1
|
Pinto TS, van der Eerden BC, Schreuders-Koedam M, van de Peppel J, Ayada I, Pan Q, Verstegen MM, van der Laan LJ, Fuhler GM, Zambuzzi WF, Peppelenbosch MP. Interaction of high lipogenic states with titanium on osteogenesis. Bone 2024; 188:117242. [PMID: 39209139 DOI: 10.1016/j.bone.2024.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
As obesity rates continue to rise, the prevalence of metabolic dysfunction and alcohol-associated steatotic liver disease (MetALD), a new term for Nonalcoholic Fatty Liver Disease (NAFLD), also increases. In an aging population, it is crucial to understand the interplay between metabolic disorders, such as MetALD, and bone health. This understanding becomes particularly significant in the context of implant osseointegration. This study introduces an in vitro model simulating high lipogenesis through the use of human Mesenchymal Stroma Cells-derived adipocytes, 3D intrahepatic cholangiocyte organoids (ICO), and Huh7 hepatocytes, to evaluate the endocrine influence on osteoblasts interacting with titanium. We observed a significant increase in intracellular fat accumulation in all three cell types, along with a corresponding elevation in metabolic gene expression compared to the control groups. Notably, osteoblasts undergoing mineralization in this high-lipogenesis environment also displayed lipid vesicle accumulation. The study further revealed that titanium surfaces modulate osteogenic gene expression and impact cell cycle progression, cell survival, and extracellular matrix remodeling under lipogenic conditions. These findings provide new insights into the challenges of implant integration in patients with obesity and MetALD, offering a deeper understanding of the metabolic influences on bone regeneration and implant success.
Collapse
Affiliation(s)
- T S Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, SP, Brazil
| | - B C van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Schreuders-Koedam
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J van de Peppel
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - I Ayada
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Q Pan
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M M Verstegen
- Department of Surgery, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - L J van der Laan
- Department of Surgery, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - G M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - W F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, SP, Brazil.
| | - M P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Bergamo EP, Witek L, Ramalho IS, Lopes ACD, Nayak VV, Torroni A, Slavin BV, Bonfante EA, Uhrich KE, Graves DT, Coelho PG. Sustained Release of Salicylic Acid for Halting Peri-Implantitis Progression in Healthy and Hyperglycemic Systemic Conditions: A Gottingen Minipig Model. ACS Biomater Sci Eng 2024; 10:3097-3107. [PMID: 38591966 PMCID: PMC11094686 DOI: 10.1021/acsbiomaterials.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
To develop a peri-implantitis model in a Gottingen minipig and evaluate the effect of local application of salicylic acid poly(anhydride-ester) (SAPAE) on peri-implantitis progression in healthy, metabolic syndrome (MS), and type-2 diabetes mellitus (T2DM) subjects. Eighteen animals were allocated to three groups: (i) control, (ii) MS (diet for obesity induction), and (iii) T2DM (diet plus streptozotocin for T2DM induction). Maxillary and mandible premolars and first molar were extracted. After 3 months of healing, four implants per side were placed in both jaws of each animal. After 2 months, peri-implantitis was induced by plaque formation using silk ligatures. SAPAE polymer was mixed with mineral oil (3.75 mg/μL) and topically applied biweekly for up to 60 days to halt peri-implantitis progression. Periodontal probing was used to assess pocket depth over time, followed by histomorphologic analysis of harvested samples. The adopted protocol resulted in the onset of peri-implantitis, with healthy minipigs taking twice as long to reach the same level of probing depth relative to MS and T2DM subjects (∼3.0 mm), irrespective of jaw. In a qualitative analysis, SAPAE therapy revealed decreased levels of inflammation in the normoglycemic, MS, and T2DM groups. SAPAE application around implants significantly reduced the progression of peri-implantitis after ∼15 days of therapy, with ∼30% lower probing depth for all systemic conditions and similar rates of probing depth increase per week between the control and SAPAE groups. MS and T2DM conditions presented a faster progression of the peri-implant pocket depth. SAPAE treatment reduced peri-implantitis progression in healthy, MS, and T2DM groups.
Collapse
Affiliation(s)
- Edmara
T. P. Bergamo
- Department
of Prosthodontics, NYU Dentistry, New York, New York 10010, United States
| | - Lukasz Witek
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, NYU Tandon School
of Engineering, Brooklyn, New York 11201, United States
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| | - Ilana Santos Ramalho
- Department
of Prosthodontics and Periodontology, University
of Sao Paulo, Bauru School of Dentistry, Bauru, SP 17012-230, Brazil
| | - Adolfo Coelho de
Oliveira Lopes
- Department
of Prosthodontics and Periodontology, University
of Sao Paulo, Bauru School of Dentistry, Bauru, SP 17012-230, Brazil
| | - Vasudev Vivekanand Nayak
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Andrea Torroni
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| | - Blaire V. Slavin
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Estevam A. Bonfante
- Department
of Prosthodontics and Periodontology, University
of Sao Paulo, Bauru School of Dentistry, Bauru, SP 17012-230, Brazil
| | - Kathryn E. Uhrich
- Department
of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Dana T. Graves
- Department
of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paulo G. Coelho
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Division
of Plastic Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
3
|
Koopmans SJ, Binnendijk G, Ledoux A, Choi YH, Mes JJ, Guan X, Molist F, Thị Minh TP, van der Wielen N. Momordica charantia fruit reduces plasma fructosamine whereas stems and leaves increase plasma insulin in adult mildly diabetic obese Göttingen Minipigs. PLoS One 2024; 19:e0298163. [PMID: 38498469 PMCID: PMC10947704 DOI: 10.1371/journal.pone.0298163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Traditionally Momordica charantia (Bitter gourd) is known for its blood glucose lowering potential. This has been validated by many previous studies based on rodent models but human trials are less convincing and the physiological mechanisms underlying the bioactivity of Bitter gourd are still unclear. The present study compared the effects of whole fruit or stems-leaves from five different Bitter gourd cultivars on metabolic control in adult diabetic obese Göttingen Minipigs. METHODS Twenty streptozotocin-induced diabetic (D) obese Minipigs (body weight ~85 kg) were subdivided in mildly and overtly D pigs and fed 500 g of obesogenic diet per day for a period of three weeks, supplemented with 20 g dried powdered Bitter gourd or 20 g dried powdered grass as isoenergetic control in a cross-over, within-subject design. RESULTS Bitter gourd fruit from the cultivars "Palee" and "Good healthy" reduced plasma fructosamine concentrations in all pigs combined (from 450±48 to 423±53 and 490±50 to 404±48 μmol/L, both p<0.03, respectively) indicating improved glycemic control by 6% and 17%. These effects were statistically confirmed in mildly D pigs but not in overtly D pigs. In mildly D pigs, the other three cultivars of fruit showed consistent numerical but no significant improvements in glycemic control. The composition of Bitter gourd fruit was studied by metabolomics profiling and analysis identified three metabolites from the class of triterpenoids (Xuedanoside H, Acutoside A, Karaviloside IX) that were increased in the cultivars "Palee" (>3.9-fold) and "Good healthy" (>8.9-fold) compared to the mean of the other three cultivars. Bitter gourd stems and leaves from the cultivar "Bilai" increased plasma insulin concentrations in all pigs combined by 28% (from 53±6 to 67±9 pmol/L, p<0.03). The other two cultivars of stems and leaves showed consistent numerical but no significant increases in plasma insulin concentrations. The effects on plasma insulin concentrations were confirmed in mildly D pigs but not in overtly D pigs. CONCLUSIONS Fruits of Bitter gourd improve glycemic control and stems-leaves of Bitter gourd increase plasma insulin concentrations in an obese pig model for mild diabetes. The effects of Bitter gourd fruit on glycemic control seem consistent but relatively small and cultivar specific which may explain the varying results of human trials reported in the literature.
