1
|
Arojojoye AS, Awuah SG. Functional utility of gold complexes with phosphorus donor ligands in biological systems. Coord Chem Rev 2025; 522:216208. [PMID: 39552640 PMCID: PMC11563041 DOI: 10.1016/j.ccr.2024.216208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metallo-phosphines are ubiquitous in organometallic chemistry with widespread applications as catalysts in various chemical transformations, precursors for organic electronics, and chemotherapeutic agents or chemical probes. Here, we provide a comprehensive review of the exploration of the current biological applications of Au complexes bearing phosphine donor ligands. The goal is to deepen our understanding of the synthetic utility and reactivity of Au-phosphine complexes to provide insights that could lead to the design of new molecules and enhance the cross-application or repurposing of these complexes.
Collapse
Affiliation(s)
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536
- Markey Cancer Centre, University of Kentucky, Lexington KY, 40536
- University of Kentucky Bioelectronics and Nanomedicine Research Center, Lexington, Kentucky 40506, United States
| |
Collapse
|
2
|
Yang J, Soep C, Forté J, Dossmann H, Bertrand B. Post-metallation functionalization of the [(C^C)Au(P^P)] + scaffold through a hydrothiolation reaction. Dalton Trans 2024; 53:16144-16148. [PMID: 39315924 DOI: 10.1039/d4dt02092h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Complex 1 [(C^C)Au(dppv)]PF6 (dppv = cis-1,2-diphenylphosphinoethylene) is reported to react efficiently and selectively with aliphatic and aromatic thiols in the presence of a base. This methodology enables the smooth introduction of various functional groups on the [(C^C)Au(P^P)]+ scaffold.
Collapse
Affiliation(s)
- Jeannine Yang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
| | - Clément Soep
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
| | - Héloïse Dossmann
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
| | - Benoît Bertrand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
| |
Collapse
|
3
|
Mrkvicová A, Peterová E, Nemec I, Křikavová R, Muthná D, Havelek R, Kazimírová P, Řezáčová M, Štarha P. Rh(III) and Ru(II) complexes with phosphanyl-alkylamines: inhibition of DNA synthesis induced by anticancer Rh complex. Future Med Chem 2023; 15:1583-1602. [PMID: 37750220 DOI: 10.4155/fmc-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Aim: This investigation was designed to synthesize half-sandwich Rh(III) and Ru(II) complexes and study their antiproliferative activity in human cancer cell lines. Materials & methods: Nine compounds were prepared and tested by various assays for their anticancer activity and mechanism of action. Results: Hit Rh(III) complex 6 showed low-micromolar potency in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian carcinoma cell lines, promising selectivity toward these cancer cells over normal lung fibroblasts and an unprecedented mechanism of action in the treated cells. DNA synthesis was decreased and CDKN1A expression was upregulated, but p21 expression was not induced. Conclusion: Rh complex 6 showed high antiproliferative activity, which is induced through a p21-independent mechanism of action.
Collapse
Affiliation(s)
- Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Darina Muthná
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Petra Kazimírová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
4
|
Sulaiman AAA, Casagrande N, Borghese C, Corona G, Isab AA, Ahmad S, Aldinucci D, Altaf M. Design, Synthesis, and Preclinical Activity in Ovarian Cancer Models of New Phosphanegold(I)-N-heterocyclic Carbene Complexes. J Med Chem 2022; 65:14424-14440. [DOI: 10.1021/acs.jmedchem.2c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam A. A. Sulaiman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Naike Casagrande
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Cinzia Borghese
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Anvarhusein A. Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Saeed Ahmad
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Donatella Aldinucci
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Muhammad Altaf
- Department of Chemistry, Government College University Lahore, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Rousselle B, Massot A, Privat M, Dondaine L, Trommenschlager A, Bouyer F, Bayardon J, Ghiringhelli F, Bettaieb A, Goze C, Paul C, Malacea-Kabbara R, Bodio E. Conception and evaluation of fluorescent phosphine-gold complexes: from synthesis to in vivo investigations. ChemMedChem 2022; 17:e202100773. [PMID: 35254001 DOI: 10.1002/cmdc.202100773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Indexed: 11/11/2022]
Abstract
A phosphine gold(I) and phosphine-phosphonium gold(I) complexes bearing a fluorescent coumarin moiety were synthesized and characterized. Both complexes displayed interesting photophysical properties: good molar absorption coefficient, good quantum yield of fluorescence, and ability to be tracked in vitro thanks to two-photon imaging. Their in vitro and in vivo biological properties were evaluated onto cancer cell lines both human and murine and into CT26 tumor-bearing BALB/c mice. They displayed moderate to strong antiproliferative properties and the phosphine-phosphonium gold(I) complex induced significant in vivo anti-cancer effect.
