1
|
Abd-El-Aziz A, Li Z, Zhang X, Elnagdy S, Mansour MS, ElSherif A, Ma N, Abd-El-Aziz AS. Advances in Coordination Chemistry of Schiff Base Complexes: A Journey from Nanoarchitectonic Design to Biomedical Applications. Top Curr Chem (Cham) 2025; 383:8. [PMID: 39900838 DOI: 10.1007/s41061-025-00489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025]
Abstract
Since the discovery of Schiff bases over one and a half centuries ago, there has been tremendous research activity in the design of various Schiff bases and examination of their diverse structures and versatile applications. This family of compounds has continued to captivate many research groups due to the simplicity of their synthesis through the condensation of amines with carbonyl compounds. While conventional synthesis has been the most widely used, green synthetic methodologies have been also explored for this reaction, including sonication, microwave-assisted, natural acid-catalyzed and mechanochemical syntheses as well as utilizing ionic liquid solvents or deep eutectic solvents. Schiff bases have been utilized as excellent ligands for coordination to transition metals and late transition metals (lanthanides and actinides). These Schiff base compounds can be mono-, di-, or polydentate ligands. The aim of this review is to examine the biological applications of Schiff base complexes over the past decade with particular focus on their antimicrobial, antiviral, anticancer, antidiabetic, and anti-inflammatory activity. Schiff base complexes have been found effective in combating bacterial and fungal infections with numerous examples in the literature. The review addressed this area by focusing on the very recent examples while using tables to summarize the vast breadth of research according to the metallic moieties. Viruses have continued to be a target of many researchers in light of their continuous mutations and impact on human health, and therefore some examples of Schiff base complexes with antiviral activity are described. Cancer continues to be among the leading causes of death worldwide. In this article, the use of Schiff base complexes for, and the mechanisms associated with, their anticancer activity are highlighted. The production of reactive oxygen species (ROS) or intercalation with DNA base pairs leading to cell cycle arrest were the main mechanisms described. While there have been some efforts made to use Schiff base complexes as antidiabetic or anti-inflammatory agents, there are limited examples when compared with antimicrobial and anticancer studies. The conclusion of this review highlights the emerging areas of research and future perspectives with an emphasis on the potential uses of Schiff bases in the treatment of infectious and noninfectious diseases.
Collapse
Affiliation(s)
- Ahmad Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Zexuan Li
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Xinyue Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Sherif Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed S Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed ElSherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ning Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Alaa S Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China.
| |
Collapse
|
2
|
Sindhu I, Singh A, Deswal Y, Gupta NM. Synthesis, Spectral Characterization, Antimicrobial Activity, DFT Calculations, Molecular Docking and ADME Studies of Novel Schiff Base Co(II), Ni(II), Cu(II) and Zn(II) Complexes Derived from 4-nitro-ortho-phenylenediamine. Chem Biodivers 2024:e202402619. [PMID: 39590220 DOI: 10.1002/cbdv.202402619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
A condensation reaction was carried out between 4-nitro-ortho-phenylenediamine and 5-bromosalicyaldehyde to synthesize a novel Schiff base ligand 2,2'-[(1E,1'E)-(4-nitro-1,2-phenylene) bis (azaneylylidene) bis (methaneylylidene)] bis (4-bromophenol) [NB] in the current investigation. This was followed by the synthesis of metallic complexes comprising the Co(II), Ni(II), Cu(II) and Zn(II) transition metal ions. A hexadentate environment encircling metal complexes was corroborated by the results of varied spectroscopic methods that were employed to unravel the structure of the ligand and metal complexes. The Tauc's plot and Urbach energy were utilized for quantifying the optical energy band gap to provide insight into optical characteristics. The Coats-Redfern method of thermal analysis was implemented to do the kinetic and thermodynamic calculations. Furthermore, DFT studies were performed to predict geometrical structures and the stability of the compounds. Thorough investigation to evaluate their biological efficacies, docking studies was executed against COVID-19 main protease (PDB-7VAH), Dengue virus NS2B/NS3 protease (PDB-2FOM) and Mycobacterium Tuberculosis (PDB-5AF3). Apart from this, in silico ADMET studies were also accomplished for elucidation of drug likeness characteristics and the results attained disclose the significant proficiency of synthesized compounds. Besides this, antimicrobial studies were assessed with different microbial strains and result validates cobalt and zinc complexes as most potent against the selected bacterial and fungal strains.
