s film thickness was greater than that of PR. In addition, the setting times of EC, DR, and RM were shorter than that of PR (p < 0.05). The solubility was not significantly different among all groups. The three relatively new MTA groups (EC, DR, and RM) exhibited a significant difference in pH variation and calcium ion release relative to the PR group (p < 0.05). The radiopacity of the three new MTAs was considerably less than that of PR. The mechanical strength of RM was not significantly different from that of PR (p > 0.05); however, the EC and DR groups were not as strong as PR (p < 0.05). All MTA groups revealed cytocompatibility. In conclusion, the results of this study confirmed that EC, RM, DR, and PR exhibit clinically acceptable physicochemical and mechanical properties and cell cytotoxicity.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (T.-Y.K.); (J.-W.C.); (K.-J.S.); (K.-M.K.)
| | - Ji-Won Choi
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (T.-Y.K.); (J.-W.C.); (K.-J.S.); (K.-M.K.)
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Kyoung-Jin Seo
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (T.-Y.K.); (J.-W.C.); (K.-J.S.); (K.-M.K.)
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (T.-Y.K.); (J.-W.C.); (K.-J.S.); (K.-M.K.)
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (T.-Y.K.); (J.-W.C.); (K.-J.S.); (K.-M.K.)
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-3081
| |
Collapse
|
28
|
Park SM, Rhee WR, Park KM, Kim YJ, Ahn J, Knowles JC, Kim J, Shin J, Jang TS, Jun SK, Lee HH, Lee JH. Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex. NANOMATERIALS 2021; 11:nano11030596. [PMID: 33673632 PMCID: PMC7997209 DOI: 10.3390/nano11030596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Dental caries causes tooth defects and clinical treatment is essential. To prevent further damage and protect healthy teeth, appropriate dental material is a need. However, the biocompatibility of dental material is needed to secure the oral environment. For this purpose, biocompatible materials were investigated for incorporated with dental capping material. Among them, nanomaterials are applied to dental materials to enhance their chemical, mechanical, and biological properties. This research aimed to study the physicochemical and mechanical properties and biocompatibility of a recently introduced light-curable mineral trioxide aggregate (MTA)-like material without bisphenol A-glycidyl methacrylate (Bis-GMA). To overcome the compromised mechanical properties in the absence of Bis-GMA, silica nanoparticles were synthesized and blended with a dental polymer for the formation of a nano-network. This material was compared with a conventional light-curable MTA-like material that contains Bis-GMA. Investigation of the physiochemical properties followed ISO 4049. Hydroxyl and calcium ion release from the materials was measured over 21 days. The Vickers hardness test and three-point flexural strength test were used to assess the mechanical properties. Specimens were immersed in solutions that mimicked human body plasma for seven days, and surface characteristics were analyzed. Biological properties were assessed by cytotoxicity and biomineralization tests. There was no significant difference between the tested materials with respect to overall physicochemical properties and released calcium ions. The newly produced material released more calcium ions on the third day, but 14 days later, the other material containing Bis-GMA released higher levels of calcium ions. The microhardness was reduced in a low pH environment, and differences between the specimens were observed. The flexural strength of the newly developed material was significantly higher, and different surface morphologies were detected. The recently produced extract showed higher cell viability at an extract concentration of 100%, while mineralization was clear at the conventional concentration of 25%. No significant changes in the physical properties between Bis-GMA incorporate material and nanoparticle incorporate materials.
Collapse
Affiliation(s)
- Sung-Min Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-M.P.); (Y.-J.K.); (J.A.); (J.S.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea;
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Woo-Rim Rhee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (W.-R.R.); (K.-M.P.)
| | - Kyu-Min Park
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (W.-R.R.); (K.-M.P.)
| | - Yu-Jin Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-M.P.); (Y.-J.K.); (J.A.); (J.S.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea;
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Junyong Ahn
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-M.P.); (Y.-J.K.); (J.A.); (J.S.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea;
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jonathan C. Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea;
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London WC1X 8LT, UK
| | - Jongbin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Jisun Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-M.P.); (Y.-J.K.); (J.A.); (J.S.)
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Tae-Su Jang
- Department of Pre-medi, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Soo-Kyung Jun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-M.P.); (Y.-J.K.); (J.A.); (J.S.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (W.-R.R.); (K.-M.P.)
- Department of Dental Hygiene, Hanseo University, 46. Hanseo 1-ro, Haemi-Myun, Seosan 31962, Chungcheognam-do, Korea
- Correspondence: (S.-K.J.); (H.-H.L.); (J.-H.L.); Tel.: +82-41-550-3081 (S.-K.J. & H.-H.L. & J.-H.L.); Fax: +82-41-559-7839 (S.-K.J. & H.-H.L. & J.-H.L.)
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-M.P.); (Y.-J.K.); (J.A.); (J.S.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea;
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (W.-R.R.); (K.-M.P.)
- Correspondence: (S.-K.J.); (H.-H.L.); (J.-H.L.); Tel.: +82-41-550-3081 (S.-K.J. & H.-H.L. & J.-H.L.); Fax: +82-41-559-7839 (S.-K.J. & H.-H.L. & J.-H.L.)