Collapse
Affiliation(s)
- Sietse Jan Koopmans
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gisabeth Binnendijk
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Allison Ledoux
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jurriaan J. Mes
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Xiaonan Guan
- Schothorst Feed Research, Lelystad, The Netherlands
| | | | - Tâm Phạm Thị Minh
- Department of Food crops and Horticulture, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nikkie van der Wielen
- Department of Animal Nutrition and Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Bergamo ET, de Oliveira PG, Campos TMB, Bonfante EA, Tovar N, Boczar D, Nayak VV, Coelho PG, Witek L. Osseointegration of implant surfaces in metabolic syndrome and type-2 diabetes mellitus. J Biomed Mater Res B Appl Biomater 2024; 112:e35382. [PMID: 38355936 PMCID: PMC10883641 DOI: 10.1002/jbm.b.35382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/20/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
This in vivo study evaluated the bone healing response around endosteal implants with varying surface topography/chemistry in a preclinical, large transitional model induced with metabolic syndrome (MS) and type-2 diabetes mellitus (T2DM). Fifteen Göttingen minipigs were randomly distributed into two groups: (i) control (normal diet, n = 5) and (ii) O/MS (cafeteria diet for obesity induction, n = 10). Following obesity induction, five minipigs from the obese/metabolic syndrome (O/MS) group were further allocated, randomly, into the third experimental group: (iii) T2DM (cafeteria diet + streptozotocin). Implants with different surface topography/chemistry: (i) dual acid-etched (DAE) and (ii) nano-hydroxyapatite coating over the DAE surface (NANO), were placed into the right ilium of the subjects and allowed to heal for 4 weeks. Histomorphometric evaluation of bone-to-implant contact (%BIC) and bone area fraction occupancy (%BAFO) within implant threads were performed using histomicrographs. Implants with NANO surface presented significantly higher %BIC (~26%) and %BAFO (~35%) relative to implants with DAE surface (%BIC = ~14% and %BAFO = ~28%, p < .025). Data as a function of systemic condition presented significantly higher %BIC (~28%) and %BAFO (~42%) in the control group compared with the metabolically compromised groups (O/MS: %BIC = 14.35% and %BAFO = 26.24%, p < .021; T2DM: %BIC = 17.91% and %BAFO = 26.12%, p < .021) with no significant difference between O/MS and T2DM (p > .05). Statistical evaluation considering both factors demonstrated significantly higher %BIC and %BAFO for the NANO surface relative to DAE implant, independent of systemic condition (p < .05). The gain increase of %BIC and %BAFO for the NANO compared with DAE was more pronounced in O/MS and T2DM subjects. Osseointegration parameters were significantly reduced in metabolically compromised subjects compared with healthy subjects. Nanostructured hydroxyapatite-coated surfaces improved osseointegration relative to DAE, regardless of systemic condition.
Collapse
Affiliation(s)
- Edmara T.P. Bergamo
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Prosthodontics, University of São Paulo, School of Dentistry, São Paulo, SP, Brazil
| | - Paula G.F.P. de Oliveira
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- CESUPA, Department of Periodontology, University Center of State of Para, Belem, PA, Brazil
| | - Tiago M B Campos
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Physics, Technological Institute of Aeronautics, São José dos Campos, SP, Brazil
| | - Estevam A Bonfante
- Department of Prosthodontics, University of São Paulo, School of Dentistry, São Paulo, SP, Brazil
| | - Nick Tovar
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, NYU Langone Medical Center and Bellevue, Hospital Center, New York, NY, USA
| | - Daniel Boczar
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lukasz Witek
- Biomaterials Division, Department of Molecular Pathobiology New York University College of Dentistry, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Li G, Wang J, Wu W, Wang M, Han X, Zhang Z, Tang C. Proteomic Analysis of the Supernatant from Bone Marrow Mesenchymal Stem Cells under High Glucose Conditions. J Proteome Res 2024; 23:344-355. [PMID: 38113133 DOI: 10.1021/acs.jproteome.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Diabetes mellitus hinders the process of bone regeneration by inhibiting the function of mesenchymal stem cells (MSCs) through elevated glucose levels, thereby impeding osteointegration. The stem cell niche (SCN) plays a crucial role in determining the fate of stem cells by integrating various signals. However, the precise mechanism by which high glucose levels affect the SCN and subsequently influence the function of MSCs remains unclear. In this study, we employed proteomic analysis to identify proteins with altered expression in the extracellular matrix (ECM), aiming to elucidate the underlying mechanism. Three cell supernatants were collected from bone marrow mesenchymal stem cells (BMSCs) or BMSCs stimulated with high glucose (BMSCs+Hg). A total of 590 differentially expressed proteins were identified, which were found to be associated with the ECM, including aging, autophagy, and osteogenic differentiation. The findings of our study indicate that elevated glucose levels exert an influence on the molecular aspects of the SCN, potentially contributing to a better comprehension of the underlying mechanism.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jiaohong Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Mingxi Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xiao Han
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
6
|
Slavin BV, Nayak VV, Boczar D, Bergamo ET, Slavin BR, Yarholar LM, Torroni A, Coelho PG, Witek L. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair. J Craniofac Surg 2024; 35:261-267. [PMID: 37622526 PMCID: PMC10836599 DOI: 10.1097/scs.0000000000009635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Computer-aided design/computer-aided manufacturing and 3-dimensional (3D) printing techniques have revolutionized the approach to bone tissue engineering for the repair of craniomaxillofacial skeletal defects. Ample research has been performed to gain a fundamental understanding of the optimal 3D-printed scaffold design and composition to facilitate appropriate bone formation and healing. Benchtop and preclinical, small animal model testing of 3D-printed bioactive ceramic scaffolds augmented with pharmacological/biological agents have yielded promising results given their potential combined osteogenic and osteoinductive capacity. However, other factors must be evaluated before newly developed constructs may be considered analogous alternatives to the "gold standard" autologous graft for defect repair. More specifically, the 3D-printed bioactive ceramic scaffold's long-term safety profile, biocompatibility, and resorption kinetics must be studied. The ultimate goal is to successfully regenerate bone that is comparable in volume, density, histologic composition, and mechanical strength to that of native bone. In vivo studies of these newly developed bone tissue engineering in translational animal models continue to make strides toward addressing regulatory and clinically relevant topics. These include the use of skeletally immature animal models to address the challenges posed by craniomaxillofacial defect repair in pediatric patients. This manuscript reviews the most recent preclinical animal studies seeking to assess 3D-printed ceramic scaffolds for improved repair of critical-sized craniofacial bony defects.
Collapse
Affiliation(s)
| | - Vasudev V Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Daniel Boczar
- Department of Surgery, University of Washington, Seattle, WA
| | - Edmara Tp Bergamo
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil
- Biomaterials Division, NYU College of Dentistry, New York, NY
| | - Benjamin R Slavin
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lauren M Yarholar
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY
| |
Collapse
|
7
|
Matos FG, Stremel ACA, Lipinski LC, Cirelli JA, Dos Santos FA. Dental implants in large animal models with experimental systemic diseases: A systematic review. Lab Anim 2023; 57:489-503. [PMID: 37021606 DOI: 10.1177/00236772221124972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
This systematic review aims to identify and discuss the most used methodologies in pre-clinical studies for the evaluation of the implementation of dental implants in systemically compromised pigs and sheep. This study provides support and guidance for future research, as well as for the prevention of unnecessary animal wastage and sacrifice. Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) was used as a guideline; electronic searches were performed in PubMed, Scopus, Scielo, Web of Science, Embase, Science Direct, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Directory of Open Access Journals, Database of Abstracts of Reviews of Effects, and gray literature until January 2022 (PROSPERO/CRD42021270119). Sixty-eight articles were chosen from the 2439 results. Most studies were conducted in pigs, mainly the Göttinger and Domesticus breeds. Healthy animals with implants installed in the jaws were predominant among the pig studies. Of the studies evaluating the effect of systemic diseases on osseointegration, 42% were performed in osteoporotic sheep, 32% in diabetic sheep, and 26% in diabetic pigs. Osteoporosis was primarily induced by bilateral ovariectomy and mainly assessed by X-ray densitometry. Diabetes was induced predominantly by intravenous streptozotocin and was confirmed by blood glucose analysis. Histological and histomorphometric analyses were the most frequently employed in the evaluation of osseointegration. The animal models presented unique methodologies for each species in the studies that evaluated dental implants in the context of systemic diseases. Understanding the most commonly used techniques will help methodological choices and the performance of future studies in implantology.