Collapse
Affiliation(s)
- Benjamin Rousselle
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Aurélie Massot
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Malorie Privat
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | - Lucile Dondaine
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | | | - Florence Bouyer
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM 1231, FRANCE
| | - Jérôme Bayardon
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - François Ghiringhelli
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM UMR 1231, FRANCE
| | - Ali Bettaieb
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Christine Goze
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Catherine Paul
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | | | - Ewen Bodio
- Burgundy University, Institut de Chimie Moleculaire de l'Universite de Bourgogne - UMR CNRS 6302, 9 avenue Alain Savary, BP 47870, 21078, Dijon, FRANCE
| |
Collapse
|
7
|
Goetzfried SK, Kapitza P, Gallati CM, Nindl A, Cziferszky M, Hermann M, Wurst K, Kircher B, Gust R. Investigations of the reactivity, stability and biological activity of halido (NHC)gold(I) complexes. Dalton Trans 2022; 51:1395-1406. [PMID: 34989741 DOI: 10.1039/d1dt03528b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The significance of the halido ligand (Cl-, Br-, I-) in halido[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complexes (2-4) in terms of ligand exchange reactions, including the ligand scrambling to the bis[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complex (5), was evaluated by HPLC in acetonitrile/water = 50:50 (v/v) mixtures. In the presence of 0.9% NaCl, the bromido (NHC)gold(I) complex 3 was immediately transformed into the chlorido (NHC)gold(I) complex 2. The iodido (NHC)gold(I) complex 4 converted under the same conditions during 0.5 h of incubation by 52.83% to 2 and by 8.77% to 5. This proportion remained nearly constant for 72 h. The halido (NHC)gold(I) complexes also reacted very rapidly with 1 eq. of model nucleophiles, e.g., iodide or selenocysteine (Sec). For instance, Sec transformed 3 in the proportion 73.03% to the (NHC)Au(I)Sec complex during 5 min of incubation. This high reactivity against this amino acid, present in the active site of the thioredoxin reductase (TrxR), correlates with the complete inhibition of the isolated TrxR enzyme at 1 μM. Interestingly, in cellular systems (A2780cis cells), even at a 5-fold higher concentration, no increased ROS levels were detected. The concentration required for ROS generation was about 20 μM. Superficially considered, the antiproliferative and antimetabolic activities of the halido (NHC)Au(I) complexes correlate with the reactivity of the Au(I)-X bond (2 < 3 < 4). However, it is very likely that degradation products formed during the incubation in cell culture medium participated in the biological activity. In particular, the high-cytotoxic [(NHC)2Au(I)]+ complex (5) distorts the results.
Collapse
Affiliation(s)
- Sina Katharina Goetzfried
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Paul Kapitza
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Caroline Marie Gallati
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Anna Nindl
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Monika Cziferszky
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Brigitte Kircher
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Ronald Gust
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Rodríguez-Prieto T, Michlewska S, Hołota M, Ionov M, de la Mata FJ, Cano J, Bryszewska M, Gómez R. Organometallic dendrimers based on Ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNA. J Inorg Biochem 2021; 223:111540. [PMID: 34273717 DOI: 10.1016/j.jinorgbio.2021.111540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
With the purpose of obtaining a new dendritic system against cancer, this paper is focused on the synthesis of spherical carbosilane metallodendrimers of different generations holding Ru(II) N-heterocyclic carbene (NHC) on the periphery from the imidazolium precursors. Both imidazolium salt dendrimers and their metallodendrimers counterparts showed promising anticancer activity, similar to cisplatin, mainly at high generations. In addition, both families of second and third generations were able to form dendriplexes with anticancer small interfering RNA (siRNA), protecting the cargo against RNAse and being able to internalize it in HEPG2 (human liver cancer) tumour cells. The characterization and effectiveness of the dendriplexes were evaluated by various analytical techniques such as zeta potential, electrophoresis and circular dichroism, the stability of the system and the protective nature of the dendrimer estimated using RNAse and the internalization of dendriplexes by confocal microscopy. The major advantage observed with the ruthenium metallodendrimers with respect to the imidazolium salts precursors was in cellular uptake, where the internalization of Mcl-1-FITC siRNA (myeloid cell leukaemia-1 fluorescein labelled siRNA) proceeded more efficiently. Therefore, we propose here that both imidazolium and Ru metallodendrimers are interesting candidates in cancer due to their double action, as anticancer per se and as carrier for anticancer siRNA, providing in this way a combined action.