Collapse
Affiliation(s)
- Indu Sindhu
- Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India
| | - Yogesh Deswal
- Department of Chemistry, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Neeraj Mohan Gupta
- Department of Chemistry, Govt. P. G. College, Guna, Jiwaji University, Gwalior, postCode/>473001, India
| |
Collapse
|
3
|
Razaq N, Asghar A, Mumtaz A, Al-Mijalli SH, Nisa MU, Riaz T, Iqbal M, Shahid B. Synthesis of biologically active cefpodoxime and vanillin-based schiff base metal complexes with the detailed biological evaluations. Biometals 2024; 37:1201-1224. [PMID: 38864936 DOI: 10.1007/s10534-024-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Schiff bases of existing antimicrobial drugs are an area, which is still to be comprehensively explored to improve drug efficiency against consistently resisting bacterial species. In this study, we have targeted a new and eco-friendly method of condensation reaction that allows the "green synthesis" as well as improved biological efficacy. The transition metal complexes of cefpodoxime with well-enhanced biological activities were synthesized. The condensation reaction product of cefpodoxime and vanillin was further reacted with suitable metal salts of [Mn (II), Cu (II), Fe (II), Zn (II), and Ni (II)] with 1:2 molar ratio (metal: ligand). The characterization of all the products were carried out by using UV-Visible, elemental analyzer, FTIR, 1H-NMR, ICP-OES, and LC-MS. Electronic data obtained by UV-Visible proved the octahedral geometry of metal complexes. The biological activities Schiff base ligand and its transition metal complexes were tested by using in-vitro anti-bacterial analysis against various Gram-negative, as well as Gram-positive bacterial strains. Proteinase and protein denaturation inhibition assays were utilized to evaluate the products in-vitro anti-inflammatory activities. The in vitro antioxidant activity of the ligand and its complexes was evaluated by utilizing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) in-vitro method. The final results proved metal complexes to be more effective against bacterial microorganisms as compared to respective parent drug as well as their free ligands. Patch Dock, a molecular docking tool, was used to dock complexes 1a-5e with the crystal structure of GlcN-6-P synthase (ID: 1MOQ). According to the docking results, complex 2b exhibited a highest score (8,882; ACE = -580.43 kcal/mol) that is well correlated with a high inhibition as compared to other complexes which corresponds to the antibacterial screening outcomes.
Collapse
Affiliation(s)
- Naeem Razaq
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan
| | - Amina Asghar
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| | - Amna Mumtaz
- ACRC PCSIR Laboratories Lahore, Lahore, Pakistan
| | - Samiah H Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mehr Un Nisa
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Tauheeda Riaz
- Department of Chemistry, Government College Women University Sialkot, Sialkot, 51310, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Bilal Shahid
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| |
Collapse
|
4
|
Alshehri S, Abboud M. Synthesis and characterization of mesoporous silica supported metallosalphen-azobenzene complexes: efficient photochromic heterogeneous catalysts for the oxidation of cyclohexane to produce KA oil. RSC Adv 2024; 14:26971-26994. [PMID: 39193295 PMCID: PMC11348846 DOI: 10.1039/d4ra04698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The oxidation of cyclohexane to produce KA oil (cyclohexanone and cyclohexanol) is important industrially but faces challenges such as low cyclohexane conversion at high KA oil selectivity, and difficult catalyst recyclability. This work reports the synthesis and evaluation of new heterogeneous catalysts consisting of Co(ii), Mn(ii), Ni(ii) and Cu(ii) salphen-azobenzene complexes [ML1] immobilized on amino-functionalized mesoporous silica (SBA-15, MCM-41, MCM-48) through coordination bonding. In the first step, the salphen-azobenzene ligand was synthesized and complexed with Co, Mn, Ni and Cu metal ions. In the second step, aminopropyltriethoxysilane (APTES) was grafted onto the surface of different types of commercial mesoporous silica. The immobilization of [ML1] onto the mesoporous silica surface and the thermal stability of the obtained materials were confirmed using different characterization techniques such as FT-IR, powder XRD, SEM, TEM, BET, and TGA. The obtained results revealed high dispersion of [ML1] through the silica surface. The catalytic activity of the prepared materials Silica-N-ML1 was evaluated on the cyclohexane oxidation to produce KA oil using various oxidants. The cis-trans isomerization of the azobenzene upon UV irradiation was found to affect the catalytic performance of Silica-N-ML1. The cis isomer of SBA-15-N-CoL1 exhibited the highest cyclohexane conversion (93%) and KA selectivity (92%) under mild conditions (60 °C, 6 h) using m-CPBA as oxidant. Moreover, The SBA-15-N-CoL1 showed high stability during four successive cycles.