Collapse
Affiliation(s)
| | | | | | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of São Paulo (Unesp), Brazil
| | | |
Collapse
|
8
|
Silva BLG, Sánchez-Puetate JC, Pinotti FE, Marcantonio CC, Pedroso GG, Junior EM, Marcantonio RAC. Influence of obesity on osseointegration of implants with different surface treatments: A preclinical study. Clin Implant Dent Relat Res 2023; 25:919-928. [PMID: 37309706 DOI: 10.1111/cid.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The aim of the present study was to evaluate the effect of obesity on the osseointegration of implants with hydrophobic and hydrophilic surfaces. MATERIALS AND METHODS Sixty-four male rats were distributed among four experimental groups: H-HB (Healthy/Hydrophobic): healthy animals with hydrophobic implants; H-HL (Healthy/Hydrophilic): healthy animals with hydrophilic implants; O-HB (Obese/Hydrophobic): animals with induced obesity and hydrophobic implants; O-HL (Obese/Hydrophilic): animals with induced obesity and hydrophilic implants. One hundred and twenty-eight implants were installed in the tibiae of the animals bilaterally (64 on the left tibiae and 64 on the right one) after 75 days of a specific diet (standard or high-fat diet) and euthanasia was performed in the experimental periods of 15 and 45 days after implant placement. Bone formation was assessed by biomechanical analysis (on the left tibiae of each animal), and microtomographic and histomorphometric analyses (on the right tibiae of each animal). Statistical analysis was performed using the Shapiro-Wilk test for normality and ANOVA followed by Tukey test to observe whether there was a significant difference between groups (p < 0.05); the t-test was used to compare the animals' body weight. RESULTS The biomechanical analysis showed an increase in the removal torque value of animals after 45 days in comparison to after 15 days, with the exception of O-HB groups. The microtomographic analysis demonstrated no significant differences in the mineralized bone tissue volume between the groups. In the histomorphometric analysis, the H-HL/45 day group/period demonstrated higher bone-implant contact, in comparison to H-HL/15 days and the O-HL/45 day group/period showed an increase in bone area between the implant threads, in comparison to O-HL/15 days. CONCLUSION In conclusion, obesity does not interfere with the osseointegration of hydrophobic and hydrophilic implants.
Collapse
Affiliation(s)
- Bruno Luís Graciliano Silva
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (Unesp), Araraquara, Brazil
| | - Julio Cesar Sánchez-Puetate
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (Unesp), Araraquara, Brazil
| | - Felipe Eduardo Pinotti
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (Unesp), Araraquara, Brazil
| | - Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (Unesp), Araraquara, Brazil
| | - Gabriel Gimenez Pedroso
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (Unesp), Araraquara, Brazil
| | - Elcio Marcantonio Junior
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, São Paulo State University (Unesp), Araraquara, Brazil
| | | |
Collapse
|
9
|
Jolic M, Ruscsák K, Emanuelsson L, Norlindh B, Thomsen P, Shah FA, Palmquist A. Leptin receptor gene deficiency minimally affects osseointegration in rats. Sci Rep 2023; 13:15631. [PMID: 37730735 PMCID: PMC10511412 DOI: 10.1038/s41598-023-42379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Metabolic syndrome represents a cluster of conditions such as obesity, hyperglycaemia, dyslipidaemia, and hypertension that can lead to type 2 diabetes mellitus and/or cardiovascular disease. Here, we investigated the influence of obesity and hyperglycaemia on osseointegration using a novel, leptin receptor-deficient animal model, the Lund MetS rat. Machined titanium implants were installed in the tibias of animals with normal leptin receptor (LepR+/+) and those harbouring congenic leptin receptor deficiency (LepR-/-) and were left to heal for 28 days. Extensive evaluation of osseointegration was performed using removal torque measurements, X-ray micro-computed tomography, quantitative backscattered electron imaging, Raman spectroscopy, gene expression analysis, qualitative histology, and histomorphometry. Here, we found comparable osseointegration potential at 28 days following implant placement in LepR-/- and LepR+/+ rats. However, the low bone volume within the implant threads, higher bone-to-implant contact, and comparable biomechanical stability of the implants point towards changed bone formation and/or remodelling in LepR-/- rats. These findings are corroborated by differences in the carbonate-to-phosphate ratio of native bone measured using Raman spectroscopy. Observations of hypermineralised cartilage islands and increased mineralisation heterogeneity in native bone confirm the delayed skeletal development of LepR-/- rats. Gene expression analyses reveal comparable patterns between LepR-/- and LepR+/+ animals, suggesting that peri-implant bone has reached equilibrium in healing and/or remodelling between the animal groups.
Collapse
Affiliation(s)
- Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
10
|
Bergamo ET, Witek L, Ramalho I, Lopes ACO, Vivekanand Nayak V, Bonfante EA, Tovar N, Torroni A, Coelho PG. Bone healing around implants placed in subjects with metabolically compromised systemic conditions. J Biomed Mater Res B Appl Biomater 2023; 111:1664-1671. [PMID: 37184298 PMCID: PMC10330391 DOI: 10.1002/jbm.b.35264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
The aim of this study was to evaluate the bone healing of tight-fit implants placed in the maxilla and mandible of subjects compromised with metabolic syndrome (MS) and type-2 Diabetes Mellitus (T2DM). Eighteen Göttingen minipigs were randomly distributed into three groups: (i) control (normal diet), (ii) MS (cafeteria diet for obesity induction), (iii) T2DM (cafeteria diet for obesity induction + Streptozotocin for T2DM induction). Maxillary and mandibular premolars and molar were extracted. After 8 weeks of healing, implants with progressive small buttress threads were placed, and allowed to integrate for 6 weeks after which the implant/bone blocks were retrieved for histological processing. Qualitative and quantitative histomorphometric analyses (percentage of bone-to-implant contact, %BIC, and bone area fraction occupancy within implant threads, %BAFO) were performed. The bone healing process around the implant occurred predominantly through interfacial remodeling with subsequent bone apposition. Data as a function of systemic condition yielded significantly higher %BIC and %BAFO values for healthy and MS relative to T2DM. Data as a function of maxilla and mandible did not yield significant differences for either %BIC and %BAFO. When considering both factors, healthy and MS subjects had %BIC and %BAFO trend towards higher values in the mandible relative to maxilla, whereas T2DM yielded higher %BIC and %BAFO in the maxilla relative to mandible. All systemic conditions presented comparable levels of %BIC and %BAFO in the maxilla; healthy and MS presented significantly higher %BIC and %BAFO relative to T2DM in the mandible. T2DM presented lower amounts of bone formation around implants relative to MS and healthy. Implants placed in the maxilla and in the mandible showed comparable amounts of bone in proximity to implants.
Collapse
Affiliation(s)
- Edmara T.P. Bergamo
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY USA
| | - Ilana Ramalho
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Adolfo CO Lopes
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, Brooklyn, NY USA
| | - Estevam A Bonfante
- Department of Prosthodontics, University of Sao Paulo, School of Dentistry, Sao Paulo, SP, Brazil
| | - Nick Tovar
- Biomaterials Division - Department of Molecular Pathobiology NYU Dentistry, New York, NY USA
- Department of Oral and Maxillofacial Surgery, NYU Langone Medical Center and Bellevue, Hospital Center, New York, NY USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, Grossman School of Medicine, New York University, New York, NY USA
| | - Paulo G. Coelho
- Division of Plastic Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Goutchtat R, Quenon A, Clarisse M, Delalleau N, Coddeville A, Gobert M, Gmyr V, Kerr-Conte J, Pattou F, Hubert T. Effects of subtotal pancreatectomy and long-term glucose and lipid overload on insulin secretion and glucose homeostasis in minipigs. Endocrinol Diabetes Metab 2023:e425. [PMID: 37144278 DOI: 10.1002/edm2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
INTRODUCTION Nowadays, there are no strong diabetic pig models, yet they are required for various types of diabetes research. Using cutting-edge techniques, we attempted to develop a type 2 diabetic minipig model in this study by combining a partial pancreatectomy (Px) with an energetic overload administered either orally or parenterally. METHODS Different groups of minipigs, including Göttingen-like (GL, n = 17) and Ossabaw (O, n = 4), were developed. Prior to and following each intervention, metabolic assessments were conducted. First, the metabolic responses of the Göttingen-like (n = 3) and Ossabaw (n = 4) strains to a 2-month High-Fat, High-Sucrose diet (HFHSD) were compared. Then, other groups of GL minipigs were established: with a single Px (n = 10), a Px combined with a 2-month HFHSD (n = 6), and long-term intraportal glucose and lipid infusions that were either preceded by a Px (n = 4) or not (n = 4). RESULTS After the 2-month HFHSD, there was no discernible change between the GL and O minipigs. The pancreatectomized group in GL minipigs showed a significantly lower Acute Insulin Response (AIR) (18.3 ± 10.0 IU/mL after Px vs. 34.9 ± 13.7 IU/mL before, p < .0005). In both long-term intraportal infusion groups, an increase in the Insulinogenic (IGI) and Hepatic Insulin Resistance Indexes (HIRI) was found with a decrease in the AIR, especially in the pancreatectomized group (IGI: 4.2 ± 1.9 after vs. 1.5 ± 0.8 before, p < .05; HIRI (×10-5 ): 12.6 ± 7.9 after vs. 3.8 ± 4.3 before, p < .05; AIR: 24.4 ± 13.7 µIU/mL after vs. 43.9 ± 14.5 µIU/mL before, p < .005). Regardless of the group, there was no fasting hyperglycemia. CONCLUSIONS In this study, we used pancreatectomy followed by long-term intraportal glucose and lipid infusions to develop an original minipig model with metabolic syndrome and early signs of glucose intolerance. We reaffirm the pig's usefulness as a preclinical model for the metabolic syndrome but without the fasting hyperglycemia that characterizes diabetes mellitus.