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (S.-M.P.); (Y.-J.K.); (J.A.); (J.S.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea;
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea; (W.-R.R.); (K.-M.P.)
- Correspondence: (S.-K.J.); (H.-H.L.); (J.-H.L.); Tel.: +82-41-550-3081 (S.-K.J. & H.-H.L. & J.-H.L.); Fax: +82-41-559-7839 (S.-K.J. & H.-H.L. & J.-H.L.)
| |
Collapse
|
29
|
Călin C, Sajin M, Moldovan VT, Coman C, Stratul SI, Didilescu AC. Immunohistochemical expression of non-collagenous extracellular matrix molecules involved in tertiary dentinogenesis following direct pulp capping: a systematic review. Ann Anat 2021; 235:151674. [PMID: 33400977 DOI: 10.1016/j.aanat.2020.151674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Extracellular matrix molecules (ECMM) expression during tertiary dentinogenesis provides useful information for regenerative applications and efficacy of pulp capping materials. AIM To identify and review the expression and roles of non-collagenous ECMM after successful direct pulp capping (DPC), following mechanical pulp exposures, via immunohistochemistry (IHC). The study addressed the question of where will successful DPC impact the IHC expression of these molecules. DATA SOURCES In vivo animal and human original clinical studies reporting on ECMM in relation to different follow-up periods were screened and evaluated via descriptive analysis. The electronic literature search was carried out in three databases (MEDLINE/PubMed, Web of Science, Scopus), followed by manual screening of relevant journals and cross-referencing, up to December 2018. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS Randomized and non-randomized controlled trials, conducted in humans and animals, were selected. Histological evidence for tertiary dentine formation was a prerequisite for IHC evaluation. STUDY APPRAISAL AND SYNTHESIS METHODS The methodological quality of the included articles was independently assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) and the Cochrane risk of bias tool (RoB 1), respectively. RESULTS From a total of 1534 identified studies, 18 were included. Thirteen papers evaluated animal subjects and five studies were carried out on humans. In animals and humans, fibronectin and tenascin expressions were detected in pulp and odontoblast-like cells (OLC); dentine sialoprotein was expressed in both soft and newly-formed mineralized tissue. In animals, bone sialoprotein was early expressed, in association with OLC and predentin; the immunoreactivity for dentine sialophosphoprotein and dentine matrix protein-1 was associated with the OLC and dentine bridge; osteopontin was expressed in OLC, predentine and reparative dentine. A considerable heterogeneity was found in the methodologies of the included studies, as well as interspecies variability of results in terms of time. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Within the limited scientific evidence, all non-collagenous ECMM expressions during tertiary dentinogenesis are active and related to soft and hard tissues. There is a shortage of human studies, and future research directions should focus more on them. PROSPERO Protocol: CRD42019121304.
Collapse
Affiliation(s)
- C Călin
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Romania
| | - M Sajin
- Chair of Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Romania
| | - V T Moldovan
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - C Coman
- Preclinical Testing Unit, Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - S I Stratul
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - A C Didilescu
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Romania.
| |
Collapse
|
30
|
Alazrag MA, Abu-Seida AM, El-Batouty KM, El Ashry SH. Marginal adaptation, solubility and biocompatibility of TheraCal LC compared with MTA-angelus and biodentine as a furcation perforation repair material. BMC Oral Health 2020; 20:298. [PMID: 33121465 PMCID: PMC7599098 DOI: 10.1186/s12903-020-01289-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This study evaluated the marginal adaptation, solubility and biocompatibility of TheraCal LC compared with mineral trioxide aggregate (MTA-Angelus) and Biodentine when used as a furcation perforation repair material. METHODS The marginal adaptation was assessed by scanning electronic microscope and presence of any gap between the dentin surface and filling material in each quadrant of the sample was analyzed at 1000 X magnification. The solubility was measured after one week by the ISO standard method. Biocompatibility was evaluated by the inflammatory response and radiography after one month and three months of repair of experimental furcation perforations in dog's teeth. RESULTS There were significant differences in the marginal adaptation, solubility and biocompatibility of the tested materials (P < 0.05). TheraCal LC showed the highest frequency distribution of gap presence that was followed by the MTA-Angelus then Biodentine. The least soluble material after one week was TheraCal LC that was followed by the MTA-Angelus and Biodentine. After one month and three months, TheraCal LC showed the highest inflammatory response and highest frequency distribution of radiolucency that was followed by the Biodentine then MTA-Angelus. CONCLUSION Unlike Biodentine, TheraCal LC is incapable of alternating the MTA in furcation perforation repair due to its poor biocompatibility and poor marginal adaptation.
