1
|
Zhang G, Tao Z, Li B, Zhu J, Mo L, Cao Z, Du M, He H. CircHIPK3 regulates cementoblast differentiation via the miR-10b-5p/DOHH/NF-κB axis. Cell Signal 2024; 124:111427. [PMID: 39304099 DOI: 10.1016/j.cellsig.2024.111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intact cementum is vital for tooth stability and health. Cementoblasts, which line the root surface, are responsible for cementum formation. Recent evidence suggests that circular RNAs (circRNAs) are involved in various cellular functions and may have clinical applications. Although circHIPK3 has been shown to participate in osteogenesis, its role in cementoblast differentiation and mineralization is not well understood. METHODS The ring structure of circHIPK3 was confirmed using Sanger sequencing and an actinomycin D assay. Subcellular localization of circHIPK3 was assessed using a nucleus-cytoplasm separation assay. RT-qPCR was employed to analyze circHIPK3 expression during cementoblast differentiation and following TNF-α treatment. In vivo, periapical lesions were induced in mouse mandibular first molars to mimic an inflammatory environment, and circHIPK3 expression was evaluated. The interaction of the circHIPK3/miR-10b-5p/DOHH axis was explored through RNA pull-down assays, bioinformatics analysis, and dual-luciferase reporter assays. The effects on cementoblast differentiation and mineralization were assessed by measuring osteogenic markers, alkaline phosphatase (ALP) activity, ALP staining, and alizarin red S staining. RESULTS CircHIPK3 was predominantly located in the cytoplasm of cementoblasts, and its expression was significantly upregulated during cementoblast differentiation. Knockdown of circHIPK3 inhibited cementoblast differentiation and mineralization, whereas its overexpression promoted these processes. Mechanistically, circHIPK3 upregulated DOHH expression by sponging miR-10b-5p, thereby enhancing cementoblast differentiation and mineralization. The NF-κB pathway was found to act downstream of the circHIPK3/miR-10b-5p/DOHH axis in these processes. Additionally, circHIPK3 expression was significantly downregulated in inflammatory environments both in vitro and in vivo. Forced overexpression of circHIPK3 mitigated the inhibitory effects of TNF-α on cementoblast differentiation and mineralization. CONCLUSION CircHIPK3 acts as a positive regulator of cementoblast differentiation and mineralization through the miR-10b-5p/DOHH/NF-κB axis, playing a crucial role in both normal and pathological cementogenesis.
Collapse
Affiliation(s)
- Gengming Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhendong Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Biao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaqi Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lijuan Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingyuan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Pan D, Hao Y, Tao Y, Li B, Cheng L. The influence of microorganisms on bone homeostasis in apical periodontitis. Arch Oral Biol 2024; 170:106153. [PMID: 39644768 DOI: 10.1016/j.archoralbio.2024.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE This review aims to provide an overview of the role of microorganisms in the onset and progression of periapical diseases, particularly regarding their effects on bone homeostasis. DESIGN The search for this narrative review was conducted in PubMed, Web of Science and Google Scholar using relevant keywords, including checking reference lists of journal articles by hand searching. RESULTS Microorganisms directly promote osteoclasts through pathways such as nuclear factor-κB (NF-κB) and extracellular regulated protein kinases (ERK), while inhibiting osteoblasts function by interfering with the wingless-related integration site (Wnt)/β-catenin pathway in the periapical area. Moreover, microorganisms indirectly regulate periapical bone homeostasis by inducing programmed cell death and modulating the immune microenvironment through the activation of innate immunity via pattern-recognition receptors (PRRs) and subsequent cascades of responses. Among these microorganisms, Enterococcus faecalis, Porphyromonas gingivalis and Fusobacterium nucleatum play significant roles. CONCLUSION Microorganisms regulate pathways such as NF-ĸB and Wnt/β-catenin, as well as programmed cell death and the immune microenvironment in the periapical area, thereby disrupting bone homeostasis.
Collapse
Affiliation(s)
- Dan Pan
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Hao
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yuyan Tao
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Bolei Li
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lei Cheng
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Peng Y, Liu L, Li X, Song D, Huang D. B Cells at the Core: Immune Mechanisms and Therapeutic Potentials in Periapical Lesions. J Endod 2024:S0099-2399(24)00527-2. [PMID: 39393516 DOI: 10.1016/j.joen.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION Periapical lesions (PLs) are common inflammatory diseases primarily caused by microbial infections within root canals. These infections trigger complex immune responses in periapical tissues, with B lymphocytes playing dual roles: defending against pathogens while also contributing to tissue damage. This highlights the crucial role of B cells in the immunological processes of PLs. METHODS A comprehensive review of the literature on B cells in PLs was conducted using PubMed, Web of Science, Scopus, and ScienceDirect databases. RESULTS The review included 120 studies that examined the distribution and subtypes of B cells, their dual functions in PLs, and the potential applications of B-cell-related therapies in treating apical periodontitis. CONCLUSIONS This review enhances our understanding of the complex immune mechanisms in PLs and aids in the development of new therapeutic approaches from a B-cell perspective.