Collapse
Affiliation(s)
- Rébecca Goutchtat
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Audrey Quenon
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
- Univ. Lille, CHU Lille, UFR3S, Département Hospitalo-Universitaire de Recherche et d'Enseignement (Dhure), Lille, France
| | | | - Nathalie Delalleau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Anaïs Coddeville
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Mathilde Gobert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Valéry Gmyr
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Julie Kerr-Conte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Thomas Hubert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
- Univ. Lille, CHU Lille, UFR3S, Département Hospitalo-Universitaire de Recherche et d'Enseignement (Dhure), Lille, France
| |
Collapse
|
12
|
Pinto TS, Gomes AM, de Morais PB, Zambuzzi WF. Adipogenesis-Related Metabolic Condition Affects Shear-Stressed Endothelial Cells Activity Responding to Titanium. J Funct Biomater 2023; 14:jfb14030162. [PMID: 36976086 PMCID: PMC10052724 DOI: 10.3390/jfb14030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
PURPOSE Obesity has increased around the world. Obese individuals need to be better assisted, with special attention given to dental and medical specialties. Among obesity-related complications, the osseointegration of dental implants has raised concerns. This mechanism depends on healthy angiogenesis surrounding the implanted devices. As an experimental analysis able to mimic this issue is currently lacking, we address this issue by proposing an in vitro high-adipogenesis model using differentiated adipocytes to further investigate their endocrine and synergic effect in endothelial cells responding to titanium. MATERIALS AND METHODS Firstly, adipocytes (3T3-L1 cell line) were differentiated under two experimental conditions: Ctrl (normal glucose concentration) and High-Glucose Medium (50 mM of glucose), which was validated using Oil Red O Staining and inflammatory markers gene expression by qPCR. Further, the adipocyte-conditioned medium was enriched by two types of titanium-related surfaces: Dual Acid-Etching (DAE) and Nano-Hydroxyapatite blasted surfaces (nHA) for up to 24 h. Finally, the endothelial cells (ECs) were exposed in those conditioned media under shear stress mimicking blood flow. Important genes related to angiogenesis were then evaluated by using RT-qPCR and Western blot. RESULTS Firstly, the high-adipogenicity model using 3T3-L1 adipocytes was validated presenting an increase in the oxidative stress markers, concomitantly with an increase in intracellular fat droplets, pro-inflammatory-related gene expressions, and also the ECM remodeling, as well as modulating mitogen-activated protein kinases (MAPKs). Additionally, Src was evaluated by Western blot, and its modulation can be related to EC survival signaling. CONCLUSION Our study provides an experimental model of high adipogenesis in vitro by establishing a pro-inflammatory environment and intracellular fat droplets. Additionally, the efficacy of this model to evaluate the EC response to titanium-enriched mediums under adipogenicity-related metabolic conditions was analyzed, revealing significant interference with EC performance. Altogether, these data gather valuable findings on understanding the reasons for the higher percentage of implant failures in obese individuals.
Collapse
Affiliation(s)
- Thaís Silva Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP-São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Anderson Moreira Gomes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP-São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Paula Bertin de Morais
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP-São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP-São Paulo State University, Botucatu 18618-970, SP, Brazil
| |
Collapse
|
13
|
Berger MB, Cohen DJ, Bosh KB, Kapitanov M, Slosar PJ, Levit MM, Gallagher M, Rawlinson JJ, Schwartz Z, Boyan BD. Bone marrow stromal cells generate an osteoinductive microenvironment when cultured on titanium-aluminum-vanadium substrates with biomimetic multiscale surface roughness. Biomed Mater 2023; 18. [PMID: 36827708 PMCID: PMC9993812 DOI: 10.1088/1748-605x/acbf15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Osseointegration of titanium-based implants possessing complex macroscale/microscale/mesoscale/nanoscale (multiscale) topographies support a direct and functional connection with native bone tissue by promoting recruitment, attachment and osteoblastic differentiation of bone marrow stromal cells (MSCs). Recent studies show that the MSCs on these surfaces produce factors, including bone morphogenetic protein 2 (BMP2) that can cause MSCs not on the surface to undergo osteoblast differentiation, suggesting they may produce an osteogenic environmentin vivo. This study examined if soluble factors produced by MSCs in contact with titanium-aluminum-vanadium (Ti6Al4V) implants possessing a complex multiscale biomimetic topography are able to induce osteogenesis ectopically. Ti6Al4V disks were grit-blasted and acid-etched to create surfaces possessing macroscale and microscale roughness (MM), micro/meso/nanoscale topography (MN), and macro/micro/meso/nanoscale topography (MMNTM). Polyether-ether-ketone (PEEK) disks were also fabricated by machining to medical-grade specifications. Surface properties were assessed by scanning electron microscopy, contact angle, optical profilometry, and x-ray photoelectron spectroscopy. MSCs were cultured in growth media (GM). Proteins and local factors in their conditioned media (CM) were measured on days 4, 8, 10 and 14: osteocalcin, osteopontin, osteoprotegerin, BMP2, BMP4, and cytokines interleukins 6, 4 and 10 (IL6, IL4, and IL10). CM was collected from D14 MSCs on MMNTMand tissue culture polystyrene (TCPS) and lyophilized. Gel capsules containing active demineralized bone matrix (DBM), heat-inactivated DBM (iDBM), and iDBM + MMN-GM were implanted bilaterally in the gastrocnemius of athymic nude mice (N= 8 capsules/group). Controls included iDBM + GM; iDBM + TCPS-CM from D5 to D10 MSCs; iDBM + MMN-CM from D5 to D10; and iDBM + rhBMP2 (R&D Systems) at a concentration similar to D5-D10 production of MSCs on MMNTMsurfaces. Legs were harvested at 35D. Bone formation was assessed by micro computed tomography and histomorphometry (hematoxylin and eosin staining) with the histology scored according to ASTM 2529-13. DNA was greatest on PEEK at all time points; DNA was lowest on MN at early time points, but increased with time. Cells on PEEK exhibited small changes in differentiation with reduced production of BMP2. Osteoblast differentiation was greatest on the MN and MMNTM, reflecting increased production of BMP2 and BMP4. Pro-regenerative cytokines IL4 and IL10 were increased on Ti-based surfaces; IL6 was reduced compared to PEEK. None of the media from TCPS cultures was osteoinductive. However, MMN-CM exhibited increased bone formation compared to iDBM and iDBM + rhBMP2. Furthermore, exogenous rhBMP2 alone, at the concentration found in MMN-CM collected from D5 to D10 cultures, failed to induce new bone, indicating that other factors in the CM play a critical role in that osteoinductive microenvironment. MSCs cultured on MMNTMTi6Al4V surfaces differentiate and produce an increase in local factors, including BMP2, and the CM from these cultures can induce ectopic bone formation compared to control groups, indicating that the increased bone formation arises from the local response by MSCs to a biomimetic, multiscale surface topography.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - D Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Kyla B Bosh
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Marina Kapitanov
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Paul J Slosar
- SpineCare Medical Group, 455 Hickey Blvd., Suite 310, Daly City, CA 94015, United States of America
| | - Michael M Levit
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Michelle Gallagher
- Medtronic, Applied Research-Spine, Minneapolis, MN, United States of America
| | - Jeremy J Rawlinson
- Medtronic, Applied Research-Spine, Minneapolis, MN, United States of America
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America.,Department of Periodontology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States of America
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America.,Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, United States of America
| |
Collapse
|
14
|
Zhang Z, Ji C, Wang D, Wang M, Song D, Xu X, Zhang D. The burden of diabetes on the soft tissue seal surrounding the dental implants. Front Physiol 2023; 14:1136973. [PMID: 36875028 PMCID: PMC9978121 DOI: 10.3389/fphys.2023.1136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Soft tissue seal around implant prostheses is considered the primary barrier against adverse external stimuli and is a critical factor in maintaining dental implants' stability. Soft tissue seal is formed mainly by the adhesion of epithelial tissue and fibrous connective tissue to the transmembrane portion of the implant. Type 2 diabetes mellitus (T2DM) is one of the risk factors for peri-implant inflammation, and peri-implant disease may be triggered by dysfunction of the soft tissue barrier around dental implants. This is increasingly considered a promising target for disease treatment and management. However, many studies have demonstrated that pathogenic bacterial infestation, gingival immune inflammation, overactive matrix metalloproteinases (MMPs), impaired wound healing processes and excessive oxidative stress may trigger poor peri-implant soft tissue sealing, which may be more severe in the T2DM state. This article reviews the structure of peri-implant soft tissue seal, peri-implant disease and treatment, and moderating mechanisms of impaired soft tissue seal around implants due to T2DM to inform the development of treatment strategies for dental implants in patients with dental defects.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | | | - Maoshan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| |
Collapse
|
15
|
Gasmi Benahmed A, Gasmi A, Tippairote T, Mujawdiya PK, Avdeev O, Shanaida Y, Bjørklund G. Metabolic Conditions and Peri-Implantitis. Antibiotics (Basel) 2022; 12:65. [PMID: 36671266 PMCID: PMC9854649 DOI: 10.3390/antibiotics12010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Dental implants to replace lost teeth are a common dentistry practice nowadays. Titanium dental implants display a high success rate and improved safety profile. Nevertheless, there is an increasing peri-implantitis (PI), an inflammatory disease associated with polymicrobial infection that adversely affects the hard and soft tissues around the implant. The present review highlights the contribution of different metabolic conditions to PI. The considerations of both local and systemic metabolic conditions are crucial for planning successful dental implant procedures and during the treatment course of PI. Un- or undertreated PI can lead to permanent jaw bone suffering and dental implant losses. The common mediators of PI are inflammation and oxidative stress, which are also the key mediators of most systemic metabolic disorders. Chronic periodontitis, low-grade tissue inflammation, and increased oxidative stress raise the incidence of PI and the underlying systemic metabolic conditions, such as obesity, diabetes mellitus, or harmful lifestyle factors (cigarette smoking, etc.). Using dental biomaterials with antimicrobial effects could partly solve the problem of pathogenic microbial contamination and local inflammation. With local dentistry considering factors, including oral microbiota and implant quality control, the inclusion of the underlying systemic metabolic conditions into the pre-procedure planning and during the treatment course should improve the chances of successful outcomes.