Collapse
Affiliation(s)
- Tamara Rodríguez-Prieto
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging & Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
9
|
Mirzadeh N, Telukutla SR, Luwor R, Privér S, Velma GR, Jakku RK, Andrew N S, Plebanski M, Christian H, Bhargava S. Dinuclear orthometallated gold(I)-gold(III) anticancer complexes with potent in vivo activity through an ROS-dependent mechanism. Metallomics 2021; 13:6308826. [PMID: 34165566 DOI: 10.1093/mtomcs/mfab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Increasingly explored over the last decade, gold complexes have shown great promise in the field of cancer therapeutics. A major obstacle to their clinical progression has been their lack of in vivo stability, particularly for gold(III) complexes, which often undergo a facile reduction in the presence of biomolecules such as glutathione. Herein, we report a new class of promising anticancer gold(I)-gold(III) complexes with the general formula [XAuI(μ-2-C6F4PPh2)(κ2-2-C6F4PPh2)AuIIIX] [X = Cl (1), Br (2), NO3 (3)] which feature two gold atoms in different oxidation states (I and III) in a single molecule. Interestingly, gold(I)-gold(III) complexes (1-3) are stable against glutathione reduction under physiological-like conditions. In addition, complexes 1-3 exhibit significant cytotoxicity (276-fold greater than cisplatin) toward the tested cancer cells compared to the noncancerous cells. Moreover, the gold(I)-gold(III) complexes do not interact with DNA-like cisplatin but target cellular thioredoxin reductase, an enzyme linked to the development of cisplatin drug resistance. Complexes 1-3 also showed potential to inhibit cancer and endothelial cell migration, as well as tube formation during angiogenesis. In vivo studies in a murine HeLa xenograft model further showed the gold compounds may inhibit tumor growth on par clinically used cisplatin, supporting the significant potential this new compound class has for further development as cancer therapeutic.
Collapse
Affiliation(s)
- Nedaossadat Mirzadeh
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Srinivasa Reddy Telukutla
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Rodney Luwor
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Steven Privér
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Ganga Reddy Velma
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Ranjith Kumar Jakku
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Stephens Andrew N
- Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | | | - Hartinger Christian
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Suresh Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
10
|
Rufino-Felipe E, Colorado-Peralta R, Reyes-Márquez V, Valdés H, Morales-Morales D. Fluorinated-NHC Transition Metal Complexes: Leading Characters as Potential Anticancer Metallodrugs. Anticancer Agents Med Chem 2021; 21:938-948. [PMID: 32900353 DOI: 10.2174/1871520620666200908103452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 12/09/2022]
Abstract
In the last 20 years, N-Heterocyclic Carbene (NHC) ligands have been ubiquitous in biological and medicinal chemistry. Part of their success lies in the tremendous number of topologies that can be synthesized and thus finely tuned that have been described so far. This is particularly true in the case of those derivatives, including fluorine or fluorinated fragments on their NHC moieties, gaining much attention due to their enhanced biological properties and turning them into excellent candidates for the development of novel metallodrugs. Thus, this review summarizes the development that fluorinated-NHC transition metal complexes have had and their impact on cancer treatment.
Collapse
Affiliation(s)
- Ernesto Rufino-Felipe
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| | - Raúl Colorado-Peralta
- Facultad de Ciencias Quimicas, Universidad Veracruzana, Oriente 6 1009, Col. Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, Mexico
| | - Viviana Reyes-Márquez
- Departamento de Ciencias Quimico-Biologicas, Universidad de Sonora, Luis Encinas y Rosales s/n. CP 83000. Hermosillo, Sonora, Mexico
| | - Hugo Valdés
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| | - David Morales-Morales
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| |
Collapse
|
11
|
Gallati CM, Goetzfried SK, Ortmeier A, Sagasser J, Wurst K, Hermann M, Baecker D, Kircher B, Gust R. Synthesis, characterization and biological activity of bis[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes. Dalton Trans 2021; 50:4270-4279. [PMID: 33688890 DOI: 10.1039/d0dt03902k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A series of bis[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes (2a-f) containing methyl, fluoro or methoxy substituents at various positions in the 4-aryl ring was synthesized and evaluated for their anti-cancer properties in A2780 (wild-type and Cisplatin-resistant) ovarian carcinoma as well as LAMA 84 (imatinib-sensitive and -resistant) and HL-60 leukemia cell lines. The bis-NHC gold(i) complexes were more active compared to their related mono-NHC gold(i) analogues and reduced proliferation and metabolic activity in a low micromolar range. With the exception of 2d (3-F), the compounds displayed higher potency than the established drugs Auranofin and Cisplatin. The lack of effects against non-cancerous lung fibroblast SV-80 cells indicated a high selectivity towards tumor cells. All tested complexes generated reactive oxygen species in A2780cis cells; however, the induction of apoptosis was very low. Furthermore, thioredoxin reductase is not the main target of these complexes, because its inhibition pattern did not correlate with their biological activity.
