1
|
Mone P, Wang X, Trimarco V, Santulli G. Re: Differential benefits of physical training associated or not with L-Arginine supplementation in rats with metabolic syndrome: Evaluation of cardiovascular, autonomic and metabolic parameters. Physiol Behav 2023; 269:114274. [PMID: 37331457 DOI: 10.1016/j.physbeh.2023.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Affiliation(s)
- Pasquale Mone
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY
| | - Xujun Wang
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY
| | - Valentina Trimarco
- Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University, Naples, Italy
| | - Gaetano Santulli
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY; Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy; Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York City, NY.
| |
Collapse
|
2
|
Yoshida S, Shiraishi R, Nakayama Y, Taira Y. Can Nutrition Contribute to a Reduction in Sarcopenia, Frailty, and Comorbidities in a Super-Aged Society? Nutrients 2023; 15:2991. [PMID: 37447315 DOI: 10.3390/nu15132991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Many countries are facing the advent of super-aging societies, where sarcopenia and frailty will become pertinent problems. The prevalence of comorbidities is a major problem in countries with aged populations as elderly people suffer from various diseases, such as diabetes, heart failure, chronic kidney disease and dementia. All of these diseases are associated with sarcopenia and frailty, and they frequently cause falls, fractures, and a decline in activities of daily living. Fractures in the elderly people are associated with bone fragility, which is influenced by diabetes and chronic kidney disease. Nutritional support for chronic disease patients and sarcopenic individuals with adequate energy and protein intake, vitamin D supplementation, blood glucose level management for individuals with diabetes, obesity prevention, nutritional education for healthy individuals, and the enlightenment of society could be crucial to solve the health-related problems in super-aging societies.
Collapse
Affiliation(s)
- Sadao Yoshida
- Department of Rehabilitation, Chuzan Hospital, 6-2-1 Matsumoto, Okinawa 904-2151, Okinawa, Japan
- Department of Health and Nutrition, Okinawa University, 555 Kokuba, Naha 902-8521, Okinawa, Japan
- Faculty of Health Sciences, Kinjo University, 1200 Kasama-machi, Hakusan 924-8511, Ishikawa, Japan
| | - Ryo Shiraishi
- Department of Rehabilitation, Chuzan Hospital, 6-2-1 Matsumoto, Okinawa 904-2151, Okinawa, Japan
| | - Yuki Nakayama
- Department of Rehabilitation, Chuzan Hospital, 6-2-1 Matsumoto, Okinawa 904-2151, Okinawa, Japan
| | - Yasuko Taira
- Faculty of Nutrition, Chuzan Hospital, 6-2-1 Matsumoto, Okinawa 904-2151, Okinawa, Japan
| |
Collapse
|
3
|
Reginato GDS, de Jager L, Martins AB, Lucchetti BFC, de Campos BH, Lopes FNC, Araujo EJDA, Zaia CTBV, Pinge-Filho P, Martins-Pinge MC. Differential benefits of physical training associated or not with L-arginine supplementation in rats with metabolic syndrome: evaluation of cardiovascular, autonomic and metabolic parameters. Physiol Behav 2023:114251. [PMID: 37253403 DOI: 10.1016/j.physbeh.2023.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
Metabolic syndrome (MetS) is characterized by endocrine-metabolic and cardiac alterations that increase the risk of cardiovascular disease, dyslipidemia, and type-2 diabetes mellitus. Dietary supplementation with L-Arginine (L-Arg) is beneficial for fat loss, while chronic aerobic exercise has several benefits in reversing cardiovascular, autonomic, and metabolic dysfunctions caused by obesity. However, the association between these two approaches has not yet been described. This study aimed to evaluate the possible benefits of physical training, with or without L-Arg supplementation, on cardiovascular, autonomic, and metabolic parameters in rats with MetS, which was induced by the subcutaneous administration of monosodium glutamate at 4 mg g-1day-1 in rats from the first to fifth day of life. Physical training on a treadmill and supplementation with L-Arg in adulthood were carried out concomitantly for 8 weeks. After this, the animals underwent femoral artery catheterization to record their cardiovascular parameters and autonomic modulation. Organs and blood were removed to measure levels of nitrite, glucose, and hepatic steatosis. In adult rats with MetS, supplementation with L-Arg in combination with physical training reduced hypertension, tachycardia, adipose tissue mass, free fatty acids, and hepatic steatosis. Supplementation with L-Arg and physical training separately was beneficial in reducing several aspects of MetS, but a combination of both was especially effective in reducing adipose tissue and hepatic steatosis. Together, the two therapies can form a good strategy to combat MetS.