Collapse
Affiliation(s)
- Yangqing Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangfen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Ideo F, Niazi S, Chessa L, Miglianti M, Bardini G, Mannocci F, Cotti E. Prevalence of Apical Periodontitis in Patients with Autoimmune Liver Diseases on Immune Suppressants and Immune Modulators: A Cross-sectional Study. J Endod 2024; 50:784-791. [PMID: 38527610 DOI: 10.1016/j.joen.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/28/2024] [Accepted: 02/11/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Autoimmune liver diseases (ALDs) are chronic conditions generated by an immune-mediated autoaggressive inflammatory reaction in genetically susceptible individuals. The purpose of this study was to evaluate the prevalence of apical periodontitis (AP) in patients suffering from ALDs undergoing treatment with the immune suppressants glucocorticoids, azathioprine, and/or ursodeoxycholic acid. METHODS The ALD group included 46 patients (11 men and 35 women, average age = 57.9 ± 11.8 years) and 1186 teeth. The control group included 50 healthy patients not taking any medications (15 men and 35 women, average age = 58.6 ± 10.4 years) and 1251 teeth. Demographic data and medical, pharmacologic, and dental history were recorded. Dental and radiographic examinations were performed. The presence of AP; the periapical index score; decayed, missing, and filled teeth; quality of restoration, and root canal treatment were evaluated. The influence of the medications the patients were taking on the prevalence of AP was also tested. RESULTS The prevalence of AP was significantly lower in ALDs than in the control group at the patient (P = .019) and tooth level (P = .014). Smoking and age were associated with a significant increase in AP in cases and controls (P = .045 and P = .001, respectively). In both groups, endodontically treated teeth showed a higher prevalence of AP. CONCLUSIONS Considering the limitations because of the observational nature of the study, the patients affected by ALDs liver diseases and undergoing treatment with immune suppressors (often associated with immune modulators) were found to exhibit a lower prevalence of AP.
Collapse
Affiliation(s)
- Francesca Ideo
- Department of Conservative Dentistry and Endodontics, University of Cagliari, Cagliari, Italy.
| | - Sadia Niazi
- Department of Endodontology, Centre for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, Guy's Hospital, London, United Kingdom
| | - Luchino Chessa
- Liver Unit, Department of Internal Medicine, University of Cagliari, Cagliari, Italy
| | - Michela Miglianti
- Liver Unit, Department of Internal Medicine, University of Cagliari, Cagliari, Italy
| | - Giulia Bardini
- Department of Conservative Dentistry and Endodontics, University of Cagliari, Cagliari, Italy
| | - Francesco Mannocci
- Department of Endodontology, Centre for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, Guy's Hospital, London, United Kingdom
| | - Elisabetta Cotti
- Department of Conservative Dentistry and Endodontics, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Barbero-Navarro I, Irigoyen-Camacho ME, Zepeda-Zepeda MA, Ribas-Perez D, Castaño-Seiquer A, Sofian-Pauliuc I. Understanding the Dynamics of Inflammatory Cytokines in Endodontic Diagnosis: A Systematic Review. Diagnostics (Basel) 2024; 14:1099. [PMID: 38893626 PMCID: PMC11171959 DOI: 10.3390/diagnostics14111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The primary aim of this literature review is to delineate the key inflammatory cytokines involved in the pathophysiology of pulp inflammation. By elucidating the roles of these cytokines, a deeper comprehension of the distinct stages of inflamed pulp can be attained, thereby facilitating more accurate diagnostic strategies in endodontics. The PRISMA statement and Cochrane handbook were used for the search strategy. The keywords were created based on the review question using the PICO framework. The relevant studies were meticulously assessed according to predefined inclusion and exclusion criteria for this systematic review. A rigorous quality checklist was implemented to evaluate each included study, ensuring scrutiny for both quality and risk-of-bias assessments. The initial pilot search conducted on PubMed, Scopus, Cochrane, and WoS databases yielded 9 pertinent articles. Within these articles, multiple cytokines were identified and discussed as potential candidates for use in endodontic diagnosis, notably including IL-8, IL-6, TNF-α, and IL-2. These cytokines have been highlighted due to their significant roles in the inflammatory processes associated with pulp pathology. The identification of specific inflammatory cytokines holds promise for enhancing endodontic diagnostic procedures and exploring diverse treatment modalities. However, the current body of research in this area remains limited. Further comprehensive studies are warranted to fully elucidate the potential of cytokines in refining diagnostic techniques in endodontics.