Collapse
Affiliation(s)
- Caroline Marie Gallati
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rodríguez-Prieto T, Popp PF, Copa-Patiño JL, de la Mata FJ, Cano J, Mascher T, Gómez R. Silver (I) N-Heterocyclic Carbenes Carbosilane Dendritic Systems and Their Imidazolium-Terminated Analogues as Antibacterial Agents: Study of Their Mode of Action. Pharmaceutics 2020; 12:E968. [PMID: 33066639 PMCID: PMC7650833 DOI: 10.3390/pharmaceutics12100968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023] Open
Abstract
Spherical dendrimers and dendrons containing silver(I) N-heterocyclic carbenes (Ag(I)-NHC) and additionally bow-tie metal-free dendritic systems were synthesized in a simple and straightforward synthetic procedure and subsequently characterized. The antibacterial activity was evaluated, and in parallel, a comparative study with the cationic analogue precursors was performed to explore the effect of silver ions in the dendritic structure. Other parameters, such as topology, generation, and hydrophobicity, of the imidazole substituents were also studied. All these dendritic systems presented antibacterial activity against three different bacterial strains, two Gram-positive (Staphylococcus aureus and Bacillus subtilis) and one Gram-negative (Escherichia coli). Several assays were conducted to elucidate their mechanism of action against Bacillus subtilis, by using bacterial biosensors or specific probes and fluorescent proteins sensitive to changes in the cell membrane potential. These studies are specially focused on the role of the polyvalence of our systems containing silver atoms, which may provoke interesting effects in the mode of action.
Collapse
Affiliation(s)
- Tamara Rodríguez-Prieto
- Department of Organic and Inorganic Chemistry, Chemical Research Institute “Andrés M. Del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain; (T.R.-P.); (F.J.d.l.M.); (J.C.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Philipp F. Popp
- Institute of Microbiology, Dresden University of Technology, 01069 Dresden, Germany;
| | - José Luis Copa-Patiño
- Department of Biomedicine and Biotechnology, University of Alcalá, 28805 Madrid, Spain;
| | - F. Javier de la Mata
- Department of Organic and Inorganic Chemistry, Chemical Research Institute “Andrés M. Del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain; (T.R.-P.); (F.J.d.l.M.); (J.C.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Chemical Research Institute “Andrés M. Del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain; (T.R.-P.); (F.J.d.l.M.); (J.C.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Thorsten Mascher
- Institute of Microbiology, Dresden University of Technology, 01069 Dresden, Germany;
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Chemical Research Institute “Andrés M. Del Río” (IQAR), University of Alcalá, 28805 Madrid, Spain; (T.R.-P.); (F.J.d.l.M.); (J.C.)