Collapse
Affiliation(s)
- M A Alazrag
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - A M Abu-Seida
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza - Giza Square, 12211, Egypt.
| | - K M El-Batouty
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - S H El Ashry
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
31
|
Gasperi TL, Silveira JDACD, Schmidt TF, Teixeira CDS, Garcia LDFR, Bortoluzzi EA. Physical-Mechanical Properties of a Resin-Modified Calcium Silicate Material for Pulp Capping. Braz Dent J 2020; 31:252-256. [PMID: 32667514 DOI: 10.1590/0103-6440202003079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/23/2020] [Indexed: 03/21/2023] Open
Abstract
The purpose of this study was to investigate and to compare the physical-mechanical properties of a resin-modified calcium silicate material (TheraCal LC), used for pulp-capping, to MTA (Angelus) and a calcium hydroxide cement (Dycal). Specimens of each material (n=12) were prepared in Teflon molds (3.58 mm x 3 mm) and measured before and after immersion in distilled water for 24 h and 30 days to evaluate the dimensional change. The same specimens were submitted to compressive strength test on a Universal Testing Machine (Instron) (1 mm/min). Root canals were filled with the cements (n=8), and after 24 h, the bond strength (push-out test) to dentin was also assessed on a Universal Testing Machine (1 mm/min). Eight additional specimens of TheraCal LC were prepared to evaluate the bond strength immediately after light curing. Data were analyzed using One-Way ANOVA, and Tukey or Bonferroni post hoc tests (p<0.05). Percentage expansion of TheraCal LC was above the Specification No. 57 of ANSI/ADA, in both periods. The dimensional change for TheraCal LC was higher than MTA in 24 h and 30 days; and Dycal in 30 days (p<0.05). TheraCal LC had higher compressive and bond strength to dentin in comparison with MTA and Dycal (p<0.05). Although TheraCal LC expanded more than the ANSI/ADA recommendation, its compressive and push-out bond strength to dentin were satisfactory and superior to MTA and Dycal.
Collapse
Affiliation(s)
- Taynnara Licéski Gasperi
- Department of Dentistry, Endodontics Division, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Tamer Ferreira Schmidt
- Department of Dentistry, Endodontics Division, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Cleonice da Silveira Teixeira
- Department of Dentistry, Endodontics Division, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lucas da Fonseca Roberti Garcia
- Department of Dentistry, Endodontics Division, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Antunes Bortoluzzi
- Department of Dentistry, Endodontics Division, Health Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
32
|
Kunert M, Lukomska-Szymanska M. Bio-Inductive Materials in Direct and Indirect Pulp Capping-A Review Article. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1204. [PMID: 32155997 PMCID: PMC7085085 DOI: 10.3390/ma13051204] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
Abstract
The article is aimed at analyzing the available research and comparing the properties of bio-inductive materials in direct and indirect pulp capping procedures. The properties and clinical performances of four calcium-silicate cements (ProRoot MTA, MTA Angelus, RetroMTA, Biodentine), a light-cured calcium silicate-based material (TheraCal LC) and an enhanced resin-modified glass-ionomer (ACTIVA BioACTIVE) are widely discussed. A correlation of in vitro and in vivo data revealed that, currently, the most validated material for pulp capping procedures is still MTA. Despite Biodentine's superiority in relatively easier manipulation, competitive pricing and predictable clinical outcome, more long-term clinical studies on Biodentine as a pulp capping agent are needed. According to available research, there is also insufficient evidence to support the use of TheraCal LC or ACTIVA BioACTIVE BASE/LINER in vital pulp therapy.
Collapse
|
33
|
Frozoni M, Marques MR, Hamasaki SK, Mohara NT, de Jesus Soares A, Zaia AA. Contribution of Bone Marrow-derived Cells to Reparative Dentinogenesis Using Bone Marrow Transplantation Model. J Endod 2020; 46:404-412. [PMID: 31937463 DOI: 10.1016/j.joen.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The aim of this study was to analyze the contribution of bone marrow-derived cells (BMDCs) to reparative dentinogenesis using bone marrow transplantation (BMT) and pulp capping as an in vivo model. METHODS A chimeric mouse model was created through the injection of BMDCs expressing green fluorescent protein (GFP+ BMDCs) from C57BL/6 GFP+ transgenic donor mice into irradiated C57BL/6 wild-type recipient mice (GFP- mice). These GFP- chimeric mice (containing transplanted GFP+ BMDCs) were subjected to microscopic pulp exposure and capping with white mineral trioxide aggregate (n = 18) or Biodentine (Septodont, St Maur-des-Fossés, France) (n = 18) in the maxillary first molar. Maxillary arches from GFP- chimeric mice (with the capped tooth) were isolated and histologically processed 5 (n = 9) and 7 (n = 9) weeks after BMT. Confocal laser microscopy and immunohistochemical analysis were performed to assess the presence of GFP+ BMDCs and the expression of dentin sialoprotein, an odontoblast marker, for those cells contributing to reparative dentinogenesis in the dental pulp. RESULTS Confocal laser microscopic analyses evidenced the presence of GFP+ BMDCs in close association with reparative dentin synthesized at the site of pulp exposure in GFP- mice 5 and 7 weeks after BMT. Immunohistochemical analysis revealed that GFP+ BMDCs in close association with reparative dentin expressed DSP, suggesting the contribution of nonresident GFP+ BMDCs to reparative dentinogenesis. CONCLUSIONS These data suggest the presence of nonresident BMDCs in reparative dentinogenesis and its contribution to dental pulp regeneration in the pulp healing process.