Collapse
Affiliation(s)
- Salimah Alshehri
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia +966 53 48 46 782
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia +966 53 48 46 782
| |
Collapse
|
5
|
Sindhu S, Arockiasamy S. Synthesis, crystal structure, thermal stability and biological study of bis{(2-methoxy-6-[(E)-(propylimino)methyl]phenolato}nickel(II) complex. Heliyon 2024; 10:e24108. [PMID: 38293524 PMCID: PMC10825431 DOI: 10.1016/j.heliyon.2024.e24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
A Schiff base complex of nickel, bis{(2-methoxy-6-[(E)-(propylimino)methyl]phenolato}nickel(II) was synthesised by condensing bis(2-hydroxy-3-methoxybenzaldehyde) nickel (II) and n-propylamine in methanolic medium. Single crystal X-ray diffraction analysis of the complex revealed it to possess planar geometry with a monoclinic crystal system. The non-isothermal TG/DTA runs on this complex in a high purity (99.99 %) nitrogen environment at atmospheric pressure confirmed the absence of any coordinated water. A sharp endotherm in its DTA shows a melting temperature range of 168-171 °C. It is thermally stable up to 243 °C and decomposes in two steps, yielding NiO and carbon as residue. In addition to the methoxy group (-OCH3), infrared analysis (IR) confirmed the presence of the characteristic azomethine group (-C[bond, double bond]N-) which is also responsible for the biological action. It was further analysed by elemental analyser (C, H, N), 1H and 13C NMR as well as mass spectrometry. It showed considerable antibacterial activity towards Escherichia coli and Staphylococcus aureus when the concentration exceeds 200 μg/ml. The antifungal study shows significant inhibition with the antifungal drug imidazole as a positive control (PC). Small values of MIC, MBC/MIC indicate a lesser quantity of complex is required to inhibit the growth of micro-organisms.
Collapse
Affiliation(s)
- S. Sindhu
- Physics Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 127, India
| | - S. Arockiasamy
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 127, India
| |
Collapse
|
6
|
Mureseanu M, Filip M, Bleotu I, Spinu CI, Marin AH, Matei I, Parvulescu V. Cu(II) and Mn(II) Anchored on Functionalized Mesoporous Silica with Schiff Bases: Effects of Supports and Metal-Ligand Interactions on Catalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1884. [PMID: 37368314 DOI: 10.3390/nano13121884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
New series of Cu(II) and Mn(II) complexes with Schiff base ligands derived from 2-furylmethylketone (Met), 2-furaldehyde (Fur), and 2-hydroxyacetopheneone (Hyd) have been synthesized in situ on SBA-15-NH2, MCM-48-NH2, and MCM-41-NH2 functionalized supports. The hybrid materials were characterized by X-ray diffraction, nitrogen adsorption-desorption, SEM and TEM microscopy, TG analysis, and AAS, FTIR, EPR, and XPS spectroscopies. Catalytic performances were tested in oxidation with the hydrogen peroxide of cyclohexene and of different aromatic and aliphatic alcohols (benzyl alcohol, 2-methylpropan-1-ol, and 1-buten-3-ol). The catalytic activity was correlated with the type of mesoporous silica support, ligand, and metal-ligand interactions. The best catalytic activity of all tested hybrid materials was obtained in the oxidation of cyclohexene on SBA-15-NH2-MetMn as a heterogeneous catalyst. No leaching was evidenced for Cu and Mn complexes, and the Cu catalysts were more stable due to a more covalent interaction of the metallic ions with the immobilized ligands.