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
13
|
Bertrand B, Gontard G, Botuha C, Salmain M. Pincer‐Based Heterobimetallic Pt(II)/Ru(II), Pt(II)/Ir(III), and Pt(II)/Cu(I) Complexes: Synthesis and Evaluation of Antiproliferative Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Benoît Bertrand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Geoffrey Gontard
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Candice Botuha
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| |
Collapse
|
14
|
Oberkofler J, Aikman B, Bonsignore R, Pöthig A, Platts J, Casini A, Kühn FE. Exploring the Reactivity and Biological Effects of Heteroleptic N‐Heterocyclic Carbene Gold(I)‐Alkynyl Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jens Oberkofler
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Brech Aikman
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Riccardo Bonsignore
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Alexander Pöthig
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - James Platts
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
| | - Angela Casini
- School of Chemistry Cardiff University Main Building, Park Place CF10 3AT Cardiff UK
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| | - Fritz E. Kühn
- Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
15
|
Transfer hydrogenation of ketones catalyzed by a trinuclear Ni(II) complex of a Schiff base functionalized N-heterocyclic carbene ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Trommenschlager A, Chotard F, Bertrand B, Amor S, Richard P, Bettaïeb A, Paul C, Connat JL, Le Gendre P, Bodio E. Gold(I)-Coumarin-Caffeine-Based Complexes as New Potential Anti-Inflammatory and Anticancer Trackable Agents. ChemMedChem 2018; 13:2408-2414. [PMID: 30203922 DOI: 10.1002/cmdc.201800474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Indexed: 11/11/2022]
Abstract
Three new gold(I)-coumarin-based trackable therapeutic complexes and two non-trackable analogues have been synthesised and fully characterised. They all display anti-proliferative properties on several types of cancer cell lines, including those of colon, breast, and prostate. Two complexes displayed significant anti-inflammatory effects; one displayed pro-inflammatory behaviour; this highlights the impact of the position of the fluorophore on the caffeine scaffold. Additionally, the three coumarin derivatives could be visualised in vitro by two-photon microscopy.
Collapse
Affiliation(s)
| | - Florian Chotard
- ICMUB UMR6302, CNRS, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Benoît Bertrand
- ICMUB UMR6302, CNRS, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Souheila Amor
- ICMUB UMR6302, CNRS, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Philippe Richard
- ICMUB UMR6302, CNRS, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Ali Bettaïeb
- EPHE, PSL Research University, 75000, Paris, France.,LIIC, EA7269, Université de Bourgogne Franche Comté, 21000, Dijon, France
| | - Catherine Paul
- EPHE, PSL Research University, 75000, Paris, France.,LIIC, EA7269, Université de Bourgogne Franche Comté, 21000, Dijon, France
| | - Jean-Louis Connat
- Biologie Animale Cellulaire et Moléculaire, Université de Bourgogne Franche-Comté, 6 Bvd. Gabriel, 21000, Dijon, France
| | - Pierre Le Gendre
- ICMUB UMR6302, CNRS, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Ewen Bodio
- ICMUB UMR6302, CNRS, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| |
Collapse
|
17
|
Medicinal Applications of Gold(I/III)-Based Complexes Bearing N-Heterocyclic Carbene and Phosphine Ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Bertrand B, Williams MRM, Bochmann M. Gold(III) Complexes for Antitumor Applications: An Overview. Chemistry 2018; 24:11840-11851. [DOI: 10.1002/chem.201800981] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Benoît Bertrand
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
- Sorbonne UniversitésUPMC Univ Paris 06CNRSInstitut Parisien de Chimie Moléculaire (IPCM) 4 Place Jussieu 75005 Paris France
| | | | - Manfred Bochmann
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
19
|
Seliman AA, Altaf M, Onawole AT, Al-Saadi A, Ahmad S, Alhoshani A, Bhatia G, Isab AA. Synthesis, X-ray structure and cytotoxicity evaluation of carbene-based gold(I) complexes of selenones. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Diehl T, Krause MTS, Ueberlein S, Becker S, Trommer A, Schnakenburg G, Engeser M. Synthesis of hydroxyl-functionalized N-heterocyclic carbene gold(i) complexes and peptide conjugates. Dalton Trans 2018; 46:2988-2997. [PMID: 28198476 DOI: 10.1039/c6dt04834j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis and characterization of a series of new cationic gold(i) complexes with hydroxyl-functionalized N-heterocyclic carbene (NHC) ligands is described. They are valuable building blocks for further derivatization: as a first example, coupling with amino acids and a dipeptide, respectively, successfully results in amino acid and peptide conjugates that are hard to obtain by other synthetic routes.
