1
|
López-Maldonado EA, Mavaei M, Dan S, Banitaba SN, Gholamhosseinpour M, Hamedi S, Villarreal-Gómez LJ, Pérez-González GL, Mashkouri S, Khademolqorani S, Elgarahy AM. Diverse applications of versatile quaternized chitosan salts: A review. Int J Biol Macromol 2024; 281:136276. [PMID: 39383902 DOI: 10.1016/j.ijbiomac.2024.136276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
In the ever-evolving world of materials science, modifying natural polymers has garnered significant attention across diverse industries, driven by their inherent availability and cost-effectiveness. Among these, chitosan, a pseudo-natural cationic polymer, has emerged as a versatile player, finding applications in medical, pharmaceutical, filtration, and textile sectors, owing to its exceptional biodegradability, non-allergenicity, antimicrobial properties, and eco-friendly nature. However, the limitations of chitosan, such as low surface area, poor solubility at neutral to alkaline pH, and inadequate thermal-mechanical properties, have prompted researchers to explore innovative modification strategies, including graft copolymerization, quaternization, and cross-linking. This review delves into the remarkable potential of a specific chitosan derivative, N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan salts (N-HTCS), a quaternized form of chitosan. This review uniquely examines the properties and multifaceted applications of N-HTCS, spanning biomedical, textile, food packaging, and environmental domains. The outstanding features of N-HTCS, including antioxidant, anticancer, and antimicrobial bioactivity, as well as biocompatibility, biodegradability, hemostatic, piezoelectric, superparamagnetic, water solubility, and permeation-enhancing effects, offer novel solutions to the limitations of unmodified chitosan. Notably, while previous reviews have addressed the significance of chitosan, this work presents a groundbreaking focus on the N-HTCS derivative, providing a fresh perspective and paving the way for the design and engineering of cutting-edge N-HTCS-based devices and applications. The comprehensive coverage of this review aims to inspire researchers and industry professionals to explore the untapped potential of this remarkable chitosan derivative, unlocking new frontiers in material science and technology.
Collapse
Affiliation(s)
- Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424 Tijuana, Baja California, Mexico.
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Dan
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Iran
| | - Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran; Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | - Maryam Gholamhosseinpour
- Molecular and Cellular Biosciences, Institute of Biology, Martin Luther University Halle-Wittenberg (MLU), Weinbergweg10, Halle (Saale) 06120, Germany
| | - Sepideh Hamedi
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México, and Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México, and Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Sara Mashkouri
- Department of chemistry, Iran university of Science and Technology, Iran
| | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran; Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| |
Collapse
|
2
|
Yuan K, Yang Y, Lin Y, Zhou F, Huang K, Yang S, Kong W, Li F, Kan T, Wang Y, Cheng C, Liang Y, Chang H, Huang J, Ao H, Yu Z, Li H, Liu Y, Tang T. Targeting Bacteria-Induced Ferroptosis of Bone Marrow Mesenchymal Stem Cells to Promote the Repair of Infected Bone Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404453. [PMID: 39166412 PMCID: PMC11497072 DOI: 10.1002/advs.202404453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/30/2024] [Indexed: 08/22/2024]
Abstract
The specific mechanisms underlying bacteria-triggered cell death and osteogenic dysfunction in host bone marrow mesenchymal stem cells (BMSCs) remain unclear, posing a significant challenge to the repair of infected bone defects. This study identifies ferroptosis as the predominant cause of BMSCs death in the infected bone microenvironment. Mechanistically, the bacteria-induced activation of the innate immune response in BMSCs leads to upregulation and phosphorylation of interferon regulatory factor 7 (IRF7), thus facilitating IRF7-dependent ferroptosis of BMSCs through the transcriptional upregulation of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4). Moreover, it is found that intervening in ferroptosis can partially rescue cell injuries and osteogenic dysfunction. Based on these findings, a hydrogel composite 3D-printed scaffold is designed with reactive oxygen species (ROS)-responsive release of antibacterial quaternized chitosan and sustained delivery of the ferroptosis inhibitor Ferrostatin-1 (Fer-1), capable of eradicating pathogens and promoting bone regeneration in a rat model of infected bone defects. Together, this study suggests that ferroptosis of BMSCs is a promising therapeutic target for infected bone defect repair.