Collapse
Affiliation(s)
| | | | | | - David Ribas-Perez
- Dental School, University of Seville, 41009 Seville, Spain; (I.B.-N.)
| | | | | |
Collapse
|
6
|
Ferreira RDO, Pereira MS, Souza-Monteiro D, Frazão DR, de Moura JDM, Baia-da-Silva DC, Bittencourt LO, Balbinot GDS, Collares FM, Lima MLDS, de Araújo AA, Lima RR. Physical training attenuates systemic cytokine response and tissue damage triggered by apical periodontitis. Sci Rep 2024; 14:8030. [PMID: 38580668 PMCID: PMC10997662 DOI: 10.1038/s41598-024-58384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Apical periodontitis (AP) is a condition characterized by inflammatory and infectious components in the tooth canal. AP affects periradicular tissues and has systemic repercussions. Physical exercise is a structured activity that requires cardiorespiratory function, and can modulate the inflammatory profile in pathological conditions. As a result, this study aimed to determine the effects of aerobic physical training (PT) on the alveolar bone with and without AP, and its systemic inflammatory repercussions. AP was induced in the mandibular first molars, and PT was performed on a treadmill for five consecutive days over four weeks, with progressive increases in speed and activity time. Blood samples were collected to determine serum cytokine levels using immunoassays, and alveolar bone samples were collected for histopathological evaluation, lesion volume and microarchitecture assessment using computed microtomography. Animals with AP had increased pro-inflammatory cytokines levels compared to those without AP; however, these levels were attenuated or restored by PT. Compared to the AP group, the AP + PT group had a smaller lesion volume and greater preservation of the bone trabeculae in the remaining alveolar bone surrounding the lesion. In overall, PT minimized the severity of AP proving to be a valid strategy for individuals undergoing endodontic treatment.
Collapse
Affiliation(s)
- Railson de Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Matheus Soares Pereira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - João Daniel Mendonça de Moura
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Gabriela de Souza Balbinot
- Dental Materials Laboratory, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Laura de Souza Lima
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil.
| |
Collapse
|
7
|
Almeida LKY, Battaglino RA, Araujo LDC, Lucisano MP, Massoni VV, da Silva LAB, Nelson-Filho P, Morse LR, da Silva RAB. TLR2 agonist prevents the progression of periapical lesions in mice by reducing osteoclast activity and regulating the frequency of Tregs. Int Endod J 2024; 57:328-343. [PMID: 38236318 DOI: 10.1111/iej.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
AIM To evaluate the role of regulatory T lymphocytes (Tregs) in the presence or absence of the synthetic ligand Pam3Cys during the progression of periapical lesion in wild-type (WT) and toll-like receptor 2 knockout (TLR2KO) mice. METHODOLOGY A total of 130 C57BL/6 male WT and TLR2KO mice were allocated into control (n = 5) and experimental (periapical lesion induction) (n = 10) groups. In specific groups (WT+Pam3cys and TLR2KO+Pam3cys), the synthetic ligand Pam3cys was administered intraperitoneally every 7 days, according to the experimental period (14, 21 and 42 days). At the end of those periods, the animals were euthanized, and the mandible and the spleen were submitted to histotechnical processing. Mandible histological sections were analysed by haematoxylin and eosin, TRAP histoenzymology and immunohistochemistry (FOXP3, RANK, RANKL and OPG). Spleen sections were analysed by immunohistochemistry (FOXP3). RESULTS The inflammatory infiltrate and bone resorption were more intense in the TLR2KO group compared to the WT group. The animals that received the Pam3cys had smaller periapical lesions when compared to the animals that did not receive the ligand (p < .05). TLR2KO animals showed a significant increase in the number of osteoclasts when compared to TLR2KO+Pam3cys group (p < .05). At 21 days, the WT+Pam3cys group had a lower number of osteoclasts when compared to the WT animals (p = .02). FOXP3 expression was more intense in the WT+Pam3cys groups when compared to the WT animals in the 42 days (p = .03). In the spleen analysis, the WT+Pam3cys group also had a higher expression of FOXP3 when compared to the WT animals at 14 and 42 days (p = .02). Concerning RANKL, there was a reduction in staining in the KOTLR2+Pam3cys groups at 21 and 42 days (p = .03) and a higher binding ratio between RANK/RANKL in animals that did not receive the ligand. CONCLUSION Administration of the Pam3cys increased the proliferation of Tregs, showed by FOXP3 expression and prevented the progression of the periapical lesion in WT mice. On the other hand, in the TLR2KO animals, Treg expression was lower with larger areas of periapical lesions. Finally, systemic administration of the Pam3cys in KO animals was able to limit the deleterious effects of the absence of the TLR2 receptor.