Collapse
Affiliation(s)
- Mihaela Mureseanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti, 107I, 200478 Craiova, Romania
| | - Mihaela Filip
- "IlieMurgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Irina Bleotu
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti, 107I, 200478 Craiova, Romania
| | - Cezar Ionut Spinu
- Department of Chemistry, Faculty of Sciences, University of Craiova, Calea Bucuresti, 107I, 200478 Craiova, Romania
| | - Alexandru Horia Marin
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Penn State University, University Park, State College, PA 16802, USA
- Surface Analysis Laboratory, Institute for Nuclear Research Pitesti, 115400 Mioveni, Romania
| | - Iulia Matei
- "IlieMurgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Viorica Parvulescu
- "IlieMurgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
7
|
A Novel Schiff Base Ligand and Its Metal Complexes: Synthesis, Characterization, Theoretical Calculations, Catalase-like and Catecholase-like Enzymatic Activities. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Syntheses, structural characterizations, and catalytic activities of manganese(II)-aroylhydrazone complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Majedi M, Safaei E, Gyergyek S. New iron(iii) complex of bis-bidentate-anchored diacyl resorcinol on a Fe 3O 4 nanomagnet: C-H bond oxygenation, oxidative cleavage of alkenes and benzoxazole synthesis. RSC Adv 2023; 13:4040-4055. [PMID: 36756566 PMCID: PMC9890640 DOI: 10.1039/d2ra06818d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
We have synthesized a novel, bis-bidentate, covalently anchored, 4,6-diacetyl resorcinol (DAR) ligand on silica-coated magnetic Fe3O4 nanoparticles and the corresponding bi-metallic iron(iii) complex (Fe3O4@SiO2-APTESFe2LDAR). Both the chemical nature and the structure of the homogeneously heterogenized catalyst were investigated using physico-chemical techniques. The results obtained by XPS, XRD, FT-IR, TGA, VSM, SEM, TEM, EDX, ICP and AAS revealed a magnetic core, a silica layer and the grafting of a binuclear iron complex on the Fe3O4@SiO2-APTES, as well as its thermodynamic stability. Despite many reports of metal complexes on different supports, there are no reports of anchored, bi-metallic complexes. To the best of our knowledge, this is the first report of a bi-active site catalyst covalently attached to a support. This study focuses on the catalytic activity of an as-synthesized, bi-active site catalyst for C-H bond oxygenation, the oxidative cleavage of alkenes, and the multicomponent, one-pot synthesis of benzoxazole derivatives with excellent yields from readily available starting materials. Our results indicated high conversion rates and selectivity under mild reaction conditions and simple separation using a magnetic field. The leaching and recyclability tests of the catalyst were investigated for the above processes, which indicated that all the reactions proceed via a heterogeneous pathway and that the catalyst is recyclable without any tangible loss in catalytic activity for at least 8, 5 and 5 cycles for C-H bond oxygenation, C[double bond, length as m-dash]C bond cleavage and benzoxazole synthesis, respectively.
Collapse
Affiliation(s)
- Mona Majedi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Sašo Gyergyek
- Department for Synthesis of Materials, Jožef Stefan InstituteJamova cesta 391000 LjubljanaSlovenia
| |
Collapse
|
10
|
Tada K, Ikegaki C, Fuse Y, Tateishi K, Sogawa H, Sanda F. Optically active polyaromatic Schiff base adopting stable secondary structures. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
El-Boraey HA, El-Din AA. Gamma ray irradiated binuclear and mononuclear transition metal complexes with polydentate ligand: Template synthesis, spectral, XRD, morphology, solid electrical conductivity and antimicrobial activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Pesqueira NM, Bignardi C, Oliveira LF, Machado AE, Carvalho-Jr VP, Goi BE. Visible light-induced radical polymerization of vinyl acetate mediated by organo-nickel N2O2 Schiff-base complexes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Belay Y, Muller A, Ndinteh DT, Kolawole OA, Adeyinka AS, Fonkui TY. Synthesis, antibacterial activities, cytotoxicity, and molecular docking studies of Salicyledene derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Coordination Chemistry, Antibacterial Screening, and In Silico ADME Study of Mononuclear NiII and CuII Complexes of Asymmetric Schiff Base of Streptomycin and Aniline. J CHEM-NY 2022. [DOI: 10.1155/2022/3881217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel metal complexes, that is, Ni (StmAn)2(4) and Cu (StmAn)2(5), were synthesized from unsymmetrical Schiff base ligand StmAn (3). The ligand was prepared by refluxing streptomycin (2) and aniline (1). They were characterized by elemental microanalysis, conductivity measurements, and spectroscopic techniques such as 1H NMR, FT-IR, ESI-mass, and electronic absorption spectral study. Interestingly, the study revealed metal coordination through azomethine nitrogen and N-atom of NH-CH3 of N-methyl-L-glucosamine unit of streptomycin. The electronic absorption spectral study supported an octahedral geometry for complex 4 and a tetrahedral geometry for complex 5. Particle size calculation by Scherrer’s formula indicated their nanocrystalline nature. The geometry optimization of the complexes was achieved by running an MM2 job in Gaussian supported Cs-ChemOffice ultra-12.0.1 and ArgusLab 4.0.1 version software. Based on SwissADME predictions, a theoretical drug profile was generated by analyzing absorption, distribution, metabolism, excretion, and toxicity (ADMET) scores of the compounds. They were screened for in vitro antibacterial activity study against four clinical pathogens such as E. coli, S. pneumoniae, P. vulgaris, and S. aureus. Minimum inhibitory concentration (MIC) study demonstrated greater inhibitory potency of complex (4) (0.024 g/L) for S. aureus relative to ligand (3) and complex (5). Studies show that metal complexes are more toxic to bacteria.