Collapse
Affiliation(s)
- Gabriela de Souza Reginato
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Lorena de Jager
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Andressa Busetti Martins
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | | | - Blenda Hyedra de Campos
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Fernanda Novi Cortegoso Lopes
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | | | - Cássia Thaïs B Vieira Zaia
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina PR, Brazil.
| |
Collapse
|
4
|
Kurhaluk N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int J Mol Sci 2023; 24:ijms24098205. [PMID: 37175912 PMCID: PMC10179183 DOI: 10.3390/ijms24098205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the role of nitric oxide in the modulation of individual physiological reactivity to hypoxia. The review considers the possibility of eliminating methodological conflicts in the case of L-arginine, which can be solved by taking into account individual physiological reactivity (or the hypoxia resistance factor). Considerable attention is paid to genetic and epigenetic mechanisms of adaptation to hypoxia and conditions of adaptation in different models. The article presents data on the clinical effectiveness of L-arginine in cardiovascular system diseases (hypertension, atherosclerosis, coronary heart disease, etc.) and stress disorders associated with these diseases. The review presents a generalised analysis of techniques, data on L-arginine use by athletes, and the ambiguous role of NO in the physiology and pathology of hypoxic states shown via nitric oxide synthesis. Data on the protective effects of adaptation in the formation of individual high reactivity in sportsmen are demonstrated. The review demonstrates a favourable effect of supplementation with L-arginine and its application depending on mitochondrial oxidative phosphorylation processes and biochemical indices in groups of individuals with low and high capacity of adaptation to hypoxia. In individuals with high initial anti-hypoxic reserves, these favourable effects are achieved by the blockade of NO-dependent biosynthesis pathways. Therefore, the methodological tasks of physiological experiments and the therapeutic consequences of treatment should include a component depending on the basic level of physiological reactivity.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
5
|
Forzano I, Avvisato R, Varzideh F, Jankauskas SS, Cioppa A, Mone P, Salemme L, Kansakar U, Tesorio T, Trimarco V, Santulli G. L-Arginine in diabetes: clinical and preclinical evidence. Cardiovasc Diabetol 2023; 22:89. [PMID: 37072850 PMCID: PMC10114382 DOI: 10.1186/s12933-023-01827-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
L-Arginine (L-Arg), is a semi-essential amino acid involved in the formation of nitric oxide. The functional relevance of L-Arg in diabetes mellitus has been evaluated both in animal models and in human subjects. In the literature there are several lines of evidence indicating that L-Arg has beneficial effects in diabetes and numerous studies advocate its administration to attenuate glucose intolerance in diabetic patients. Here we present a comprehensive overview of the main studies exploring the effects of L-Arg in diabetes, including preclinical and clinical reports on this topic.
Collapse
Affiliation(s)
- Imma Forzano
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Angelo Cioppa
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
- Montevergine Clinic, Mercogliano (AV), Italy
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | | | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | | | - Valentina Trimarco
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
- Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University, Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA.