Collapse
Affiliation(s)
- Lana Kei Yamamoto Almeida
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Anibal Battaglino
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa Danielly Curcino Araujo
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marília Pacífico Lucisano
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vivian Vicentin Massoni
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leslie Rae Morse
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Maia CA, Chaves HGDS, Benetti F, de Menezes GB, Antunes MM, Pinto KP, Silva EJNL, Sobrinho APR, Tavares WLF. Zoledronic Acid Modulates Cytokine Expression and Mitigates Bone Loss during the Development of Induced Apical Periodontitis in a Mice Model. J Endod 2023; 49:1522-1528. [PMID: 37633518 DOI: 10.1016/j.joen.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
INTRODUCTION Bisphosphonates are antiresorptive drugs used worldwide to treat systemic bone pathologies. This study aimed to assess the impact of zoledronic acid on the progression of induced apical periodontitis and the expression of cytokines interleukin (IL)-1β, IL-10, IL-6, and tumor necrosis factor alpha (TNF-α) in a mouse model. METHODS Sixteen female isogenic BALB/c mice 6 weeks of age were distributed into 2 groups: mice with induced apical periodontitis (the AP group, n = 8) and mice with induced apical periodontitis treated with zoledronic acid (the AP-ZA group, n = 8). The AP-ZA group received a dose of 125 μg/kg zoledronic acid diluted in sterile saline solution administered intraperitoneally once a week for 4 weeks before pulp exposure, whereas the AP group received only saline solution. Pulp exposures were performed on the maxillary first molars for the induction of apical periodontitis, and mice were euthanized after 7 and 21 days. The jaws were collected; scanned using micro-computed tomographic imaging; and processed for polymerase chain reaction analysis of IL-1β, IL-10, IL-6, and TNF-α. The Student t test was performed for parametric data, and Mann-Whitney U tests were used for nonparametric data. The level of significance was set at 5%. RESULTS Micro-computed tomographic imaging revealed higher bone resorption in the AP group compared with the AP-ZA group at both time points (P < .05). Real-time polymerase chain reaction demonstrated higher TNF-α expression in the AP group at both time points and higher IL-6 and IL-1β expression in the AP group at the 7- and 21-day time points, respectively, compared with the AP-ZA group (P < .05). No differences were observed regarding IL-10 expression between the groups. CONCLUSIONS Zoledronic acid had significant anti-inflammatory and antiresorptive effects on apical periodontitis in mice.
Collapse
Affiliation(s)
- Caroline Andrade Maia
- School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Francine Benetti
- School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Maísa Mota Antunes
- School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karem Paula Pinto
- School of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emmanuel João Nogueira Leal Silva
- School of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil; Grande Rio University, Duque de Caxias, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
9
|
Lin X, Lv X, Li B, Meng Q, Lai H, Gong Q, Tong Z. Heterogeneity of T cells in periapical lesions and in vitro validation of the proangiogenic effect of GZMA on HUVECs. Int Endod J 2023; 56:1254-1269. [PMID: 37400946 DOI: 10.1111/iej.13951] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
AIM T cells are key immunomodulatory cells in periapical lesions. This study aimed to explore the roles of T cells in chronic apical periodontitis (CAP) using single-cell RNA sequencing and to further investigate Granzyme A (GZMA) in angiogenesis regulation. METHODOLOGY A total of five CAP samples were collected for single-cell RNA sequencing. We performed subcluster and lineage-tracing analyses for T cells. According to differential gene expression, distinct biological functions enriched in T cells of CAP were presented by gene set enrichment analysis (GSEA) and compared with healthy gingiva (data obtained from the GEO database). CellChat was used to explore potential ligand-receptor interactions between T cells and endothelial cells in CAP. The coculture of primary human umbilical vein endothelial cells (HUVECs) and Jurkat T cells, as well as the addition of GZMA recombinant protein, was used to validate the predicted pair of GZMA and coagulation factor II thrombin receptor (F2R) by RT-PCR, angiogenesis and migration assays. RESULTS A transcriptomic atlas of 44 746 individual cells was constructed from the periapical lesions of five patients with CAP by single-cell RNA-seq, and eight cell types were identified. We identified nine subsets of T cells and deciphered the cellular heterogeneity of T cells in CAP at the functional level by subclustering and GSEA. Lineage tracing revealed a distinct lineage of T cells in CAP and predicted the transition of the T cellular state upon CAP. GSEA revealed multiple biological processes and relevant angiogenesis genes upregulated in CAP T cells. GZMA-F2R pairs were predicted by cell-cell interactions in CAP. High expression of GZMA and F2R was observed in the coculture of HUVECs and Jurkat T cells, and the proangiogenic capacity of the GZMA recombinant protein was emphasized by in vitro experiments. CONCLUSIONS Our study provides novel insights into the heterogeneity of T cells in periapical lesions and reveals the potential role of GZMA in T cells in regulating angiogenesis in HUVECs.