Collapse
Affiliation(s)
- Tobias Diehl
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Melanie T S Krause
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Sven Ueberlein
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Stefanie Becker
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Aline Trommer
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | - Marianne Engeser
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
21
|
Bertrand B, O'Connell MA, Waller ZAE, Bochmann M. A Gold(III) Pincer Ligand Scaffold for the Synthesis of Binuclear and Bioconjugated Complexes: Synthesis and Anticancer Potential. Chemistry 2018; 24:3613-3622. [PMID: 29334159 DOI: 10.1002/chem.201705902] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/14/2022]
Abstract
Cyclometalated (C^N^C)AuIII complexes bearing functionalized N-heterocyclic carbene (NHC) ligands provide a high-yielding, modular route to bioconjugated and binuclear complexes. This methodology has been applied to the synthesis of bioconjugated complexes presenting biotin and 17α-ethynylestradiol vectors, as well as to the synthesis of bimetallic AuIII /AuI complexes. The in vitro antiproliferative activities of these compounds against various cancer cells lines depend on the linker length, with the longer linker being the most potent. The estradiol conjugate AuC6 Estra proved to be more toxic against the estrogen receptor positive (ER+) cancer cells than against the ER- cancer cells and non-cancer cells. The bimetallic complex AuC6 Au was more selective for breast cancer cells with respect to a healthy cell standard than the monometallic complex AuNHC. The metal uptake study on cells expressing or not biotin and estrogen receptors revealed an improved and targeted delivery of gold for both the bioconjugated complexes AuC6 Biot and AuC6 Estra compared to the non-vectorised analogue AuNHC. The investigations of the interaction of the bioconjugates and bimetallic complexes with human telomeric G-quadruplex DNA using FRET-melting techniques revealed a reduced ability to stabilize this DNA structure with respect to the non-vectorised analogue AuNHC.
Collapse
Affiliation(s)
- Benoît Bertrand
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.,Institut Parisien de Chimie Moléculaire (IPCM), UPMC Univ Paris 06, CNRS, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
| | | | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
22
|
Porchia M, Pellei M, Marinelli M, Tisato F, Del Bello F, Santini C. New insights in Au-NHCs complexes as anticancer agents. Eur J Med Chem 2018; 146:709-746. [PMID: 29407992 DOI: 10.1016/j.ejmech.2018.01.065] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/03/2023]
Abstract
Within the research field of antitumor metal-based agents alternative to platinum drugs, gold(I/III) coordination complexes have always been in the forefront due mainly to the familiarity of medicinal chemists with gold compounds, whose application in medicine goes back in the ancient times, and to the rich chemistry shown by this metal. In the last decade, N-heterocyclic carbene ligands (NHC), a class of ligands that largely resembles the chemical properties of phosphines, became of interest for gold(I) medicinal applications, and since then, the research on NHC-gold(I/III) coordination complexes as potential antiproliferative agents boosted dramatically. Different classes of gold(I/III)-NHC complexes often showed an outstanding in vitro antiproliferative activity, however up to now very few in vivo data have been reported to corroborate the in vitro results. This review summarizes all achievements in the field of gold (I/III) complexes comprising NHC ligands proposed as potential antiproliferative agents in the period 2004-2016, and critically analyses biological data (mainly IC50 values) in relation to the chemical structures of Au compounds. The state of art of the in vivo studies so far described is also reported.
Collapse
Affiliation(s)
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Marika Marinelli
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| |
Collapse
|
23
|
Antiproliferative Activity of Gold(III) Complexes with Esters of Cyclohexyl-Functionalized Ethylenediamine-N,N’-Diacetate. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2017. [DOI: 10.1515/sjecr-2017-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Six gold(III) complexes with esters of cyclohexyl-functionalized ethylenediamine-N,N’-diacetate, general formula [AuCl2{(S,S)-R2eddch}]PF6, [(S,S)-eddch = (S,S)-ethylenediamine-N,N’-di-2-(3-cyclohexyl)propanoate, R = Me, Et, n-Pr, n-Bu, i-Bu, i-Am, 1–6, respectively], were tested against cancer cell lines such as human melanoma Fem-x, human colon carcinoma LS174T and non-small cell lung carcinoma A549 as well as a non-cancerous human embryonic lung fibroblasts MRC-5 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the aim of assessing in vitro antitumoral activity and selectivity. All investigated complexes showed lower cytotoxicity and better or similar selectivity in comparison to cisplatin, used as reference compound. Complex [AuCl2{(S,S)-(i-Am)2eddch}]PF6 (6) demonstrated the highest activity against Fem-x (IC50 = 14.98 ± 0.34 μM). Additionally, the same complex expressed 4.5 times higher selectivity than cisplatin.