Collapse
Affiliation(s)
- Kai Yuan
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yiqi Yang
- Department of OrthopedicsThe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RdHangzhou310003P. R. China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Feng Zhou
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversityNo. 899 Ping Hai RoadSuzhouJiangsu215006P. R. China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Weiqing Kong
- Department of Orthopaedic SurgeryXuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical University199 Jiefang South RoadXuzhou221009P. R. China
| | - Fupeng Li
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yao Wang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Caiqi Cheng
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yakun Liang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Haishuang Chang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Jie Huang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and EngineeringEast China Jiaotong UniversityNanchang330000P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| |
Collapse
|
3
|
Tang NFR, Armynah B, Tahir D. Structural and optical properties of alginate-based antibacterial dressing with calcium phosphate and zinc oxide for biodegradable wound painting applications. Int J Biol Macromol 2024; 276:133996. [PMID: 39032876 DOI: 10.1016/j.ijbiomac.2024.133996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The skin is the outermost part of the body. Although susceptible to damage, the skin is in direct contact with the external environment. Wound dressing is a clinical method that plays a vital role in wound healing. Herein, we developed an antibacterial wound dressing using alginate as the basic material. The dressing was prepared using the solvent casting method, which was used to analyze the effects of adding CaP and ZnO on its structural, optical, and antibacterial properties. Adding CaP exhibited strong but stiff mechanical properties, unlike the CaP/ZnO, which possessed high strength and elasticity. The optical properties of sample S2 did not have a considerable impact. By contrast, the addition of ZnO to sample S3 notably increases the wavelength and absorption value. The diameter of the inhibition zone for S. aureus bacteria exhibited a successive increase in its antibacterial properties, and sample S3 exhibited the highest value. Thus, sample S3 is the most promising wound dressing concerning speeding up the wound healing process because it possesses the most optimal mechanical, optical, and antibacterial properties. The main limitation to be addressed is that sample S3 cannot be easily digested in the environment.
Collapse
Affiliation(s)
| | - Bidayatul Armynah
- Physics Department, Hasanuddin Universitas, Makassar 90245, Indonesia
| | - Dahlang Tahir
- Physics Department, Hasanuddin Universitas, Makassar 90245, Indonesia.
| |
Collapse
|
4
|
Wang S, He W, Wang H, Liu D, Wang M, Yang H, Pan G, Li B. Hematoma-like dynamic hydrogelation through natural glycopeptide molecular recognition for infected bone fracture repair. Bioact Mater 2023; 30:73-84. [PMID: 37575878 PMCID: PMC10413008 DOI: 10.1016/j.bioactmat.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Infected bone fractures remain a major clinical challenge for orthopedic surgeons. From a tissue regeneration perspective, biomaterial scaffolds with antibacterial and osteoinductive activities are highly desired, while advanced materials capable of mimicking the pathological microenvironment during the healing process of infected tissues remain an area deserving more research. Hematoma, the gel-like blood coagulum, plays an essential role in bone fracture repair because of its ability to serve as a dynamic and temporary scaffold with cytokines for both pathogen elimination and tissue healing. In light of this, we designed a dynamic hydrogel with hematoma-like antimicrobial or reparative performance for infected bone fracture repair in this study. The proposed dynamic hydrogel network was based on the reversible recognition of a natural glycopeptide antibiotic vancomycin (Van) and its target dipeptide D-Ala-D-Ala (AA), which could serve as a hematoma-like scaffold for obliterating bacteria in the fracture region and promoting bone repair by introducing an endogenous osteogenic peptide (OGP). In vivo experiments demonstrated that the hydrogel could rapidly eradicate bacteria, improve bone regeneration and restore the local inflammatory microenvironment. Together, findings from this study imply that the use of hematoma-like dynamic hydrogel could lead to a biomimetic revolution in surgical strategies against susceptible bone fractures.