Collapse
Affiliation(s)
- Xinwei Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baoyu Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qingzhen Meng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongbin Lai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhongchun Tong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Sathyanarayanan K, Ranjana NI, Bhavana M, R M, Sankar A, Mirnalini S. Asymptomatic Apical Periodontitis Lesions and Their Association With Systemic Inflammatory Burden: A Preliminary Prospective Clinical Study. Cureus 2023; 15:e46357. [PMID: 37920638 PMCID: PMC10619333 DOI: 10.7759/cureus.46357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Background: Apical periodontitis (AP) is an inflammatory disorder of the periapical tissues caused by the persistence of a microbial infection within the root canal system of the affected tooth. Clinically, it is symptomatic or asymptomatic depending on several factors such as the type of microorganisms, bacterial load, immunological reaction, and local tissue mediators. Chronic or asymptomatic infections may initiate and modulate intravascular accumulation of inflammatory cells resulting in endothelial dysfunction which subsequently represents a possible systemic inflammatory burden. Aim: The present study aimed to evaluate the relationship between asymptomatic AP and systemic inflammatory burden by assessing the levels of chronic inflammatory cells. Methodology: A total of 25 patients diagnosed with asymptomatic AP who showed a negative response to the pulp sensitivity test with no history of any systemic diseases were included in this preliminary prospective observational study. Blood samples were collected at each phase of the study, and a complete hemogram was carried out. All hematological parameters were recorded before and after root canal therapy and they were analyzed for statistical significance at p <.05 using IBM SPSS Statistics for Windows, Version 21 (Released 2012; IBM Corp., Armonk, New York, United States). Results: Evaluation of the mean total leukocyte count (TLC), lymphocyte, and eosinophil cell count showed a significant reduction in the number of cells before and after root canal therapy treatment respectively (p<.05). One-way analysis of variance also revealed statistical significance at p < .05 with a weak positive correlation between the TLC, lymphocyte, and eosinophil count before and after treatment. Conclusion: The present study showed that systemically healthy individuals with asymptomatic AP had increased inflammatory burden in the circulation, and thus, it is essential to identify and quantify the risk associated. It was evident that complete healing of the asymptomatic AP lesions results in an overall reduction of systemic inflammatory cells ultimately reducing the burden and risk of associated systemic inflammatory diseases.
Collapse
Affiliation(s)
| | - N I Ranjana
- Conservative Dentistry and Endodontics, Sathyabama Dental College and Hospital, Chennai, IND
| | - Mohan Bhavana
- Conservative Dentistry and Endodontics, Sathyabama Dental College and Hospital, Chennai, IND
| | - Megavarnan R
- Conservative Dentistry and Endodontics, Sathyabama Dental College and Hospital, Chennai, IND
| | - Aravinthan Sankar
- Conservative Dentistry and Endodontics, Sathyabama Dental College and Hospital, Chennai, IND
| | - Selvakumar Mirnalini
- Conservative Dentistry and Endodontics, Sathyabama Dental College and Hospital, Chennai, IND
| |
Collapse
|
11
|
Patel B, Eskander MA, Fang-Mei Chang P, Chapa B, Ruparel SB, Lai Z, Chen Y, Akopian A, Ruparel NB. Understanding painful versus non-painful dental pain in female and male patients: A transcriptomic analysis of human biopsies. PLoS One 2023; 18:e0291724. [PMID: 37733728 PMCID: PMC10513205 DOI: 10.1371/journal.pone.0291724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Dental pain from apical periodontitis is an infection induced-orofacial pain condition that presents with diversity in pain phenotypes among patients. While 60% of patients with a full-blown disease present with the hallmark symptom of mechanical allodynia, nearly 40% of patients experience no pain. Furthermore, a sexual dichotomy exists, with females exhibiting lower mechanical thresholds under basal and diseased states. Finally, the prevalence of post-treatment pain refractory to commonly used analgesics ranges from 7-19% (∼2 million patients), which warrants a thorough investigation of the cellular changes occurring in different patient cohorts. We, therefore, conducted a transcriptomic assessment of periapical biopsies (peripheral diseased tissue) from patients with persistent apical periodontitis. Surgical biopsies from symptomatic male (SM), asymptomatic male (AM), symptomatic female (SF), and asymptomatic female (AF) patients were collected and processed for bulk RNA sequencing. Using strict selection criteria, our study found several unique differentially regulated genes (DEGs) between symptomatic and asymptomatic patients, as well as novel candidate genes between sexes within the same pain group. Specifically, we found the role of cells of the innate and adaptive immune system in mediating nociception in symptomatic patients and the role of genes involved in tissue homeostasis in potentially inhibiting nociception in asymptomatic patients. Furthermore, sex-related differences appear to be tightly regulated by macrophage activity, its secretome, and/or migration. Collectively, we present, for the first time, a comprehensive assessment of peripherally diseased human tissue after a microbial insult and shed important insights into the regulation of the trigeminal system in female and male patients.