Collapse
Affiliation(s)
- Marcos Frozoni
- Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Área de Endodontia, Campinas, São Paulo, Brazil.
| | - Marcelo Rocha Marques
- Department of Morphology, Division of Histology and Embryology, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Silvia Kaoru Hamasaki
- Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Área de Endodontia, Campinas, São Paulo, Brazil
| | - Nelson Tsutomu Mohara
- Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Área de Endodontia, Campinas, São Paulo, Brazil
| | - Adriana de Jesus Soares
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Alexandre Augusto Zaia
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
34
|
Dammaschke T, Nowicka A, Lipski M, Ricucci D. Histological evaluation of hard tissue formation after direct pulp capping with a fast-setting mineral trioxide aggregate (RetroMTA) in humans. Clin Oral Investig 2019; 23:4289-4299. [DOI: 10.1007/s00784-019-02876-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
|
35
|
Inami C, Nishitani Y, Haraguchi N, Itsuno S. Evaluation of the Solubility, Calcium-Release Ability, and Apatite-Forming Ability of a Novel Chemically Curable Mineral Trioxide Aggregate Material. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chidzuru Inami
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
- Sun Medical Co., Ltd
| | - Yoshihiro Nishitani
- Department of Restorative Dentistry & Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Naoki Haraguchi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Shinichi Itsuno
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| |
Collapse
|
36
|
Fan ML, He LB, Li JY. [Recent advances in direct pulp capping materials]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:675-680. [PMID: 30593117 DOI: 10.7518/hxkq.2018.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The long-term effect of direct pulp capping and pulpotomy is closely related to the type of pulp capping materials. Various kinds of direct pulp capping materials are available, such as calcium hydroxide and mineral trioxide aggregates. Diverse new pulp capping materials have been reported recently. The excellent performance of calcium silicates has attracted much attention in previous studies. Moreover, enamel matrix derivative (Emdogain), which is capable of regeneration and remineralization, and other materials with similar capabilities have shown potential for use in pulp capping.
Collapse
Affiliation(s)
- Meng-Lin Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li-Bang He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ji-Yao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Dental Pulp Response to RetroMTA after Partial Pulpotomy in Permanent Human Teeth. J Endod 2018; 44:1692-1696. [DOI: 10.1016/j.joen.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/30/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022]
|
38
|
Giraud T, Jeanneau C, Rombouts C, Bakhtiar H, Laurent P, About I. Pulp capping materials modulate the balance between inflammation and regeneration. Dent Mater 2018; 35:24-35. [PMID: 30269862 DOI: 10.1016/j.dental.2018.09.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 01/05/2023]
Abstract
The interrelations between inflammation and regeneration are of particular significance within the dental pulp tissue inextensible environment. Recent data have demonstrated the pulp capacity to respond to insults by initiating an inflammatory reaction and dentin pulp regeneration. Different study models have been developed in vitro and in vivo to investigate the initial steps of pulp inflammation and regeneration. These include endothelial cell interaction with inflammatory cells, stem cell interaction with pulp fibroblasts, migration chambers to study cell recruitment and entire human tooth culture model. Using these models, the pulp has been shown to possess an inherent anti-inflammatory potential and a high regeneration capacity in all teeth and at all ages. The same models were used to investigate the effects of tricalcium silicate-based pulp capping materials, which were found to modulate the pulp anti-inflammatory potential and regeneration capacity. Among these, resin-containing materials such as TheraCal® shift the pulp response towards the inflammatory reaction while altering the regeneration process. On the opposite, resin-free materials such as Biodentine™ have an anti-inflammatory potential and induce the pulp regeneration capacity. This knowledge contradicts the new tendency of developing resin-based calcium silicate hybrid materials for direct pulp capping. Additionally, it would allow investigating the modulatory effects of newly released pulp capping materials on the balance between tissue inflammation and regeneration. It would also set the basis for developing future capping materials targeting these processes.
Collapse
Affiliation(s)
- Thomas Giraud
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, 13005, France.
| | | | | | - Hengameh Bakhtiar
- Dental Material Research Center, Tehran Dental Branch, Islamic Azad University, Tehran, Iran.
| | - Patrick Laurent
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, 13005, France.
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France.
| |
Collapse
|
39
|
Giraud T, Jeanneau C, Bergmann M, Laurent P, About I. Tricalcium Silicate Capping Materials Modulate Pulp Healing and Inflammatory Activity In Vitro. J Endod 2018; 44:1686-1691. [PMID: 30217466 DOI: 10.1016/j.joen.2018.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION On stimulation by lipoteichoic acid or by a physical injury, fibroblasts have been shown to play a major role in the initiation of the pulp inflammatory reaction and healing through secretion of complement proteins and growth factors. The application of direct pulp-capping materials on these cells may interfere with the inflammatory and the healing processes within the pulp's inextensible environment. This work was designed to study in vitro the effects of silicate-based materials on pulp fibroblast modulation of the initial steps of pulp inflammation and healing. METHODS The effects of Biodentine, TheraCal, and Xeno III eluates were studied on lipoteichoic acid-stimulated and physically injured fibroblasts. Cytokine secretion (interleukin 6, vascular endothelial growth factor, fibroblast growth factor-2, and transforming growth factor-β1) was quantified by enzyme-linked immunosorbent assay. Inflammatory THP-1 adhesion to endothelial cells and their migration and activation were studied in vitro. Human pulp fibroblast proliferation was investigated with the MTT test, and their migration to the injury site was studied with the scratch healing assay. RESULTS Interleukin 6 and vascular endothelial growth factor secretion increased with all materials but to a lesser extent with Biodentine. Fibroblast growth factor-2 and transforming growth factor-β1 secretion was significantly higher with Biodentine than with all other materials. THP-1 cell adhesion to endothelial cells and their activation were reduced by Biodentine and TheraCal. However, their migration decreased only with Biodentine. Fibroblast proliferation significantly increased with Biodentine but significantly decreased with Xeno III after day 6. Finally, only Biodentine induced fibroblast migration to the injury site in the scratch assay. CONCLUSIONS These results confirm that pulp-capping materials affect the early steps of pulp inflammation and healing. They show that Biodentine had the highest pulp healing and anti-inflammatory potential when compared with the resin-containing materials. This highlights the interest of the material choice for direct pulp-capping.