Collapse
|
15
|
Abd El Salam HA, Moustafa G, Zayed EM, Mohamed GG. Isophthaloylbis (Azanediyl) Dipeptide Ligand and Its Complexes: Structural Study, Spectroscopic, Molecular Orbital, Molecular Docking, and Biological Activity Properties. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Gaber Moustafa
- Peptides Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Ehab M. Zayed
- Green Chemistry Department, National, Research Centre, Dokki, Giza, Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
| |
Collapse
|
16
|
Protasenko NA, Baryshnikova SV, Cherkasov AV, Poddel’skii AI. Pentacoordinated Complexes of Triphenyltin(IV) with Bidentate N-Phenyl-o-iminophenols. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422070077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Mahmoud NH, Elsayed GH, Aboelnaga A, Fahim AM. Spectroscopic studies, DFT calculations, Cytotoxicity activity, docking stimulation of novel metal complexes of Schiff base ligand of isonicotinohydrazide derivative. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nelly H. Mahmoud
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain‐Shams University Cairo Egypt
| | - Ghada H. Elsayed
- Department of Hormones, National Research Center (NRC) Giza Egypt
- Stem Cells lab, Center of Excellence for Advanced Sciences, National Research Center (NRC) Giza Egypt
| | - Asmaa Aboelnaga
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain‐Shams University Cairo Egypt
| | - Asmaa M. Fahim
- Department of Green chemistry, National Research Center (NRC) Giza Egypt
| |
Collapse
|
18
|
Jain A, De S, Barman P. Microwave-assisted synthesis and notable applications of Schiff-base and metal complexes: a comparative study. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04708-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Nath BD, Islam MM, Karim MR, Rahman S, Shaikh MAA, Georghiou PE, Menelaou M. Recent Progress in Metal‐Incorporated Acyclic Schiff‐Base Derivatives: Biological Aspects. ChemistrySelect 2022. [DOI: 10.1002/slct.202104290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bikash Dev Nath
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Md. Monarul Islam
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Md. Rezaul Karim
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Shofiur Rahman
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador A1B 3X7 Canada
| | - Md. Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
- Department of Chemistry University of Dhaka Dhaka 1000 Bangladesh
| | - Paris E. Georghiou
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador A1B 3X7 Canada
| | | |
Collapse
|
20
|
Pervaiz M, Munir A, Riaz A, Saeed Z, Younas U, Imran M, Ullah S, Bashir R, Rashid A, Adnan A. Review article-Amalgamation, scrutinizing, and biological evaluation of the antimicrobial aptitude of thiosemicarbazide Schiff bases derivatives metal complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Pervaiz M, Sadiq A, Sadiq S, Saeed Z, Imran M, Younas U, Majid Bukhari S, Rashad Mahmood Khan R, Rashid A, Adnan A. Design and synthesis of Schiff base Homobimetallic-Complexes as promising antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Synthesis, theoretical study, molecular docking and biological activity of nano tridentate (E)-2-((3-hydoxyphenyl)methyl)phenol metal complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Elaaraj I, Raouan SER, Nakkabi A, Es-sounni B, Koraichi I, El moualij N, Fahim M. Synthesis, characterization and antioxidant, antibacterial activity Zn2+, Cu2+, Ni2+ and Co2+, complexes of ligand [2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzo[d]imidazole]. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Synthesis, spectroscopic and biological studies of metal complexes of an ONO donor pyrazolylhydrazone – Crystal structure of ligand and Co(II) complex. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Richezzi M, Ferreyra J, Puzzolo J, Milesi L, Palopoli CM, Moreno DM, Hureau C, Signorella SR. Versatile Activity of a Copper(II) Complex Bearing a N4‐Tetradentate Schiff Base Ligand with Reduced Oxygen Species. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Micaela Richezzi
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Joaquín Ferreyra
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Juan Puzzolo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Lisandro Milesi
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Claudia M. Palopoli
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Diego M. Moreno
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Christelle Hureau
- CNRS: Centre National de la Recherche Scientifique LCC - Laboratoire de Chimie de Coordination FRANCE
| | | |
Collapse
|
26
|
El-Gammal OA, El-Bindary AA, Sh. Mohamed F, Rezk GN, El-Bindary MA. Synthesis, characterization, design, molecular docking, anti COVID-19 activity, DFT calculations of novel Schiff base with some transition metal complexes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Synthesis, characterization, DFT study and antioxidant activity of (2-hydroxynaphthalen-1-yl) methyl 2-hydroxyphenyl amino phosphonic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Saroya S, Asija S, Kumar N, Deswal Y, devi J. Organotin (IV) complexes derived from tridentate Schiff base ligands: Synthesis, spectroscopic analysis, antimicrobial and antioxidant activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Woźniczka M, Lichawska M, Sutradhar M, Chmiela M, Gonciarz W, Pająk M. Chemical Characterization and Biological Evaluation of New Cobalt(II) Complexes with Bioactive Ligands, 2-Picolinehydroxamic Acid and Reduced Schiff Base N-(2-Hydroxybenzyl)alanine, in Terms of DNA Binding and Antimicrobial Activity. Pharmaceuticals (Basel) 2021; 14:ph14121254. [PMID: 34959656 PMCID: PMC8706952 DOI: 10.3390/ph14121254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Five