Collapse
Affiliation(s)
- Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Torsak Tippairote
- Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
- Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok 10540, Thailand
| | | | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, 46003 Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, 46003 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
16
|
Tan SJ, Baharin B, Mohd N, Nabil S. Effect of Anti-Diabetic Medications on Dental Implants: A Scoping Review of Animal Studies and Their Relevance to Humans. Pharmaceuticals (Basel) 2022; 15:ph15121518. [PMID: 36558969 PMCID: PMC9784528 DOI: 10.3390/ph15121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Animal studies have ascertained that hyperglycemia adversely affects bone metabolism and dental implant osseointegration. However, diabetic patients show low occurrence of unfavorable hard or soft peri-implant tissue changes, differences that are possibly due to treatment with anti-diabetic medications. This scoping review aimed to systematically examine the effects of these drugs on implant outcomes and explore the predictive modality of animal studies for clinical practice according to type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Three electronic databases (MEDLINE, EBSCOHost, and Cochrane) were searched according to the PRISMA-ScR standards for studies on diabetic animals that received titanium implants and anti-diabetic treatments. Risk assessment was performed using the SYRCLE Risk-of-Bias (RoB) tool. Twenty-one papers were included, encompassing six types of medications. Fifteen studies were on T1DM animals, and only six involved T2DM models. T1DM animals were treated with non-insulin drugs in four investigations, while insulin was utilized in 11 other studies. In T2DM experiments, five administered non-insulin drugs, and only one applied locally delivered insulin. Only insulin in T1DM studies produced a positive influence on bone-implant contact (BIC), bone mineral content, and removal torque values. Inappropriate drug selection, inadequate glycemic control, and high RoB depict a mismatch between the research focus and the translational rationale to clinical practice. There remains a knowledge gap regarding T2DM investigations due to the lack of studies. More data are needed concerning intraoral implants and the performance of osseointegrated implants in patients with a later onset of diabetes. Future research should reflect the pathophysiology and treatment of each type of diabetes to ensure clinical applicability.
Collapse
Affiliation(s)
- Sze Jun Tan
- KPJ Ambulatory Care Centre Kinrara, 33, 35 & 37, Jalan BK 5a/2, Bandar Kinrara, Puchong 47180, Malaysia
| | - Badiah Baharin
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence:
| | - Nurulhuda Mohd
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Syed Nabil
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
17
|
Yi M, Yin Y, Sun J, Wang Z, Tang Q, Yang C. Hormone and implant osseointegration: Elaboration of the relationship among function, preclinical, and clinical practice. Front Mol Biosci 2022; 9:965753. [PMID: 36188222 PMCID: PMC9522461 DOI: 10.3389/fmolb.2022.965753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
As clusters of peptides or steroids capable of high-efficiency information transmission, hormones have been substantiated to coordinate metabolism, growth, development, and other physiological processes, especially in bone physiology and repair metabolism. In recent years, the application of hormones for implant osseointegration has become a research hotspot. Herein, we provide a comprehensive overview of the relevant reports on endogenous hormones and their corresponding supplementary preparations to explore the association between hormones and the prognosis of implants. We also discuss the effects and mechanisms of insulin, parathyroid hormone, melatonin, vitamin D, and growth hormone on osseointegration at the molecular and body levels to provide a foothold and guide future research on the systemic conditions that affect the implantation process and expand the relative contraindications of the implant, and the pre-and post-operative precautions. This review shows that systemic hormones can regulate the osseointegration of oral implants through endogenous or exogenous drug-delivery methods.
Collapse
Affiliation(s)
- Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zeying Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
18
|
le Goff S, Godin JP, Albalat E, Nieves JMR, Balter V. Magnesium stable isotope composition, but not concentration, responds to obesity and early insulin-resistant conditions in minipig. Sci Rep 2022; 12:10941. [PMID: 35768618 PMCID: PMC9243132 DOI: 10.1038/s41598-022-14825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Hypomagnesemia is frequently associated with type 2 diabetes and generally correlates with unfavorable disease progression, but the magnesium status in pre-diabetic conditions remains unclear. Here, the magnesium metabolism is scrutinized in a minipig model of obesity and insulin resistance by measuring variations of the metallome—the set of inorganic elements—and the magnesium stable isotope composition in six organs of lean and obese minipigs raised on normal and Western-type diet, respectively. We found that metallomic variations are most generally insensitive to lean or obese phenotypes. The magnesium stable isotope composition of plasma, liver, kidney, and heart in lean minipigs are significantly heavier than in obese minipigs. For both lean and obese minipigs, the magnesium isotope composition of plasma and liver were negatively correlated to clinical phenotypes and plasma lipoproteins concentration as well as positively correlated to hyperinsulinemic-euglycemic clamp output. Because the magnesium isotope composition was not associated to insulin secretion, our results suggest that it is rather sensitive to whole body insulin sensitivity, opening perspectives to better comprehend the onset of insulin-resistant diabetic conditions.
Collapse
Affiliation(s)
- Samuel le Goff
- Laboratoire de Géologie de Lyon, ENS de Lyon, Université de Lyon, CNRS, Lyon, France
| | - Jean-Philippe Godin
- Nestlé Research, Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | - Emmanuelle Albalat
- Laboratoire de Géologie de Lyon, ENS de Lyon, Université de Lyon, CNRS, Lyon, France
| | | | - Vincent Balter
- Laboratoire de Géologie de Lyon, ENS de Lyon, Université de Lyon, CNRS, Lyon, France.
| |
Collapse
|
19
|
Matos FG, Santana LCL, Cominotte MA, da Silva FS, Vaz LG, de Oliveira DP, Cirelli JA. Strontium-loaded titanium-15molybdenum surface improves physicochemical and biological properties in vitro. Biomed Phys Eng Express 2022; 8. [PMID: 35594845 DOI: 10.1088/2057-1976/ac71cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
The titanium alloy composition and microdesign affect the dynamic interplay between the bone cells and titanium surface in the osseointegration process. The current study aimed to evaluate the surface physicochemical properties, electrochemical stability, and the metabolic response of the MC3T3-E1 cells (pre-osteoblast cell line) cultured onto titanium-15molybdenum (Ti-15Mo) discs treated with phosphoric acid (H3PO4) and sodium hydroxide (NaOH) and/or strontium-loading by the hydrothermal method. The x-ray dispersive energy spectroscopy (EDS) and x-ray diffraction (XRD) analysis showed no trace of impurities and the possible formation of hydrated strontium oxide (H2O2Sr), respectively. The confocal laser microscopy (CLSM) analysis indicated that titanium samples treated with strontium (Sr) showed greater surface roughness. The acid/alkali treatment prior to the hydrothermal Sr deposition improved the surface free energy and resistance to corrosion of the Ti-15Mo alloy. The acid/alkali treatment also provided greater retention of the Sr particles on the Ti-15Mo surfaces accordingly with inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The AlamarBlue and fluorescence analysis indicated noncytotoxic effects against the MC3T3-E1 cells, which allowed cells' adhesion and proliferation, with greater cells' spreading in the Sr-loaded Ti-15Mo samples. These findings suggest that Sr deposition by the hydrothermal method has the potential to enhance the physicochemical properties of the Ti-15Mo previously etched with H3PO4and NaOH, and also improve the initial events related to cell-mediated bone deposition.