Collapse
Affiliation(s)
- Thomas Giraud
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, France
| | | | - Madison Bergmann
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Patrick Laurent
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France.
| |
Collapse
|
40
|
Wongwatanasanti N, Jantarat J, Sritanaudomchai H, Hargreaves KM. Effect of Bioceramic Materials on Proliferation and Odontoblast Differentiation of Human Stem Cells from the Apical Papilla. J Endod 2018; 44:1270-1275. [PMID: 29935871 DOI: 10.1016/j.joen.2018.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In regenerative endodontic treatment (RET), practitioners favor the placement of bioceramics as sealing materials over blood clots. It is important to understand the interaction between sealing material and cells in the root canal. The purpose of this study was to compare the effectiveness of various bioceramic materials (ProRoot MTA [Dentsply, Tulsa, OK], Biodentine [Septodont, Saint-Maur-des-Fossés, France], and RetroMTA [BioMTA, Seoul, Korea]) as sealing materials in RET for the proliferation and differentiation of stem cells from the apical papilla (SCAPs). METHODS SCAPs were seeded at 20,000 cells/well and cultured with soluble agents of testing materials through a transwell culture plate. The proliferation of SCAPs was investigated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on days 1, 3, 7, and 14 of testing. Alizarin red staining and quantitative real-time polymerase chain reaction were used for SCAP differentiation at different time points (1, 7, 14, and 21 days). The odontoblast genes expressed are dentin matrix acidic phosphoprotein 1, dentin sialophosphoprotein, osteocalcin, and matrix extracellular phosphoglycoprotein, which were used in this study. The SCAPs were cultured in odonto/osteogenic induction medium and also contacted soluble agents from the testing materials. RESULTS All 3 tested biomaterials induced SCAP proliferation. The Biodentine, ProRootMTA, and RetroMTA groups showed significant SCAP proliferation on days 7 and 14 compared with the control. In regard to odontoblastic differentiation, only Biodentine showed positive alizarin red staining. The highest expressions of dentin matrix acidic phosphoprotein 1, dentin sialophosphoprotein, and matrix extracellular phosphoglycoprotein were found on day 21 in the Biodentine group. The expression of osteocalcin was found to be significant on day 7. CONCLUSIONS Biodentine, ProRootMTA, and RetroMTA can induce SCAP proliferation. Biodentine induced significant SCAP differentiation among the 3 materials.
Collapse
Affiliation(s)
- Ninnita Wongwatanasanti
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Jeeraphat Jantarat
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| | | | - Kenneth M Hargreaves
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
41
|
Pinheiro LS, Iglesias JE, Boijink D, Mestieri LB, Poli Kopper PM, Figueiredo JADP, Grecca FS. Cell Viability and Tissue Reaction of NeoMTA Plus: An In Vitro and In Vivo Study. J Endod 2018; 44:1140-1145. [PMID: 29866406 DOI: 10.1016/j.joen.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The aim of this study was to evaluate the cell viability and tissue reaction of NeoMTA Plus (NMP; Avalon Biomed Inc, Houston, TX) compared with mineral trioxide aggregate (MTA; Angelus, Londrina, PR, Brazil) and Biodentine (BD; Septodont, Saint-Maur-de-Fossés, France). METHODS Fibroblasts (3T3) were plated and exposed to 1% extract from the test material before and after setting. Cytotoxicity assessment was performed using the 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-tetrazolium bromide and sulforhodamine B assays. In vivo evaluation consisted of polyethylene tube implantation of the materials in rat subcutaneous tissue. Histologic analysis occurred at 7, 30, and 90 days, scoring inflammatory events and collagen fiber formation. Analysis of variance and the Tukey and t tests were used for cytocompatibility assays, and the Kruskal-Wallis test followed by the Dunn test were used for biocompatibility assays (P ≤ .05). RESULTS The materials in the cytotoxicity assays presented greater viability after setting (P ≤ .05). NMP and MTA presented higher viability than the control (Dulbecco modified Eagle medium) on the 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-tetrazolium bromide assay before and after setting (P ≤ .05). The sulforhodamine B assay showed that MTA and BD presented less viability than NMP and the control, and NMP was similar to the control before setting. After setting, MTA and BD presented higher viability when compared with the control group (P ≤ .05), and NMP was similar to control. Inflammatory infiltrate reduction occurred throughout the test periods for all materials. At 7 days, neutrophils were present in BD (P ≤ .05), and granuloma and giant cells were present in BD and MTA. At 30 days, BD showed intense inflammatory infiltrates and a large number of macrophages when compared with NMP, MTA, and the control (P ≤ .05). At 90 days, BD presented a thick fiber layer compared with NMP (P ≤ .05). CONCLUSIONS NMP showed similar biocompatible behavior to MTA and BD.