Collapse
Affiliation(s)
- Shenghao Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wenbo He
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Huilin Yang
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
5
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
6
|
Li J, Ma J, Sun H, Yu M, Wang H, Meng Q, Li Z, Liu D, Bai J, Liu G, Xing X, Han F, Li B. Transformation of arginine into zero-dimensional nanomaterial endows the material with antibacterial and osteoinductive activity. SCIENCE ADVANCES 2023; 9:eadf8645. [PMID: 37235658 DOI: 10.1126/sciadv.adf8645] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Implant-associated infection is a major threat affecting the success of orthopedic surgeries. Although various materials scavenge bacteria by generating reactive oxygen species (ROS), the intrinsic inability of ROS to distinguish bacteria from cells notably limits the therapeutic effects. Here, we found that the arginine carbon dots (Arg-CDs) that were transformed from arginine exhibited supreme antibacterial and osteoinductive activity. We further designed the Schiff base bond between Arg-CDs and aldehyde hyaluronic acid/gelatin methacryloyl (HG) hydrogel to release Arg-CDs in response to the acidic bone injury microenvironment. The free Arg-CDs could selectively kill bacteria by generating excessive ROS. Furthermore, the Arg-CD-loaded HG composite hydrogel showed excellent osteoinductive activity through inducing the M2 polarization of macrophages by up-regulating interleukin-10 (Il10) expression. Together, our findings revealed that transformation of the arginine into zero-dimensional Arg-CDs could endow the material with exceptional antibacterial and osteoinductive activity, favoring the regeneration of infectious bone.
Collapse
Affiliation(s)
- Jiaying Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jinjin Ma
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Heng Sun
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qingchen Meng
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zexi Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jianzhong Bai
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Guoping Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Sukhodub L, Kumeda M, Sukhodub L, Bielai V, Lyndin M. Metal ions doping effect on the physicochemical, antimicrobial, and wound healing profiles of alginate-based composite. Carbohydr Polym 2023; 304:120486. [PMID: 36641185 DOI: 10.1016/j.carbpol.2022.120486] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The alginate (Alg) matrix with immobilized hydroxyapatite (HAp) and zinc oxide (ZnO), cross-linked by chitosan (CS) and metal ions (Men+) Ca2+, Zn2+, and Cu2+ was created as a wound dressing. The effect of Men+ and their concentrations on water vapor transition, fluid handling, dehydration, drug release, and healing are shown. Me-containing samples have a lower sorption capacity, than a commercial Kaltostat, however, a much lower degree of their dehydration provides a longer wound wet. The Men+ presence lowers the environmental pH to slightly acidic values promoting healing. Ca2+, Zn2+, and Cu2+ in complexes with CS increase antimicrobial effect against E. coli and S. aureus, slow down the Anaesthesine release, making it compatible with Fickian diffusion in the Zn2+ and Cu2+ presence, and non-Fickian transport under Ca2+ influence. The material promotes the proliferation of the fibroblasts, an increase of collagen fibres, and new arterial and venous capillaries, indicating the intensity of the healing process.