Collapse
|
24
|
Cucciolito ME, Trinchillo M, Iannitti R, Palumbo R, Tesauro D, Tuzi A, Ruffo F, D'Amora A. Sugar-Incorporated N-Heterocyclic-Carbene-Containing Gold(I) Complexes: Synthesis, Characterization, and Cytotoxic Evaluation. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maria E. Cucciolito
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi; Via Celso Ulpiani 27 70126 Bari Italy
| | - Marina Trinchillo
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
| | - Roberta Iannitti
- Istituto di Biostrutture e Bioimmagini (IBB) CNR; Via Mezzocannone 16 80134 Napoli Italy
| | - Rosanna Palumbo
- Istituto di Biostrutture e Bioimmagini (IBB) CNR; Via Mezzocannone 16 80134 Napoli Italy
| | - Diego Tesauro
- Dipartimento di Farmacia & CIRPeB Università degli Studi di Napoli Federico II; Via Mezzocannone 16 80134 Napoli Italy
- Diagnostica e Farmaceutica Molecolari S.C.R.L (DFM); Via Mezzocannone 16 80134 Napoli Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi; Via Celso Ulpiani 27 70126 Bari Italy
| | - Angela D'Amora
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
- Diagnostica e Farmaceutica Molecolari S.C.R.L (DFM); Via Mezzocannone 16 80134 Napoli Italy
| |
Collapse
|
25
|
Synthesis, X-ray structure, DFT calculations and anticancer activity of a selenourea coordinated gold(I)-carbene complex. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Seliman AA, Altaf M, Onawole AT, Ahmad S, Ahmed MY, Al-Saadi AA, Altuwaijri S, Bhatia G, Singh J, Isab AA. Synthesis, X-ray structures and anticancer activity of gold(I)-carbene complexes with selenones as co-ligands and their molecular docking studies with thioredoxin reductase. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Al-Jaroudi SS, Altaf M, Seliman AA, Yadav S, Arjmand F, Alhoshani A, Korashy HM, Ahmad S, Isab AA. Synthesis, characterization, in vitro cytotoxicity and DNA interaction study of phosphanegold(I) complexes with dithiocarbamate ligands. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Milaeva E, Shpakovsky D, Dyadchenko V, Gryzlov A, Gracheva Y, Antonenko T, Parulava M, Albov D, Aslanov L, Dubova L, Shevtsov P, Neganova M, Shevtsova E. Synthesis and biological activity of novel Au(I) complexes with a protective antioxidant 2,6-di-tert-butylphenol group. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Lazarević T, Rilak A, Bugarčić ŽD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur J Med Chem 2017; 142:8-31. [PMID: 28442170 DOI: 10.1016/j.ejmech.2017.04.007] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted.
Collapse
Affiliation(s)
- Tatjana Lazarević
- University of Kragujevac, Faculty of Medicine, S. Marković 69, 34000, Kragujevac, Serbia
| | - Ana Rilak
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia.
| | - Živadin D Bugarčić
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia.
| |
Collapse
|
30
|
Williams M, Green AI, Fernandez-Cestau J, Hughes DL, O'Connell MA, Searcey M, Bertrand B, Bochmann M. (C^Npz^C)AuIII complexes of acyclic carbene ligands: synthesis and anticancer properties. Dalton Trans 2017; 46:13397-13408. [DOI: 10.1039/c7dt02804k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of amino ester conjugated (C^Npz^C)Au acyclic carbene complexes with low micromolar cytotoxicity on human cancer cells.
Collapse
Affiliation(s)
| | - Adam I. Green
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | | | | | | | - Mark Searcey
- School of Chemistry
- University of East Anglia
- Norwich
- UK
- School of Pharmacy
| | | | | |
Collapse
|
31
|
Liu W, Gust R. Update on metal N-heterocyclic carbene complexes as potential anti-tumor metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.09.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs. Future Med Chem 2016; 7:1305-33. [PMID: 26144266 DOI: 10.4155/fmc.15.61] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.
Collapse
|
33
|
García-Moreno E, Tomás A, Atrián-Blasco E, Gascón S, Romanos E, Rodriguez-Yoldi MJ, Cerrada E, Laguna M. In vitro and in vivo evaluation of organometallic gold(I) derivatives as anticancer agents. Dalton Trans 2015; 45:2462-75. [PMID: 26469679 DOI: 10.1039/c5dt01802a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkyne gold(I) derivatives with the water soluble phosphanes PTA (1,3,5-triaza-7-phosphaadamantane) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) were described and their anticancer potential against the colon cancer cell line Caco-2 (PD7 and TC7 clones) was studied. Strong antiproliferative effects are found, for all the new complexes, to be even more pronounced than for the reference drug cisplatin, and similar to auranofin. The interaction of these derivatives with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. The types of quenching and binding constants were determined by a fluorescence quenching method. Moderate values of the binding constants are calculated for the tested derivatives indicating that these complexes can be stored and carried easily by this protein in the body. The study of the thermodynamic parameters in the case of [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] points out to the presence of van der Waals interactions or hydrogen bonding between the metallic complex and the protein. In addition, the complex [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] has shown inhibition in colon cancer proliferation of HTC-116-luc2 cell lines via the apoptotic pathway and S-phase arrest of the cell cycle. Intraperitoneal injection of this derivative in athymic nude mice inoculated with HTC-116-luc2 cells prolonged their survival and displayed moderate inhibition of the tumour growth with no subsequent organ (kidney and liver) damage after treatment.