Collapse
Affiliation(s)
- Biraj Patel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael A. Eskander
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Phoebe Fang-Mei Chang
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Brett Chapa
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Shivani B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Armen Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nikita B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
12
|
Nunez N, Erdogan O, Casey SM, Hernandez R, Tan S, Gibbs JL. Elevated Cytokine Levels in Gingival Crevicular Fluid of Teeth with Apical Periodontitis. J Endod 2023:S0099-2399(23)00140-1. [PMID: 36965768 DOI: 10.1016/j.joen.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
INTRODUCTION Biomarkers assayed from gingival crevicular fluid (GCF) are a potential tool for endodontic diagnosis and for monitoring treatment response. This cross-sectional study measured cytokines in GCF from teeth with apical periodontitis and evaluated their relationship with preoperative pain and other clinical findings. METHODS Participants presenting for root-end resection surgery due to apical periodontitis diagnosis (n=56) underwent standardized clinical testing and completed preoperative questionnaires. GCF from diseased and control teeth were collected, processed, and analyzed. Mann-Whitney U and Wilcoxon tests were used to examine the cytokine levels in diseased compared to healthy control teeth. We also assessed the associations of cytokine levels with clinical findings. RESULTS Cytokines IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IFN-γ, and TNF-⍺ were detected in GCF. TNF-⍺ levels were significantly higher in GCF collected from diseased versus control teeth (p=0.02) and increased IL-1β levels in diseased teeth were detected (p=0.06). Lower IL-10 levels were observed in teeth with a sinus tract and/or swelling compared to teeth without a sinus tract and/or swelling (p=0.08). Cytokine levels did not clearly relate to the presence of pain. CONCLUSIONS Elevated levels of pro-inflammatory cytokines, including TNF-⍺ and IL1- β, were detected in GCF from diseased teeth compared to the healthy controls. Additional studies are needed to further investigate the utility of these biomarkers for objectively evaluating periradicular pathology.
Collapse
Affiliation(s)
- Natali Nunez
- Division of Endodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA
| | - Ozge Erdogan
- Division of Endodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA; Department of Endodontics, New York University College of Dentistry, New York, NY.
| | - Sharon M Casey
- Division of Endodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA; Department of Endodontics, New York University College of Dentistry, New York, NY
| | - Reinaldo Hernandez
- Division of Endodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA
| | - Summer Tan
- Division of Endodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA
| | - Jennifer L Gibbs
- Division of Endodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA; Department of Endodontics, New York University College of Dentistry, New York, NY
| |
Collapse
|
13
|
Segura-Egea JJ, Cabanillas-Balsera D, Martín-González J, Cintra LTA. Impact of systemic health on treatment outcomes in endodontics. Int Endod J 2023; 56 Suppl 2:219-235. [PMID: 35752972 DOI: 10.1111/iej.13789] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The healing of periapical lesions after root canal treatment (RCT) is not the result of the curative action of the treatment. The process of healing begins with inflammation, and is resolved by the clearance of the immunogen that induces the immune response. Then, the periapical tissue itself carries out the healing of the periapical lesion, by repair or by a combination of repair and regeneration, depending on the host's reparative response working properly. The ultimate objective of RCT is to achieve wound healing by removing the source of bacterial antigens and toxins, allowing chronic inflammatory tissue to become reparative tissue. Some systemic conditions increase the susceptibility of the host to infection or impair the tissue reparative response, maintaining the inflammatory process and periapical bone resorption after RCT. This can cause the failure of RCT and even the need for extraction of the affected tooth. OBJECTIVE To analyse the scientific literature on the possible influence of systemic conditions on the treatment outcomes in endodontics, as well as to discuss the biological mechanisms that may be involved. METHODS The search was carried out in PubMed, SCOPUS and EMBASE. The inclusion criteria established were original scientific articles reporting data about some systemic condition in relation to treatment outcomes in endodontics, including clinical studies and studies carried out in animal models. RESULTS Systemic factors (age, nutrition, stress, hormones, smoking habits), and systemic diseases, such as diabetes, cardiovascular diseases, osteoporosis, HIV infection, inflammatory bowel disease, and others, can influence or interfere in the repair of periapical tissues after RCT. DISCUSSION Some of these systemic diseases can alter bone turnover and fibroblast function, preventing or delaying periapical wound healing. Others can alter the microvasculature, reducing nutrients and oxygen supply to periapical tissues. As a result, these systemic conditions can decrease the success rate of RCT and provoke incomplete wound healing (typically granulomatous tissue formation) in the periapical region. CONCLUSIONS The results of this narrative review show worse success rate of RCT, with higher percentage of postoperative radiolucent periapical lesions and higher proportion of non-retained teeth (RFT), associated with several systemic conditions, such as smoking habits and diabetes.