new heteroligand cobalt(II) complexes with 2-picolinehydroxamic acid and reduced Schiff base, N-(2-hydroxybenzyl)alanine, were formed in an aqueous solution over a wide pH range. The coordination properties of ligands towards the metal ion were determined using a pH-metric method, and then the speciation model was confirmed by UV–Vis studies. A stacking interaction between the Schiff base phenol ring and the 2-picolinehydroxamic acid pyridine ring was found to improve the stability of the heteroligand species, indicating more effective coordination in mixed-ligand complexes than in their respective binary systems. The antimicrobial properties of heteroligand complexes were determined against Gram-negative and Gram-positive bacteria, as well as fungal strains. The formulation demonstrated the highest bacteriostatic and bactericidal activity (3.65 mM) against two strains of Gram-negative Helicobacter pylori bacteria and towards Candida albicans and Candida glabrata; this is important due to the potential co-existence of these microorganisms in the gastric milieu and their role in the development of gastritis. The binary complexes in the cobalt(II)—2-picolinehydroxamic acid system and 2-picolinehydroxamic acid were not cytotoxic against L929 mouse fibroblasts, neither freshly prepared solutions or after two weeks’ storage. By comparison, the heteroligand complexes within the range 0.91–3.65 mM diminished the metabolic activity of L929 cells, which was correlated with increased damage to cell nuclei. The concentration of the heteroligand species increased over time; therefore, the complexes stored for two weeks exhibited stronger anticellular toxicity than the freshly prepared samples. The complexes formed in an aqueous solution under physiological pH effectively bound to calf thymus DNA in an intercalative manner. This DNA-binding ability may underpin the antimicrobial/antifungal activity of the heteroligand complexes and their ability to downregulate the growth of eukaryotic cells.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
- Correspondence:
| | - Marta Lichawska
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
| | - Manas Sutradhar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
| |
Collapse
|
30
|
Recent progresses in Schiff bases as aqueous phase corrosion inhibitors: Design and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214105] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Dongare G, Aswar A. Synthesis, spectral characterization, thermo-kinetic and biological studies of some complexes derived from tridentate hydrazone Schiff base. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Ahemed J, Pasha J, Rao D V, Kore R, Gade R, Bhongiri Y, Chetti P, Pola S. Synthesis of new Zn (II) complexes for photo decomposition of organic dye pollutants, industrial wastewater and photo-oxidation of methyl arenes under visible-light. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Virachotikul A, Laiwattanapaisarn N, Chainok K, Phomphrai K. Bifunctional zinc and magnesium Schiff-base complexes containing quaternary ammonium side-arms for epoxide/CO 2 coupling reactions. Dalton Trans 2021; 50:12399-12403. [PMID: 34355226 DOI: 10.1039/d1dt02121d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel bifunctional zinc and magnesium Schiff-base complexes containing quaternary ammonium halide side-arms were developed. Zinc complex 1Et-I (0.02 mol%) having an iodide anion has shown the highest TOF for the propylene oxide/CO2 coupling reaction of up to 459 h-1. This TOF value was maintained even when the catalyst loading was reduced to 0.005 mol%.
Collapse
Affiliation(s)
- Arnut Virachotikul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand.
| | - Nattiya Laiwattanapaisarn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand.
| | - Kittipong Chainok
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand. and Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
34
|
Ghamari Kargar P, Ravanjamjah A, Bagherzade G. A novel
water‐dispersible
and magnetically recyclable nickel nanoparticles for the one‐pot
reduction‐Schiff
base condensation of nitroarenes in pure water. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Asiye Ravanjamjah
- Department of Chemistry, College of Sciences University of Birjand Birjand Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, College of Sciences University of Birjand Birjand Iran
| |
Collapse
|
35
|
Singh A, Barman P. Recent Advances in Schiff Base Ruthenium Metal Complexes: Synthesis and Applications. Top Curr Chem (Cham) 2021; 379:29. [PMID: 34109453 DOI: 10.1007/s41061-021-00342-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022]
Abstract
This review concentrates on recent developments in ruthenium Schiff bases, whose steric and electronic characteristics can be manipulated easily by selecting suitable condensing aldehydes or ketones and primary amines, and their metal complexes. Ruthenium metal-based complexes and Schiff base ligands are rapidly becoming conventionally considered for biological applications (antioxidant, anticancer, antimicrobial), in catalysis, in functional materials, in sensors, and as pigments for dyes. Ruthenium complexes exhibit a broad variety of activities concerning simple Schiff base ligands. This may be due to the octahedral bonding of both Ru(II) and Ru(III) complexes, which acquire an extended reservoir of a three-dimensional framework, providing the potential for an elevated degree of site selectivity for binding to their biological targets. This review provides an overview of this field, and intends to highlight both ligand design and synthetic methodology development, as well as significant applications of these metal complexes. In this review, we summarize our work on the development of ruthenium complexes, which was performed over the last few years.