Collapse
Affiliation(s)
- Flávia Gomes Matos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Luís Carlos Leal Santana
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Mariana Aline Cominotte
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | | | - Luís Geraldo Vaz
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Diego Pedreira de Oliveira
- Department of Materials Engineering-DEMa, Federal University of São Carlos-UFSCar, São Carlos, SP, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| |
Collapse
|
20
|
Shi S, Song S, Liu X, Zhao G, Ding F, Zhao W, Zhang S, Song Y, Ma W. Construction and performance of exendin-4-loaded chitosan-PLGA microspheres for enhancing implant osseointegration in type 2 diabetic rats. Drug Deliv 2022; 29:548-560. [PMID: 35156499 PMCID: PMC8856071 DOI: 10.1080/10717544.2022.2036873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The updating and optimization of drug delivery systems is critical for better in vivo behaviors of drugs, as well as for improving impaired implant osseointegration in diabetes. Numerous studies have reported the benefits of exendin-4 on diabetic bone, with the potential to enhance osseointegration in diabetes. To construct an appropriate sustained-release system of exendin-4 targeting implant osseointegration in diabetes, this study fabricated exendin-4-loaded microspheres using poly(lactic-co-glycolic acid) (PLGA) and chitosan. The morphology, size, encapsulation efficiency, and drug release behavior of microspheres were investigated. The bioactivity of drug-loaded microspheres on cell proliferation and osteogenic differentiation of diabetic BMSCs was investigated to examine the pharmacologic action of exendin-4 loaded into chitosan-PLGA microspheres. Further, the influence of microspheres on osseointegration was evaluated using type 2 diabetes mellitus (T2DM) rat implant model. After 4 weeks, the samples were evaluated by radiological and histological analysis. The results of in vitro experiments showed that the prepared exendin-4-loaded chitosan-PLGA microspheres have good properties as a drug delivery system, and the chitosan could improve the encapsulation efficiency and drug release of PLGA microspheres. In addition, exendin-4-loaded microspheres could enhance the proliferation and osteogenic differentiation of diabetic BMSCs. The results of in vivo experiments showed the exendin-4-loaded microspheres significantly improved the impaired osseointegration and bone formation around implants in T2DM rats without affecting blood glucose levels. Thus, the local application of exendin-4-loaded chitosan-PLGA microspheres might be a promising therapeutic strategy for improving the efficacy of dental implants in T2DM individuals.
Collapse
Affiliation(s)
- Shaojie Shi
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, The Fourth Military Medical University, Xi'an, China.,Department of Oral Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Shuang Song
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiangdong Liu
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, The Fourth Military Medical University, Xi'an, China
| | - Guoqiang Zhao
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, The Fourth Military Medical University, Xi'an, China
| | - Feng Ding
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, The Fourth Military Medical University, Xi'an, China
| | - Wenshuang Zhao
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, The Fourth Military Medical University, Xi'an, China
| | - Sijia Zhang
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, The Fourth Military Medical University, Xi'an, China
| | - Yingliang Song
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, The Fourth Military Medical University, Xi'an, China
| | - Wei Ma
- Department of Oral Implants, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Nourah D, Aldahlawi S, Andreana S. Should the Quality of Glycemic Control Guide Dental Implant Therapy in Patients with Diabetes? Focus on Implant Survival. Curr Diabetes Rev 2022; 18:e060821195367. [PMID: 34365929 DOI: 10.2174/1573399817666210806120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Optimal glycemic control is crucial to dental implant long-term functional and esthetic success. Despite HbA1c levels of 7% or lower used is as an indicator for good glycemic control, however, this level may not be attainable for all diabetic patients. Most dentists do not consider patients with poor glycemic control candidates for implant therapy due to higher implant failure, infection or other complications. AIM This review challenges the concept of one size fits all and aims to critically appraise the evidence for the success or failure rate of dental implants and peri-implant health outcomes in patients with less than optimal glycemic control. DISCUSSION Evidence suggests that estimating glycemic control from HbA1c measurement alone is misleading. Moreover, elevated preoperative HbA1c was not associated with increased mortality and morbidity after major surgical procedures. Literature for the survival or success of implants in diabetic patients is inconsistent due to a lack of standardized reporting of clinical data collection and outcomes. While a number of studies report that implant treatment in patients with well controlled diabetes has a similar success rate to healthy individuals, other studies suggest that the quality of glycemic control in diabetic patients does not make a difference in the implant failure rate or marginal bone loss. This discrepancy could indicate that risk factors other than hyperglycemia may contribute to the survival of implants in diabetic patients. CONCLUSION In the era of personalized medicine, the clinician should utilize individualized information and analyze all risk factors to provide the patient with evidence-based treatment options.
Collapse
Affiliation(s)
- Dalia Nourah
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salwa Aldahlawi
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
22
|
King S, Klineberg I, Brennan-Speranza TC. Adipose Tissue Dysfunction: Impact on Bone and Osseointegration. Calcif Tissue Int 2022; 110:32-40. [PMID: 34374815 DOI: 10.1007/s00223-021-00899-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Bone metabolism may be adversely affected in metabolic diseases such as obesity and metabolic syndrome, which are characterised by weight gain, due to the expansion of adipose tissue deposits. As an important regulator of energy metabolism, adipose tissues synthesise and secrete several key regulatory adipokines that influence a range of metabolic functions. This narrative review outlines the evidence for the mechanisms by which adipose tissue dysfunction may alter bone metabolism prior to the development of frank hyperglycaemia and presents the emerging evidence for the impact of diet-induced expansion of adipose tissue on implant osseointegration. Successful osseointegration requires normal bone cell function, and the expansion of adipose tissue deposits results in dysregulated adipokine production favouring an increase in pro-inflammatory adipokines, contributing to the development of a chronic inflammatory state and insulin resistance. The increase in inflammatory cytokines promotes the growth and differentiation of osteoclasts indirectly through the modulation of osteoblastic RANKL production and directly by reducing osteoclast apoptosis and increased osteoclastic expression of RANK. Conversely, the suppression of osteoblastic regulatory genes results in reduced osteoblast numbers and function contributing to compromised bone turnover. Compromised osseointegration has been established in hyperglycaemia; however, as discussed in this review, it may not be the only driver of altered bone metabolism. The incidence of metabolic disease in the community is rising, patients may present for implant treatment with undiagnosed, underlying changes to bone cell metabolism due to adipose tissue dysmetabolism.
Collapse
Affiliation(s)
- Shalinie King
- Sydney Dental School and Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - Iven Klineberg
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tara C Brennan-Speranza
- Head Skeletal Endocrine Laboratory, School of Medical Sciences and School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Effects of Obesity on Bone Healing in Rats. Int J Mol Sci 2021; 22:ijms222413339. [PMID: 34948136 PMCID: PMC8704371 DOI: 10.3390/ijms222413339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Although the association between periodontitis and obesity is well explored, it is unclear whether obesity is associated with a worse therapeutic outcome after periodontal treatment. The aim of this study was to investigate the effects of obesity on bone healing with and without the application of regeneration-promoting molecules. A standardized bone fenestration-type defect was created over the root of the mandibular first molar in 15 Wistar rats. Ten animals received a high-fat, high-sucrose diet (HFSD), while the remaining five animals were fed a standard diet. During surgery, the fenestration defects from half of the HFSD-fed, i.e., obese animals, were treated with regeneration-promoting molecules (enamel matrix derivative; EMD). After four weeks, bone healing was evaluated by histomorphometry, TRAP staining and immunohistochemistry for RUNX2 and osteopontin. The analyses revealed that the spontaneous healing of the periodontal defects was compromised by obesity. Application of EMD partially compensated for the negative effect of obesity. Nevertheless, EMD-stimulated bone healing in obese animals was not better than the spontaneous healing in the obesity-free control group, indicating that obesity may also inhibit the stimulatory effects of regeneration-promoting molecules. Our results show that obesity can negatively influence bone healing and suggest that bone healing may be compromised in humans.