Collapse
Affiliation(s)
- Juan J Segura-Egea
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, Sevilla, Spain
| | - Daniel Cabanillas-Balsera
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, Sevilla, Spain
| | - Jenifer Martín-González
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, Sevilla, Spain
| | - Luciano T A Cintra
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), São Paulo, Brazil
| |
Collapse
|
14
|
Fan Y, Lyu P, Bi R, Cui C, Xu R, Rosen CJ, Yuan Q, Zhou C. Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling. eLife 2023; 12:82537. [PMID: 36722472 PMCID: PMC9925051 DOI: 10.7554/elife.82537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Abstract
Oral inflammatory diseases such as apical periodontitis are common bacterial infectious diseases that may affect the periapical alveolar bone tissues. A protective process occurs simultaneously with the inflammatory tissue destruction, in which mesenchymal stem cells (MSCs) play a primary role. However, a systematic and precise description of the cellular and molecular composition of the microenvironment of bone affected by inflammation is lacking. In this study, we created a single-cell atlas of cell populations that compose alveolar bone in healthy and inflammatory disease states. We investigated changes in expression frequency and patterns related to apical periodontitis, as well as the interactions between MSCs and immunocytes. Our results highlight an enhanced self-supporting network and osteogenic potential within MSCs during apical periodontitis-associated inflammation. MSCs not only differentiated toward osteoblast lineage cells but also expressed higher levels of osteogenic-related markers, including Sparc and Col1a1. This was confirmed by lineage tracing in transgenic mouse models and human samples from oral inflammatory-related alveolar bone lesions. In summary, the current study provides an in-depth description of the microenvironment of MSCs and immunocytes in both healthy and disease states. We also identified key apical periodontitis-associated MSC subclusters and their biomarkers, which could further our understanding of the protective process and the underlying mechanisms of oral inflammatory-related bone disease. Taken together, these results enhance our understanding of heterogeneity and cellular interactions of alveolar bone cells under pathogenic and inflammatory conditions. We provide these data as a tool for investigators not only to better appreciate the repertoire of progenitors that are stress responsive but importantly to help design new therapeutic targets to restore bone lesions caused by apical periodontitis and other inflammatory-related bone diseases.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chen Cui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | | | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
15
|
Zeng Y, Wang L, Liu L, Wang M, Yan L, Ye L, Song D, Huang D. The Potential Immunomodulatory Roles of Semaphorin 4D in Human Periapical Lesions. J Endod 2023; 49:62-68. [PMID: 36257402 DOI: 10.1016/j.joen.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Semaphorin 4D (SEMA4D) is an important immunoregulator in the development of inflammatory diseases. Currently, the role of SEMA4D in human apical periodontitis remains unclear. This study aims to investigate the expression of SEMA4D and its potential immunomodulatory roles in apical periodontitis. METHODS A total of 31 periapical tissues and 6 healthy gingival tissues were used in this experiment. Hematoxylin-eosin staining, immunohistochemical staining, and multiplex immunofluorescence staining were performed for histologic examination and immunochemical analysis. For data processing, the number of SEMA4D+, CD4+, CD8+, and CD20+ cells was analyzed by QuPath. In addition, the colocalization of SEMA4D with CD4, CD8, and CD20 was detected. RESULTS Radicular cysts (RCs) (n = 18) and periapical granulomas (PGs) (n = 13) were identified by histologic evaluation. The number of SEMA4D+ cells in PGs was significantly greater than that in RCs (P < .05). T-cell and B-cell infiltration did not differ significantly between RCs and PGs. An increased number of CD20+ cells was observed in both types of apical periodontitis compared to CD8+ cells and CD4+ cells. Additionally, the presence of SEMA4D/CD4 and SEMA4D/CD20 double-positive cells was also markedly higher in PGs than in RCs. CONCLUSION The expression of SEMA4D and related immune cells showed different characteristics between RCs and PGs. The disparate expression patterns indicated the possible different pathologic states of the 2 types of periapical lesions. This study provides a new perspective on the description of the comprehensive microenvironment of periapical lesions.