Collapse
Affiliation(s)
- Lucas Siqueira Pinheiro
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Eick Iglesias
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daiana Boijink
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Boldrin Mestieri
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Maria Poli Kopper
- Department of Conservative Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Antônio de Poli Figueiredo
- Department of Morphology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabiana Soares Grecca
- Department of Conservative Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Kang CM, Hwang J, Song JS, Lee JH, Choi HJ, Shin Y. Effects of Three Calcium Silicate Cements on Inflammatory Response and Mineralization-Inducing Potentials in a Dog Pulpotomy Model. MATERIALS 2018; 11:ma11060899. [PMID: 29861475 PMCID: PMC6025164 DOI: 10.3390/ma11060899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022]
Abstract
This beagle pulpotomy study compared the inflammatory response and mineralization-inducing potential of three calcium silicate cements: ProRoot mineral trioxide aggregate (MTA) (Dentsply, Tulsa, OK, USA), OrthoMTA (BioMTA, Seoul, Korea), and Endocem MTA (Maruchi, Wonju, Korea). Exposed pulp tissues were capped with ProRoot MTA, OrthoMTA, or Endocem MTA. After 8 weeks, we extracted the teeth, then performed hematoxylin-eosin and immunohistochemical staining with osteocalcin and dentin sialoprotein. Histological evaluation comprised a scoring system with eight broad categories and analysis of calcific barrier areas. We evaluated 44 teeth capped with ProRoot MTA (n = 15), OrthoMTA (n = 18), or Endocem MTA (n = 11). Most ProRoot MTA specimens formed continuous calcific barriers; these pulps contained inflammation-free palisading patterns in the odontoblastic layer. Areas of the newly formed calcific barrier were greater with ProRoot MTA than with Endocem MTA (p = 0.006). Although dentin sialoprotein was highly expressed in all three groups, the osteocalcin expression was reduced in the OrthoMTA and Endocem MTA groups. ProRoot MTA was superior to OrthoMTA and Endocem MTA in all histological analyses. ProRoot MTA and OrthoMTA resulted in reduced pulpal inflammation and more complete calcific barrier formation, whereas Endocem MTA caused a lower level of calcific barrier continuity with tunnel defects.
Collapse
Affiliation(s)
- Chung-Min Kang
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, 03722, Korea.
- Department of Pharmacology, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Jiwon Hwang
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, 03722, Korea.
| | - Je Seon Song
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, 03722, Korea.
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul 03722, Korea.
| | - Jae-Ho Lee
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, 03722, Korea.
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul 03722, Korea.
| | - Hyung-Jun Choi
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, 03722, Korea.
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul 03722, Korea.
| | - Yooseok Shin
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul 03722, Korea.
- Department of Conservative Dentistry, College of Dentistry, Yonsei University, 50-1 Yonseiro, Seodaemun-Gu, Seoul 03722, Korea.
| |
Collapse
|
43
|
Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial. Eur Arch Paediatr Dent 2018; 19:197-203. [PMID: 29767382 DOI: 10.1007/s40368-018-0348-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
Abstract
AIM This study was to compare the success of resin-modified Portland cement-based material (TheraCal) with MTA in direct pulp capping (DPC) of primary molars. METHODS Symmetrical bilateral primary molars (92) from 46 healthy subjects aged 5-7 years were included in this split-mouth randomised clinical trial. DPC for small non-contaminated pulp exposures using either TheraCal or MTA were randomly performed in symmetrical molars. Thereafter, teeth were restored with amalgam. Clinical and radiographic evaluations were performed at 6 and 12 month follow-ups. Data were analysed using Chi square test at a significance level of 0.05. RESULTS At the final follow-up session 74 teeth were available. After 12 months, the overall success rates for MTA and TheraCal were 94.5 and 91.8%, respectively. The difference between outcomes of the two groups was not statistically significant (P > 0.05). CONCLUSION Within the limitations of the current study, radiographic and clinical findings revealed that TheraCal exhibited a comparable outcome to MTA in DPC of primary molars after 12 months.
Collapse
|
44
|
TheraCal LC: From Biochemical and Bioactive Properties to Clinical Applications. Int J Dent 2018; 2018:3484653. [PMID: 29785184 PMCID: PMC5892295 DOI: 10.1155/2018/3484653] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022] Open
Abstract
Background Direct pulp capping is a popular treatment modality among dentists. TheraCal LC is a calcium silicate-based material that is designed as a direct/indirect pulp capping material. The material might be very attractive for clinicians because of its ease of handling. Unlike other calcium silicate-based materials, TheraCal LC is resin-based and does not require any conditioning of the dentine surface. The material can be bonded with different types of adhesives directly after application. There has been considerable research performed on this material since its launching; however, there are no review articles that collates information and data obtained from these studies. This review discusses the various characteristics of the material with the aim of establishing a better understanding for its clinical use. Methods A search was conducted using search engines (PubMed and Cochrane databases) in addition to reference mining of the articles that was used to locate other papers. The process of searching for the relevant studies was performed using the keywords pulp protection, pulp capping, TheraCal, and calcium silicates. Only articles in English published in peer-reviewed journals were included in the review. Conclusion This review underlines the fact that further in vitro and in vivo studies are required before TheraCal LC can be used as a direct pulp capping material.