Collapse
|
8
|
Huang F, Lu X, Yang Y, Yang Y, Li Y, Kuai L, Li B, Dong H, Shi J. Microenvironment-Based Diabetic Foot Ulcer Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203308. [PMID: 36424137 PMCID: PMC9839871 DOI: 10.1002/advs.202203308] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/02/2022] [Indexed: 06/04/2023]
Abstract
Diabetic foot ulcers (DFU), one of the most serious complications of diabetes, are essentially chronic, nonhealing wounds caused by diabetic neuropathy, vascular disease, and bacterial infection. Given its pathogenesis, the DFU microenvironment is rather complicated and characterized by hyperglycemia, ischemia, hypoxia, hyperinflammation, and persistent infection. However, the current clinical therapies for DFU are dissatisfactory, which drives researchers to turn attention to advanced nanotechnology to address DFU therapeutic bottlenecks. In the last decade, a large number of multifunctional nanosystems based on the microenvironment of DFU have been developed with positive effects in DFU therapy, forming a novel concept of "DFU nanomedicine". However, a systematic overview of DFU nanomedicine is still unavailable in the literature. This review summarizes the microenvironmental characteristics of DFU, presents the main progress of wound healing, and summaries the state-of-the-art therapeutic strategies for DFU. Furthermore, the main challenges and future perspectives in this field are discussed and prospected, aiming to fuel and foster the development of DFU nanomedicines successfully.
Collapse
Affiliation(s)
- Fang Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
| | - Xiangyu Lu
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
| | - Yan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Yushan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Yongyong Li
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
| | - Le Kuai
- Department of DermatologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghai200437China
| | - Bin Li
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
- Department of DermatologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghai200437China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Jianlin Shi
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
| |
Collapse
|
9
|
Hodge JG, Zamierowski DS, Robinson JL, Mellott AJ. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater Res 2022; 26:50. [PMID: 36183134 PMCID: PMC9526981 DOI: 10.1186/s40824-022-00291-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Wound healing is a dynamic series of interconnected events with the ultimate goal of promoting neotissue formation and restoration of anatomical function. Yet, the complexity of wound healing can often result in development of complex, chronic wounds, which currently results in a significant strain and burden to our healthcare system. The advancement of new and effective wound care therapies remains a critical issue, with the current therapeutic modalities often remaining inadequate. Notably, the field of tissue engineering has grown significantly in the last several years, in part, due to the diverse properties and applications of polymeric biomaterials. The interdisciplinary cohesion of the chemical, biological, physical, and material sciences is pertinent to advancing our current understanding of biomaterials and generating new wound care modalities. However, there is still room for closing the gap between the clinical and material science realms in order to more effectively develop novel wound care therapies that aid in the treatment of complex wounds. Thus, in this review, we discuss key material science principles in the context of polymeric biomaterials, provide a clinical breadth to discuss how these properties affect wound dressing design, and the role of polymeric biomaterials in the innovation and design of the next generation of wound dressings.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.,Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - David S Zamierowski
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Mail Stop: 3051, 3901 Rainbow Blvd, Lawrence, KS, 66160, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
10
|
Zhang X, Chen Y, Fu J, Chen Q, Li Y, Fang C, Li C, Wang L, Qiu D, Zhang Z. An injectable pH neutral bioactive glass-based bone cement with suitable bone regeneration ability. J Orthop Translat 2022; 36:120-131. [PMID: 36128442 PMCID: PMC9459430 DOI: 10.1016/j.jot.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
Background As a class of promising bone augmentation materials, bone cements have attracted particular attention. Due to various limitations, the current bone cements are still imperfect. In this study, an injectable pH neutral bioactive bone cement (PSC/CSC) was developed by mixing phosphosilicate bioactive glass (PSC) and α-calcium sulfate hemihydrate (CSH), with the goal of optimizing bone defects repairs. Methods A range of compositions (PSC/CSC: 10P/90C, 30P/70C, 50P/50C) were developed and their physicochemical properties evaluated. Their bone regeneration ability was compared to those of two widely used bone cements as controls (calcium phosphate cement (CPC) and Genex®) in rabbit femoral condyle bone defect models for 4, 8 and 12 weeks. Based on physicochemical properties and in vivo bone regeneration ability, the PSC/CSC exhibited the best outcomes was selected. Then, in vitro, the effects of selected PSC/CSC, CPC and Genex® extracts on MC3T3-E1 cell proliferation, migration and osteogenesis as well as angiogenesis of HUVECs were examined. Results Based on physicochemical properties, the 30P/70C formula exhibited suitable operability and compressive strength (3.5 ± 0.3 MPa), which fulfilled the requirements for cancellous bone substitutes. In vivo, findings from micro-CT and histological analyses showed that the 30P/70C formula better promoted bone regeneration, compared to 10P/90C, 50P/50C, CPC and Genex®. Hence, 30P/70C was selected as the ideal PSC-based cement. In vitro, the 30P/70C extracts showed better promotion of cell viability, alkaline phosphatase (ALP) activity, calcium mineral deposition, mRNA and protein expression levels of osteogenesis in MC3T3-E1 cells, further supporting its superiority. Meanwhile, the 30P/70C extracts also showed better stimulation of HUVECs proliferation and angiogenesis. Conclusion The new composite cement, 30P/70C, is a favorable bioactive glass-based bone cement with suitable operability, compressive strength and bone regeneration ability. The translational potential of this article Clinically, treatment of large bone defects is still a major challenge for orthopaedic trauma. We showed that 30P/70C has the potential to be clinically used as an injectable cement for rapid bone repairs and reconstruction of critical sized bone defects.