Collapse
Affiliation(s)
- Anmol Singh
- Department of Chemistry, National Institute of Technology, Silchar, Assam, India
| | - Pranjit Barman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, India.
| |
Collapse
|
36
|
Lashanizadegan M, Asna Ashari H, Sarkheil M, Anafcheh M, Jahangiry S. New Cu(II), Co(II) and Ni(II) azo-Schiff base complexes: Synthesis, characterization, catalytic oxidation of alkenes and DFT study. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Kareem MJ, Al-Hamdani AAS, Ko YG, Al Zoubi W, Mohammed SG. Synthesis, characterization, and determination antioxidant activities for new Schiff base complexes derived from 2-(1H-indol-3-yl)-ethylamine and metal ion complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetradentate Salen-Type Schiff Base Ligands and Related Complexes. CRYSTALS 2021. [DOI: 10.3390/cryst11050483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reaction of organic molecules mediated by a metal center (template synthesis) can result in a final connectivity that may differ from the one obtained in the absence of the metal. The condensation of carbonyl fragments with primary amines form C=N iminic bonds, the so-called Schiff bases, which can act as ligands for the templating metal center by means of the lone pair on the nitrogen atom. This review focuses on the template methods for the reaction between a carbonyl compound (mainly salicylaldehyde) and a primary aliphatic diamine able to prevent the double condensation on both amine groups and obtain tridentate N2O ligands. These adducts, still having one free amino group, can further react, yielding tetradentate salen-type Schiff base ligands. A screening over the transition metals able to show such a template effect will be presented, with particular attention to copper(II), together with their peculiar reactivity and the available crystal structure of the metal complexes and related coordination geometries.
Collapse
|
39
|
Organometallic complexes of neodymium: an overview of synthetic methodologies based on coordinating elements. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Organometallic complexes of neodymium have unique coordinating ability to form both micro and macromolecules as well as metal-based polymers. These complexes have been reported in different fields and play a tremendous role in luminescence, catalytic, biological and magnetic applications. So, the current study will comprise all possible routes for the synthesis of organometallic complexes of neodymium. Neodymium complexes have been synthesized of single, double, triple and tetra linkages with H, C, N, O as well as S, B, and X. The detailed synthetic routes have been classified into four categories but in brief, neodymium forms complexes by reacting metal chloride, nitrate or oxide (hydrated or dehydrated) as precursor along with appropriate ligand. Most applied solvents for neodymium complexes were Toluene and THF. These complexes required a range of temperature based on the nature of complexes as well as linkages. The authors have surveyed the research work published through 2011–2020 and provide a comprehensive overview to understand the synthetic routes of organometallic complexes of neodymium.