Collapse
|
45
|
Jeanneau C, Laurent P, Rombouts C, Giraud T, About I. Light-cured Tricalcium Silicate Toxicity to the Dental Pulp. J Endod 2017; 43:2074-2080. [PMID: 29032813 DOI: 10.1016/j.joen.2017.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Numerous studies reported dentin bridge formation after pulp capping with tricalcium silicates. By contrast, pulp capping with resins leads to pulp toxicity and inflammation. Hybrid materials made up of tricalcium silicates and resins have also been developed to be used in direct pulp capping. This work was designed to study the consequences of adding resins to tricalcium silicates by investigating TheraCal (BISCO, Lançon De Provence, France) and Biodentine (Septodont, Saint Maur des Fosses, France) interactions with the dental pulp. METHODS Media conditioned with the biomaterials were used to analyze pulp fibroblast proliferation using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test and proinflammatory cytokine interleukin 8 (IL-8) secretion using the enzyme-linked immunosorbent assay. The effects of conditioned media on dentin sialoprotein (DSP) and nestin expression by dental pulp stem cells (DPSCs) were investigated by immunofluorescence. The materials' interactions with the vital pulp were investigated using the entire tooth culture model. RESULTS TheraCal-conditioned media significantly decreased pulp fibroblast proliferation, whereas no effect was observed with Biodentine. When DPSCs were cultured with Biodentine-conditioned media, immunofluorescence showed an increased expression of DSP and nestin. This expression was lower with TheraCal, which significantly induced proinflammatory IL-8 release both in cultured fibroblasts and entire tooth cultures. This IL-8 secretion increase was not observed with Biodentine. Entire tooth culture histology showed a higher mineralization with Biodentine, whereas significant tissue disorganization was observed with TheraCal. CONCLUSIONS Within the limits of these preclinical results, resin-containing TheraCal cannot be recommended for direct pulp capping.
Collapse
Affiliation(s)
| | - Patrick Laurent
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; Assistance Publique-Hôpitaux de Marseille (APHM), Hôpital Timone, Service d'Odontologie, Marseille, France
| | | | - Thomas Giraud
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France; Assistance Publique-Hôpitaux de Marseille (APHM), Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France.
| |
Collapse
|
46
|
Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J 2017; 51:177-205. [PMID: 28836288 DOI: 10.1111/iej.12841] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023]
Abstract
Mineral trioxide aggregate (MTA) is a bioactive endodontic cement (BEC) mainly comprised of calcium and silicate elements. The cement was introduced by Torabinejad in the 1990s and has been approved by the Food and Drug Administration to be used in the United States in 1997. A number of new BECs have also been introduced to the market, including BioAggregate, Biodentine, BioRoot RCS, calcium-enriched mixture cement, Endo-CPM, Endocem, EndoSequence, EndoBinder, EndoSeal MTA, iRoot, MicroMega MTA, MTA Bio, MTA Fillapex, MTA Plus, NeoMTA Plus, OrthoMTA, Quick-Set, RetroMTA, Tech Biosealer and TheraCal LC. It has been claimed that these materials have properties similar to those of MTA without its drawbacks. In this article, the chemical composition and the application of MTA and other BECs for vital pulp therapy (VPT), including indirect pulp cap, direct pulp cap, partial pulpotomy, pulpotomy and partial pulpectomy, have been reviewed and compared. Based on selected keywords, all papers regarding chemical composition and VPT applications of BECs had been reviewed. Most of the materials had calcium and silicate in their composition. Instead of referring to the cements based on their chemical compositions, we suggest the term 'bioactive endodontic cements (BECs)', which seems more appropriate for these materials because, in spite of differences in their chemical compositions, bioactivity is a common property for all of them. Numerous articles were found regarding use of BECs as VPT agents for indirect and direct pulp capping, partial pulpotomy and cervical pulpotomy. Most of these investigations used MTA for VPT. In most studies, newly introduced materials have been compared to MTA. Some of the BECs have shown promising results; however, the number of their studies compared to investigations on MTA is limited. Most studies had several methodological shortcomings. Future investigations with rigorous methods and materials are needed.