Collapse
|
24
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
25
|
Histomorphometric analysis of implant osseointegration using hydrophilic implants in diabetic rats. Clin Oral Investig 2021; 25:5867-5878. [PMID: 33765194 DOI: 10.1007/s00784-021-03892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To evaluate peri-implant bone formation of titanium implants using an in vivo rat model with and without uncontrolled diabetes mellitus (DM) to evaluate osseointegration of hydrophobic (Neoporos®) and hydrophilic (Acqua®) surfaces. MATERIALS AND METHODS 54 rats were divided into two groups: DM group (DMG) (streptozotocin-induced diabetes) and a control group (CG). Implants with hydrophobic (Neoporos®) and hydrophilic surfaces (Acqua®) were placed in the left or right tibia of animals. Animals were further divided into three groups (n = 9) euthanized after 7, 14, or 28 days. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were assessed in total, cortical, and medullary areas. RESULTS The DMG group, after a 7-day healing period, yielded with the Acqua implants presented significantly higher total BIC (+37.9%; p=0.03) and trabecular BIC (%) (+46.3%; p=0.02) values in comparison to the Neoporos implants. After 28 days of healing, the CG yielded that the cortical BAFO of Acqua implants to be significantly, 14%, higher (p=0.04) than Neoporos implants. CONCLUSION The positive effects of the Acqua surface were able to counteract the adverse impact of uncontrolled DM at early osseointegration periods. After 28 days in vivo, the metabolic systemic impairment caused by DM overcame the surface treatment effect, leading to impaired osseointegration in both hydrophilic and hydrophobic implants. CLINICAL RELEVANCE The adverse effects of diabetes mellitus with respect to bone healing may be minimized by deploying implants with strategically modified surfaces. This study evaluated the effects of implants with Acqua® and Neoporos® surfaces in both diabetic and healthy animals. During the initial healing period in diabetic animals, the hydrophilic surface was demonstrated to have beneficial effect on osseointegration in comparison to the hydrophobic surface. The results provide an insight into early healing, but the authors suggest that a future short-term and long-term clinical study is needed to assess the possible benefit of the Acqua® implant as well as in increasing the predictability of implant osseointegration.
Collapse
|
26
|
Jeon HH, Yu Q, Witek L, Lu Y, Zhang T, Stepanchenko O, Son VJ, Spencer E, Oshilaja T, Shin MK, Alawi F, Coelho PG, Graves DT. Clinical application of a FOXO1 inhibitor improves connective tissue healing in a diabetic minipig model. Am J Transl Res 2021; 13:781-791. [PMID: 33594326 PMCID: PMC7868841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The forkhead box O1 (FOXO1) transcription factor plays a key role in wound healing process. Recently it has been reported that lineage-specific genetic ablation of FOXO1 significantly improves diabetic wound healing in a mouse model. To investigate the clinical usefulness of these findings, translational preclinical studies with a large animal model are needed. We report for the first time that the local application of a FOXO1 inhibitor (AS1842856) significantly improves connective tissue healing in a preclinical T2DM minipig model, reflected by increased collagen matrix formation, increased myofibroblast numbers, improved angiogenesis, and a shift in cell populations from pro-inflammatory (IL-1β+, TNF-α+ and iNOS+) to pro-healing (CD163+). Our results set up the basis for the clinical application of a FOXO1 antagonist in early diabetic wounds where there is impaired connective tissue healing.
Collapse
Affiliation(s)
- Hyeran H Jeon
- Department of Orthodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Quan Yu
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Orthodontics, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Lukasz Witek
- Biomaterials and Biomimetics, College of Dentistry, New York UniversityNew York, NY, USA
| | - Yongjian Lu
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Stomatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Tianshou Zhang
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
- Department of Implantology, School and Hospital of Stomatology, Jilin UniversityChangchun, China
| | - Olga Stepanchenko
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Victoria J Son
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Evelyn Spencer
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Temitope Oshilaja
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Min K Shin
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Faizan Alawi
- Department of Basic & Translational Sciences, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Paulo G Coelho
- Biomaterials and Biomimetics, College of Dentistry, New York UniversityNew York, NY, USA
- Hansjörg Wyss Department of Plastic Surgery, Langone Medical Center, New York UniversityNew York, NY, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
27
|
Castañeda-Corral G, Velázquez-Salazar NB, Martínez-Martínez A, Taboada-Serrano JN, Núñez-Aragón PN, González-Palomares L, Acosta-González RI, Petricevich VL, Acevedo-Fernández JJ, Montes S, Jiménez-Andrade JM. Characterization of Mechanical Allodynia and Skin Innervation in a Mouse Model of Type-2 Diabetes Induced by Cafeteria-Style Diet and Low-Doses of Streptozotocin. Front Pharmacol 2021; 11:628438. [PMID: 33732147 PMCID: PMC7957928 DOI: 10.3389/fphar.2020.628438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Painful distal symmetrical polyneuropathy (DPN) is a frequent complication of type-2 diabetes mellitus (T2DM) that commonly presents as neuropathic pain and loss of skin nerve fibers. However, there are limited therapies to effectively treat DPN and many of the current animal models of T2DM-induced DPN do not appear to mirror the human disease. Thus, we validated a DPN mouse model induced by a cafeteria-style diet plus low-doses of streptozotocin (STZ). Methods: Female C57BL/6J mice were fed either standard (STD) diet or obesogenic cafeteria (CAF) diet for 32 weeks, starting at 8 weeks old. Eight weeks after starting diets, CAF or STD mice received either four low-doses of STZ or vehicle. Changes in body weight, blood glucose and insulin levels, as well as oral glucose- and insulin-tolerance tests (OGTT and ITT) were determined. The development of mechanical hypersensitivity of the hindpaws was determined using von Frey filaments. Moreover, the effect of the most common neuropathic pain drugs was evaluated on T2DM-induced mechanical allodynia. Finally, the density of PGP -9.5+ (a pan-neuronal marker) axons in the epidermis from the hindpaw glabrous skin was quantified. Results: At 22–24 weeks after STZ injections, CAF + STZ mice had significantly higher glucose and insulin levels compared to CAF + VEH, STD + STZ, and STD + VEH mice, and developed glucose tolerance and insulin resistance. Skin mechanical sensitivity was detected as early as 12 weeks post-STZ injections and it was significantly attenuated by intraperitoneal acute treatment with amitriptyline, gabapentin, tramadol, duloxetine, or carbamazepine but not by diclofenac. The density of PGP-9.5+ nerve fibers was reduced in CAF + STZ mice compared to other groups. Conclusion: This reverse translational study provides a painful DPN mouse model which may help in developing a better understanding of the factors that generate and maintain neuropathic pain and denervation of skin under T2DM and to identify mechanism-based new treatments.
Collapse
Affiliation(s)
| | | | - Arisai Martínez-Martínez
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | | | - Pablo N Núñez-Aragón
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | | | | - Vera L Petricevich
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Dr. Manuel Velasco Suárez", Ciudad de México México
| | | |
Collapse
|
28
|
Benalcázar Jalkh EB, Neto JDS, Bergamo ETP, Maia CF, Bonfante EA. Mechanical testing of four-unit implant-supported prostheses with extensive pink gingiva porcelain: The dentogingival prostheses proof of concept. J ESTHET RESTOR DENT 2021; 33:605-612. [PMID: 33423375 DOI: 10.1111/jerd.12704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the probability of survival and failure modes of four-unit implant-supported porcelain fused to metal (PFM) dentogingival prostheses subjected to step-stress accelerated life testing (SSALT). MATERIALS AND METHODS Eighteen implant-supported PFM dentogingival prostheses with thin metallic infrastructures, which provided minimal ceramic support and improved esthetics were fabricated over external hexagonal connection UCLA abutments. SSALT was performed until specimen failure. Use level probability Weibull curve and reliability were calculated and plotted. Weibull modulus (m) and characteristic strength (η) were also calculated. Polarized light microscope and scanning electron microscope were used to characterize fractures. RESULTS Failures were dictated by material strength rather than fatigue damage accumulation. The probability of survival for loads reaching 100 and 150 N in 100,000 cycles was 92 and 61%, respectively. No cracks or fractures were identified in the veneered porcelain, whereas abutment fixation screw fracture was the chief failure mode. CONCLUSION Implant-supported PFM four-unit dentogingival prostheses with minimum metal framework dimensions presented favorable lifetime prediction under fatigue testing. Fractures were restricted to fixation screws. CLINICAL SIGNIFICANCE In-vitro fatigue testing and failure mode analyses evidenced favorable lifetime prediction for 4-unit implant-supported dentogingival prostheses with minimum metal frameworks. Abutment fixation screw fracture might be the most frequent clinical complication. Since this proof of concept has been tested in-vitro, further studies including different restorative materials, as well as long-term clinical trials are warranted.