Collapse
Affiliation(s)
- Yanglin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mudan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Lyu P, Song Y, Bi R, Li Z, Wei Y, Huang Q, Cui C, Song D, Zhou X, Fan Y. Protective Actions in Apical Periodontitis: The Regenerative Bioactivities Led by Mesenchymal Stem Cells. Biomolecules 2022; 12:1737. [PMID: 36551165 PMCID: PMC9776067 DOI: 10.3390/biom12121737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resulting from bacterial infection, apical periodontitis (AP) is a common inflammatory disease of the periapical region of the tooth. The regeneration of the destroyed periapical alveolar bone and the surrounding periodontium tissues has long been a difficult task in clinical practice. These lesions are closely related to pathogen invasion and an overreactive immune response. It is worth noting that the protective healing process occurs simultaneously, in which mesenchymal stem cells (MSCs) have a crucial function in mediating the immune system and promoting regeneration. Here, we review the recent studies related to AP, with a focus on the regulatory network of MSCs. We also discuss the potential therapeutic approaches of MSCs in inflammatory diseases to provide a basis for promoting tissue regeneration and modulating inflammation in AP. A deeper understanding of the protective action of MSCs and the regulatory networks will help to delineate the underlying mechanisms of AP and pave the way for stem-cell-based regenerative medicine in the future.
Collapse
Affiliation(s)
- Ping Lyu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiming Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zucen Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yali Wei
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Huang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Dongzhe Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Song Y, Li X, Huang D, Song H. Macrophages in periapical lesions: Potential roles and future directions. Front Immunol 2022; 13:949102. [PMID: 36131939 PMCID: PMC9483141 DOI: 10.3389/fimmu.2022.949102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Periapical lesions are infectious diseases that occur in the apical region of teeth. They result in the destruction of alveolar bone and are usually accompanied by swelling, pain, and possible systemic impacts. A complex interaction between pathogens and the host immune system determines the development, progression, and outcome of periapical lesions. The lesions, if not treated promptly, may cause resorption of bone tissue, destruction of the periodontal ligament, and loss of the affected teeth, all of which can severely worsen the quality of life of patients, often at considerable economic cost to both patients and medical organizations. Macrophages are a group of heterogeneous cells that have many roles in the development of infections, destruction and reconstruction of bone tissues, and microbe–host interactions. However, the differential and comprehensive polarization of macrophages complicates the understanding of the regulatory mechanism of periapical lesion progression. This report provides a comprehensive review of recent advances in our knowledge of the potential role of macrophages in determining the turnover of human periapical lesions. For example, macrophage differentiation might indicate whether the lesions are stable or progressing while the extent of bacteria invasion could regulate the differentiation and function of macrophages involved in the periapical lesion. In addition, alternative strategies for the treatment of apical periodontitis are discussed.
Collapse
Affiliation(s)
- Yao Song
- Department of Stomatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Xinying Li
- Department of Stomatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hongjie Song, ; Dingming Huang,
| | - Hongjie Song
- Department of Stomatology, Chengdu Second People’s Hospital, Chengdu, China
- *Correspondence: Hongjie Song, ; Dingming Huang,
| |
Collapse
|
18
|
Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol 2022; 12:908859. [PMID: 35937695 PMCID: PMC9353524 DOI: 10.3389/fcimb.2022.908859] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic periapical periodontitis (CAP) is a typical oral disease in which periodontal inflammation caused by an odontogenic infection eventually leads to bone loss. Uncontrolled infections often lead to extensive bone loss around the root tip, which ultimately leads to tooth loss. The main clinical issue in the treatment of periapical periodontitis is the repair of jawbone defects, and infection control is the first priority. However, the oral cavity is an open environment, and the distribution of microorganisms through the mouth in jawbone defects is inevitable. The subversion of host cell metabolism by oral microorganisms initiates disease. The presence of microorganisms stimulates a series of immune responses, which in turn stimulates bone healing. Given the above background, we intended to examine the paradoxes and connections between microorganisms and jaw defect repair in anticipation of new ideas for jaw defect repair. To this end, we reviewed the microbial factors, human signaling pathways, immune cells, and cytokines involved in the development of CAP, as well as concentrated growth factor (CGF) and stem cells in bone defect repair, with the aim of understanding the impact of microbial factors on host cell metabolism to inform the etiology and clinical management of CAP.
Collapse
Affiliation(s)
| | | | - Lei Cheng
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| | - Ruoshi Xu
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| |
Collapse
|