- Department of Molecular Pharmacology, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Petrillo T, Semprini E, Tomatis V, Arnesano M, Ambrosetti F, Battipaglia C, Sponzilli A, Ricciardiello F, Genazzani AR, Genazzani AD. Putative Complementary Compounds to Counteract Insulin-Resistance in PCOS Patients. Biomedicines 2022; 10:biomedicines10081924. [PMID: 36009471 PMCID: PMC9406066 DOI: 10.3390/biomedicines10081924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most frequent endocrine-metabolic disorder among women at reproductive age. The diagnosis is based on the presence of at least two out of three criteria of the Rotterdam criteria (2003). In the last decades, the dysmetabolic aspect of insulin resistance and compensatory hyperinsulinemia have been taken into account as the additional key features in the etiopathology of PCOS, and they have been widely studied. Since PCOS is a complex and multifactorial syndrome with different clinical manifestations, it is difficult to find the gold standard treatment. Therefore, a great variety of integrative treatments have been reported to counteract insulin resistance. PCOS patients need a tailored therapeutic strategy, according to the patient’s BMI, the presence or absence of familiar predisposition to diabetes, and the patient’s desire to achieve pregnancy or not. The present review analyzes and discloses the main clinical insight of such complementary substances.
Collapse
Affiliation(s)
- Tabatha Petrillo
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elisa Semprini
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Veronica Tomatis
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Melania Arnesano
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Fedora Ambrosetti
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessandra Sponzilli
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Francesco Ricciardiello
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea R. Genazzani
- Department of Obstetrics and Gynecology, University of Pisa, 56126 Pisa, Italy
| | - Alessandro D. Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Correspondence:
| |
Collapse
|
7
|
Li N, Jiang L, Liu Y, Zou S, Lu M, An H. Metabolomics Combined with Transcriptomics Analysis Revealed the Amino Acids, Phenolic Acids, and Flavonol Derivatives Biosynthesis Network in Developing Rosa roxburghii Fruit. Foods 2022; 11:foods11111639. [PMID: 35681389 PMCID: PMC9180193 DOI: 10.3390/foods11111639] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Rosa roxburghii Tratt. is a specific fruit with high nutritional value and antioxidative activities. However, the key metabolites and their biosynthesis are still unknown. Herein, a main cultivated variety, ‘Guinong 5’ (Rr5), was chosen to analyze the metabolomics of the three developmental stages of R. roxburghii fruit by liquid chromatography–tandem mass spectrometry (LC-MS/MS). A total of 533 metabolites were identified, of which 339 were significantly altered. Total phenols, flavonoids, and amino acids were significantly correlated to at least one in vitro antioxidant activity. The conjoint Kyoto Encyclopedia of Genes and Genomes (KEGG) co-enrichment analysis of metabolome and transcriptome was focused on amino acid, phenylpropanoid, and flavonoid biosynthesis pathways. The amino acid, phenolic acid, and flavonol biosynthesis networks were constructed with 32 structural genes, 48 RrMYBs, and 23 metabolites. Of these, six RrMYBs correlated to 9–15 metabolites in the network were selected to detect the gene expression in six different R. roxburghii genotypes fruits. Subsequently, 21 key metabolites were identified in the in vitro antioxidant activities in the fruits at various developmental stages or in fruits of different R. roxburghii genotypes. We found that four key RrMYBs were related to the significantly varied amino acids, phenolic acids, and flavonol derivatives in the network during fruit development and the key metabolites in the in vitro antioxidative activities in the fruits of six R. roxburghii genotypes. This finding provided novel insights into the flavonoid, polyphenol, and amino acid synthesis in R. roxburghii.
Collapse
Affiliation(s)
- Nanyu Li
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
| | - Lanlan Jiang
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
| | - Yiyi Liu
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
| | - Shimei Zou
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
| | - Min Lu
- Agricultural College, Guizhou University, Guiyang 550025, China; (N.L.); (L.J.); (Y.L.); (S.Z.)
- Correspondence: (M.L.); (H.A.)
| | - Huaming An
- National Forestry and Grassland Administration Engineering Research Center for Rosa roxburghii, Guiyang 550025, China
- Correspondence: (M.L.); (H.A.)
| |
Collapse
|