Collapse
Affiliation(s)
- Ernesto B Benalcázar Jalkh
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil
| | | | - Edmara T P Bergamo
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil
| | | | - Estevam A Bonfante
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil
| |
Collapse
|
29
|
Granato R, Bergamo ETP, Witek L, Bonfante EA, Marin C, Greenberg M, Kurgansky G, Coelho PG. Clinical, histological, and nanomechanical parameters of implants placed in healthy and metabolically compromised patients. J Dent 2020; 100:103436. [PMID: 32738285 DOI: 10.1016/j.jdent.2020.103436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/04/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To evaluate the clinical outcomes, histological parameters, and bone nanomechanical properties around implants retrieved from healthy and metabolic syndrome (MS) patients. METHODS Twenty-four patients with edentulous mandibles (12/condition), received four implants between the mental foramina. An additional implant prototype was placed for retrieval histology. The following clinical outcomes were evaluated: insertion torque (IT), implant stability quotient (ISQ) values at baseline and after 60 days of healing, and implant survival. The prototype was retrieved after the healing and histologically processed for bone morphometric evaluation of bone-to-implant contact (%BIC) and bone area fraction occupancy (%BAFO), and bone nanoindentation to determine the elastic modulus (Em) and hardness (H). Descriptive statistical procedures and survival tests were used to analyze the data. RESULTS The final study population was comprised of 10 women and 11 men (∼64 years). A total of 105 implants were placed, 21 retrieved for histology. Implant survival rates were similar between groups (>99 %). Similarly, IT and ISQ analyses showed no significant association with systemic condition (p > 0.216). Histological micrographs depicted similar bone morphology, woven bone, for both conditions. While MS (33 ± 5.3 %) and healthy (39 ± 6.5 %) individuals showed no significant difference for %BIC (p = 0.116), significantly higher %BAFO was observed for healthy (45 ± 4.6 %) relative to MS (30 ± 3.8 %) (p < 0.001). No significant differences on bone nanomechanical properties was observed (p > 0.804). CONCLUSIONS Although no significant influence on clinical parameters and bone nanomechanical properties was observed, MS significantly reduced bone formation in the peri-implant area in the short-term. CLINICAL SIGNIFICANCE A lower amount of bone formation in the peri-implant area was observed in comparison to healthy patients, although the other short-term clinical outcomes were not significantly different. Considering the escalating prevalence of MS patients in need for implant treatment, it becomes crucial to understand bone-to-implant response to determine the ideal loading time in this population.
Collapse
Affiliation(s)
- Rodrigo Granato
- Postgraduate Program in Dentistry, University of Grande Rio, Rio de Janeiro, RJ, Brazil
| | - Edmara T P Bergamo
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil.
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Biomedical Engineering - NYU Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Estevam A Bonfante
- Department of Prosthodontics and Periodontology, University of São Paulo, Bauru School of Dentistry, Bauru, SP, Brazil
| | - Charles Marin
- Department of Oral Surgery, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Michael Greenberg
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA
| | - Gregory Kurgansky
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA
| | - Paulo G Coelho
- Department of Mechanical and Aerospace Engineering - NYU Tandon School of Engineering, Brooklyn, NY, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health School of Medicine, New York, NY, USA
| |
Collapse
|
30
|
de Oliveira PGFP, Bonfante EA, Bergamo ETP, de Souza SLS, Riella L, Torroni A, Benalcazar Jalkh EB, Witek L, Lopez CD, Zambuzzi WF, Coelho PG. Obesity/Metabolic Syndrome and Diabetes Mellitus on Peri-implantitis. Trends Endocrinol Metab 2020; 31:596-610. [PMID: 32591106 DOI: 10.1016/j.tem.2020.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022]
Abstract
Literature has reported that up to 50% of dental implants may be affected by peri-implantitis, a bacteria-induced chronic inflammatory process, which promotes osteoclast-mediated bone resorption and inhibits bone formation, leading to progressive bone loss around implants. Current evidence points toward an increased risk for the development of peri-implantitis in both obesity/metabolic syndrome (MetS) and diabetes mellitus (DM) conditions relative to the healthy population. Currently, there is no effective treatment for peri-implantitis and the 50% prevalence in MetS and DM, along with its predicted increase in the worldwide population, presents a major concern in implant dentistry as hyperglycemic conditions are associated with bone-healing impairment; this may be through dysfunction of osteocalcin-induced glucose metabolism. The MetS/DM proinflammatory systemic condition and altered immune/microbiome response affect both catabolic and anabolic events of bone-healing that include increased osteoclastogenesis and compromised osteoblast activity, which could be explained by the dysfunction of insulin receptor that led to activation of signals related with osteoblast differentiation. Furthermore, chronic hyperglycemia along with associated micro- and macro-vascular ailments leads to delayed/impaired wound healing due to activation of pathways that are particularly important in initiating events linked to inflammation, oxidative stress, and cell apoptosis; this may be through deactivation of AKT/PKB protein, which possesses a pivotal role in drive survival and eNOS signaling. This review presents an overview of the local and systemic mechanisms synergistically affecting bone-healing impairment in MetS/DM individuals, as well as a rationale for hierarchical animal model selection, in an effort to characterize peri-implantitis disease and treatment.
Collapse
Affiliation(s)
- Paula Gabriela Faciola Pessôa de Oliveira
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Periodontology, School of Dentistry, University Center of State of Para, Belem, PA, Brazil
| | - Estevam A Bonfante
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Edmara T P Bergamo
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Sérgio Luis Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Leonardo Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health School of Medicine, New York, NY, USA
| | - Ernesto B Benalcazar Jalkh
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Christopher D Lopez
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine Baltimore, MD, USA
| | - Willian Fernando Zambuzzi
- Department of Chemical and Biological Sciences, Bioscience Institute (IBB), UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health School of Medicine, New York, NY, USA; Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
31
|
King S, Baptiston Tanaka C, Ross D, Kruzic JJ, Levinger I, Klineberg I, Brennan‐Speranza TC. A diet high in fat and fructose adversely affects osseointegration of titanium implants in rats. Clin Exp Dent Res 2020; 6:107-116. [PMID: 32067396 PMCID: PMC7025982 DOI: 10.1002/cre2.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Diet-induced metabolic dysfunction such as type 2 diabetes mellitus increases the risk of implant failure in both dental and orthopaedic settings. We hypothesised that a diet high in fat and fructose would adversely affect peri-implant bone structure and function including osseointegration. MATERIALS AND METHODS Thirty female Sprague-Dawley rats were divided into three groups (n = 10), control group (normal chow) and two intervention groups on a high-fat (60%), high-fructose (20%; HFHF) diet. Titanium implants were placed in the proximal tibial metaphysis in all groups either before commencing the diet (dHFHF group) or 6 weeks after commencing the diet (HFHF group) and observed for an 8-week healing period. Fasting blood glucose levels (fBGLs) were measured weekly. Structural and functional features of the peri-implant bone, including bone-to-implant contact (BIC), were analysed post euthanasia using microcomputed tomography, pull-out tests, and dynamic histomorphometry. RESULTS The fBGLs were unchanged across all groups. Peri-implant trabecular bone volume was reduced in the HFHF group compared with controls (p = .02). Percentage BIC was reduced in both HFHF group (25.42 ± 3.61) and dHFHF group (28.56 ± 4.07) compared with the control group (43.26 ± 3.58, p < .05) and reflected the lower pull-out loads required in those groups. Osteoblast activity was reduced in both intervention groups compared with the control group (p < .05). CONCLUSION The HFHF diet compromised osseointegration regardless of whether the implant was placed before or after the onset of the diet and, despite the absence of elevated fBGLs, confirming that changes in bone cell function affected both the initiation and maintenance of osseointegration independent of blood glucose levels.
Collapse
Affiliation(s)
- Shalinie King
- Sydney Dental School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | | | - Dean Ross
- Department of Physiology and Bosch Institute for Medical ResearchThe University of SydneySydneyNew South WalesAustralia
| | - Jamie J. Kruzic
- School of Mechanical and Manufacturing EngineeringUNSW SydneySydneyNew South WalesAustralia
| | - Itamar Levinger
- Institute for Health and Sport (IHES)Victoria UniversityMelbourneVictoriaAustralia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine‐Western Health, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Iven Klineberg
- Sydney Dental School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Tara C. Brennan‐Speranza
- Department of Physiology and Bosch Institute for Medical ResearchThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
32
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|