Collapse
|
40
|
Kumar A, Kurbah SD, Syiemlieh I, Dhanpat SA, Borthakur R, Lal RA. Synthesis, characterization, reactivity, and catalytic studies of heterobimetallic vanadium(V) complexes containing hydrazone ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Zhang Q, Hou B, Li Y, Zhang W, Liu J. DNA interactive and selective anticancer activity studies of copper(II) complexes decorated water‐soluble porphyrin. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Bing‐jie Hou
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yan‐yan Li
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Wen‐yuan Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Jia‐cheng Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| |
Collapse
|
42
|
Ramezani S, Nakhaei A. Synthesis, absorption, and adsorption properties, and DFT calculations of two new palladium(II) complexes of new fluorescence imidazo[4′,5′:3,4]benzo[1,2- c]isoxazole-based Schiff-bases. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1799402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shirin Ramezani
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ahmad Nakhaei
- Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
43
|
Das SP, Boruah JJ. Selective and solventless oxidation of organic sulfides and alcohols using new supported molybdenum (VI) complex in microwave and conventional methods. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siva Prasad Das
- Department of ChemistrySchool of Science, RK University Bhavnagar Highway Kasturbadham, Rajkot Gujarat 360020 India
| | - Jeena Jyoti Boruah
- Department of ChemistrySchool of Science, RK University Bhavnagar Highway Kasturbadham, Rajkot Gujarat 360020 India
- Department of ChemistryMoridhal College Moridhal, Dhemaji Assam 787057 India
| |
Collapse
|
44
|
Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Virachotikul A, Laiwattanapaisarn N, Wongmahasirikun P, Piromjitpong P, Chainok K, Phomphrai K. Ring-Opening Copolymerizaton of Cyclohexene Oxide and Succinic Anhydride by Zinc and Magnesium Schiff-Base Complexes Containing Alkoxy Side Arms. Inorg Chem 2020; 59:8983-8994. [PMID: 32408738 DOI: 10.1021/acs.inorgchem.0c00839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a promising method for the synthesis of new polyesters with various polymer properties. Among previously reported metal catalysts for ROCOP, the Schiff-base complexes have gained significant attention because of their ease of synthesis and modification. In this work, zinc and magnesium complexes containing Schiff-base ligands with different alkoxy side arms [-(CH2)2O- and -(CH2)3O-] were synthesized and shown to have a cubane metal core by X-ray crystal structures. All complexes were studied in the ROCOP of cyclohexene oxide (CHO) and succinic anhydride (SA) in toluene at 110 °C. The zinc complex having a shorter side arm is the most active catalyst for copolymerization, giving poly(CHO-alt-SA) with narrow dispersity and negligible ether linkage. On the other hand, magnesium complexes were not active because of the formation of stable carboxylate species. The detailed analysis of polyester obtained from zinc complexes unexpectedly revealed three different types of polymer structures occurring at different polymerization times. Cyclic polymer was generated at the beginning by intramolecular transesterification of the alkoxy side arm, giving a low-molecular-weight polyester. At higher conversion, cyclization diminished, giving just a linear polyester but with minor competitive formation of higher-molecular-weight polyester having cyclohexanediol as an end group. On the basis of a thorough understanding of the polymerization mechanism, the desired cyclic poly(CHO-alt-SA) was successfully synthesized using a low monomer/catalyst ratio.
Collapse
Affiliation(s)
- Arnut Virachotikul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Nattiya Laiwattanapaisarn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Phonpimon Wongmahasirikun
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Parichat Piromjitpong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Kittipong Chainok
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand.,Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
46
|
Benabid W, Ouari K, Bendia S, Bourzami R, Ait Ali M. Crystal structure, spectroscopic studies, DFT calculations, cyclic voltammetry and biological activity of a copper (II) Schiff base complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Ion recognition properties of new pyridine-2,6-dicarboxamide bearing propeller-like pendant residues: multi-spectroscopic approach. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02558-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The synthesis and ion binding properties of new amide derived from propeller-like tris(2-pyridyl)amine and 2,6-pyridinedicarboxylic acid chloride were described. Amide binds divalent metal cations: copper(II), nickel(II), zinc(II), and lead(II) in acetonitrile. In acetonitrile:water mixture (9:1 v/v) amide interacts only with copper(II) and nickel(II) cations forming complexes of 1:1 stoichiometry. It was found that the introduction of bulky, nitrogen donor atom bearing pendant groups can influence coordination mode of pyridine-2,6-dicarboxamides. The probable model of ligand-ion interactions is proposed on the basis of 1H NMR and FT-IR spectroscopy.
Graphic abstract
Collapse
|
48
|
Suleman VT, Al‐Hamdani AAS, Ahmed SD, Jirjees VY, Khan ME, Dib A, Al Zoubi W, Ko YG. Phosphorus Schiff base ligand and its complexes: Experimental and theoretical investigations. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Suzan Duraid Ahmed
- Department of Chemistry, College of Education for Pure Science (Ibn Al‐Haitham)University of Baghdad Baghdad Iraq
| | - Vian Yamin Jirjees
- Department of Chemistry, College of ScienceUniversity of Dohuk Dohuk Iraq
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT)Jazan University Jazan Saudi Arabia
| | - Adnan Dib
- Department of PharmacyArab International University Damascus Syria
| | - Wail Al Zoubi
- Materials Electrochemistry Group, School of Materials Science and EngineeringYeungnam University Gyeongsan 38541 Republic of Korea
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and EngineeringYeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
49
|
Parodi AR, Merlo C, Córdoba A, Palopoli C, Ferreyra J, Signorella S, Ferreira ML, Magario I. Application of metal complexes as biomimetic catalysts on glycerol oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Optical, electrochemical, thermal, biological and theoretical studies of some chloro and bromo based metal-salophen complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|