Collapse
Affiliation(s)
- M Parirokh
- Endodontology Research Center, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - M Torabinejad
- Department of Endodontics, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | - P M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
47
|
Human Pulp Responses to Partial Pulpotomy Treatment with TheraCal as Compared with Biodentine and ProRoot MTA: A Clinical Trial. J Endod 2017; 43:1786-1791. [PMID: 28822566 DOI: 10.1016/j.joen.2017.06.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Questions exist regarding the efficacy of resin-containing materials such as TheraCal directly applied on the pulp. This study sought to investigate the clinical efficacy of TheraCal as compared with Biodentine and ProRoot mineral trioxide aggregate (MTA) for partial pulpotomy. METHODS In this clinical trial, partial pulpotomy was performed for 27 sound human maxillary and mandibular third molars scheduled for extraction. The teeth were randomly divided into 3 groups (n = 9) and underwent partial pulpotomy with TheraCal, Biodentine, and ProRoot MTA. The teeth were then restored with glass ionomer cement. Clinical and electric pulp tests were performed after 1 and 8 weeks. The teeth were radiographed and extracted at 8 weeks. Histologic sections were prepared and analyzed for pulp inflammation and dentinal bridge formation. Data were analyzed by using one-way analysis of variance. RESULTS Clinical examination showed no sensitivity to heat, cold, or palpation in ProRoot MTA and Biodentine groups. Two patients in TheraCal group (20%) reported significant pain at 1 week. Periapical radiographs showed no periapical pathology, and electric pulp test revealed a normal pulp response with no hypersensitivity. Inflammation was absent with all materials at 8 weeks. Normal pulp organization was seen in 33.33% of the teeth in ProRoot MTA, 11.11% in TheraCal, and 66.67% in Biodentine group (P = .06). Biodentine group showed complete dentinal bridge formation in all teeth, whereas this rate was 11% and 56% in TheraCal and ProRoot MTA groups, respectively (P = .001). CONCLUSIONS Overall, Biodentine and MTA performed better than TheraCal when used as partial pulpotomy agent and presented the best clinical outcomes.
Collapse
|
48
|
Hinata G, Yoshiba K, Han L, Edanami N, Yoshiba N, Okiji T. Bioactivity and biomineralization ability of calcium silicate-based pulp-capping materials after subcutaneous implantation. Int Endod J 2017. [PMID: 28649791 DOI: 10.1111/iej.12802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIM To evaluate the abilities of three calcium silicate-based pulp-capping materials (ProRoot MTA, TheraCal LC and a prototype tricalcium silicate cement) to produce apatite-like precipitates after being subcutaneously implanted into rats. METHODOLOGY Polytetrafluoroethylene tubes containing each material were subcutaneously implanted into the backs of Wistar rats. At 7, 14 and 28 days post-implantation, the implants were removed together with the surrounding connective tissue, and fixed in 2.5% glutaraldehyde in cacodylate buffer. The chemical compositions of the surface precipitates formed on the implants were analysed with scanning electron microscopy-electron probe microanalysis (SEM-EPMA). The distributions of calcium (Ca) and phosphorus (P) at the material-tissue interface were also analysed with SEM-EPMA. Comparisons of the thicknesses of the Ca- and P-rich areas were performed using the Friedman test followed by Scheffe's test at a significant level of 5%. RESULTS All three materials produced apatite-like surface precipitates containing Ca and P. For each material, elemental mapping detected a region of connective tissue in which the concentrations of Ca and P were higher than those in the surrounding connective tissue. The thickness of this Ca- and P-rich region exhibited the following pattern: ProRoot MTA > prototype tricalcium silicate cement ≥ TheraCal LC. ProRoot MTA had a significantly thicker layer of Ca and P than the other materials at all time-points (P < 0.05), and a significant difference was detected between the prototype cement and TheraCal LC at 28 days (P < 0.05). CONCLUSION After being subcutaneously implanted, all of the materials produced Ca- and P-containing surface precipitates and a Ca- and P-rich layer within the surrounding tissue. The thickness of the Ca- and P-rich layer of ProRoot MTA was significantly thicker than that of the other materials.
Collapse
Affiliation(s)
- G Hinata
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - L Han
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
49
|
Hashemi-Beni B, Khoroushi M, Foroughi MR, Karbasi S, Khademi AA. Tissue engineering: Dentin - pulp complex regeneration approaches (A review). Tissue Cell 2017; 49:552-564. [PMID: 28764928 DOI: 10.1016/j.tice.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/04/2023]
Abstract
Dental pulp is a highly specialized tissue that preserves teeth. It is important to maintain the capabilities of dental pulp before a pulpectomy by creating a local restoration of the dentin-pulp complex from residual dental pulp. The articles identified were selected by two reviewers based on entry and exit criteria. All relevant articles indexed in PubMed, Springer, Science Direct, and Scopus with no limitations from 1961 to 2016 were searched. Factors investigated in the selected articles included the following key words: Dentin-Pulp Complex, Regeneration, Tissue Engineering, Scaffold, Stem Cell, and Growth Factors. Of the 233 abstracts retrieved, the papers which were selected had evaluated the clinical aspects of the application of dentin-pulp regeneration. Generally, this study has introduced a new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal. This study further presents a new strategy for local regeneration therapy of the dentin-pulp complex. This review summarizes the current knowledge of the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex as well as potential future developments in this exciting field.
Collapse
Affiliation(s)
- Batool Hashemi-Beni
- Torabinejad Dentistry Research Center and Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Khoroushi
- Dental Materials Research Center and Department of Operative and Art, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Foroughi
- Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Khademi
- Torabinejad Dentistry Research Center and Department of Endodonics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Yang S, Kim J, Choi N, Kim S. Management of Infected Immature Permanent Tooth with Pre-eruptive Intracoronal Resorption : Two Case Reports. ACTA ACUST UNITED AC 2017. [DOI: 10.5933/jkapd.2017.44.2.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|