Collapse
Affiliation(s)
- Elena García-Moreno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gold(I) NHC-based homo- and heterobimetallic complexes: synthesis, characterization and evaluation as potential anticancer agents. J Biol Inorg Chem 2015. [DOI: 10.1007/s00775-015-1283-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Synthesis, characterization and theoretical calculations of (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride complexes: in vitro cytotoxic evaluations against human cancer cell lines. Biometals 2015; 28:827-44. [PMID: 26099502 DOI: 10.1007/s10534-015-9869-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
Abstract
The gold(III) complexes of the type (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride, [(DACH)Au(pn)]Cl3, [where DACH = cis-, trans-1,2- and S,S-1,2-diaminocyclohexane and pn = 1,3-diaminopropane] have been synthesized and characterized using various spectroscopic and analytical techniques including elemental analysis, UV-Vis and FTIR spectroscopy; solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and 1,3-diaminopropane (pn) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was checked by UV-Vis spectroscopy and NMR measurements. The molecular structure of compound 1 (containing cis-1,2-DACH) was determined by X-ray diffraction analysis. The structure of 1 consists of [(cis-DACH)Au(pn)](3+) complex ion and chloride counter ions. Each gold atom in the complex ion adopts a distorted square-planar geometry. The structural details and relative stabilities of the four possible isomers of the complexes were also estimated at the B3LYP/LANL2DZ level of theoretical calculations. The computational study demonstrates that trans- conformations are slightly more stable than the cis- conformations. The antiproliferative effects and cytotoxic properties of the mixed ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 3 (containing 1S,2S-(+)-1,2-(DACH)) is the most effective antiproliferative agent. The IC50 data reveal that the in vitro cytotoxicity of complex 3 against SGC7901 cancer cells manifested similar and very pronounced cytotoxic effects with respect to cisplatin. Moreover, the electrochemical behavior, and the interaction of complex 3 with two well-known model proteins, namely, hen egg white lysozyme and bovine serum albumin is also reported.
Collapse
|
36
|
Ali M, Dondaine L, Adolle A, Sampaio C, Chotard F, Richard P, Denat F, Bettaieb A, Le Gendre P, Laurens V, Goze C, Paul C, Bodio E. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a “Smart” Probe Answer! J Med Chem 2015; 58:4521-8. [DOI: 10.1021/acs.jmedchem.5b00480] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Moussa Ali
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB UMR CNRS 6302, 9 Avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France
| | - Lucile Dondaine
- École Pratique des Hautes Études, Paris, F-75014, France
- EA7269 EPHE-University of Burgundy, University of Burgundy, Dijon, F-21000, France
| | - Anais Adolle
- École Pratique des Hautes Études, Paris, F-75014, France
- EA7269 EPHE-University of Burgundy, University of Burgundy, Dijon, F-21000, France
| | - Carla Sampaio
- École Pratique des Hautes Études, Paris, F-75014, France
- EA7269 EPHE-University of Burgundy, University of Burgundy, Dijon, F-21000, France
| | - Florian Chotard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB UMR CNRS 6302, 9 Avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France
| | - Philippe Richard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB UMR CNRS 6302, 9 Avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB UMR CNRS 6302, 9 Avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France
| | - Ali Bettaieb
- École Pratique des Hautes Études, Paris, F-75014, France
- EA7269 EPHE-University of Burgundy, University of Burgundy, Dijon, F-21000, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB UMR CNRS 6302, 9 Avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France
| | - Véronique Laurens
- École Pratique des Hautes Études, Paris, F-75014, France
- EA7269 EPHE-University of Burgundy, University of Burgundy, Dijon, F-21000, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB UMR CNRS 6302, 9 Avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France
| | - Catherine Paul
- École Pratique des Hautes Études, Paris, F-75014, France
- EA7269 EPHE-University of Burgundy, University of Burgundy, Dijon, F-21000, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB UMR CNRS 6302, 9 Avenue Alain Savary, BP 47870, Dijon Cedex, 21078, France
| |
Collapse
|