Collapse
|
11
|
Zhang X, Wang X, Fan W, Liu Y, Wang Q, Weng L. Fabrication, Property and Application of Calcium Alginate Fiber: A Review. Polymers (Basel) 2022; 14:3227. [PMID: 35956740 PMCID: PMC9371111 DOI: 10.3390/polym14153227] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
As a natural linear polysaccharide, alginate can be gelled into calcium alginate fiber and exploited for functional material applications. Owing to its high hygroscopicity, biocompatibility, nontoxicity and non-flammability, calcium alginate fiber has found a variety of potential applications. This article gives a comprehensive overview of research on calcium alginate fiber, starting from the fabrication technique of wet spinning and microfluidic spinning, followed by a detailed description of the moisture absorption ability, biocompatibility and intrinsic fire-resistant performance of calcium alginate fiber, and briefly introduces its corresponding applications in biomaterials, fire-retardant and other advanced materials that have been extensively studied over the past decade. This review assists in better design and preparation of the alginate bio-based fiber and puts forward new perspectives for further study on alginate fiber, which can benefit the future development of the booming eco-friendly marine biomass polysaccharide fiber.
Collapse
Affiliation(s)
- Xiaolin Zhang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Xinran Wang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Wei Fan
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Yi Liu
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Qi Wang
- School of Textile-Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, Ministry of Education, Xi’an 710048, China
| | - Lin Weng
- Department of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
12
|
He X, Liu W, Liu Y, Zhang K, Sun Y, Lei P, Hu Y. Nano artificial periosteum PLGA/MgO/Quercetin accelerates repair of bone defects through promoting osteogenic − angiogenic coupling effect via Wnt/ β-catenin pathway. Mater Today Bio 2022; 16:100348. [PMID: 35847378 PMCID: PMC9278078 DOI: 10.1016/j.mtbio.2022.100348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 10/27/2022] Open
|
13
|
Yao Z, Yuan W, Xu J, Tong W, Mi J, Ho P, Chow DHK, Li Y, Yao H, Li X, Xu S, Guo J, Zhu Q, Bian L, Qin L. Magnesium-Encapsulated Injectable Hydrogel and 3D-Engineered Polycaprolactone Conduit Facilitate Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202102. [PMID: 35652188 PMCID: PMC9313484 DOI: 10.1002/advs.202202102] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Indexed: 05/02/2023]
Abstract
Peripheral nerve injury is a challenging orthopedic condition that can be treated by autograft transplantation, a gold standard treatment in the current clinical setting. Nevertheless, limited availability of autografts and potential morbidities in donors hampers its widespread application. Bioactive scaffold-based tissue engineering is a promising strategy to promote nerve regeneration. Additionally, magnesium (Mg) ions enhance nerve regeneration; however, an effectively controlled delivery vehicle is necessary to optimize their in vivo therapeutic effects. Herein, a bisphosphonate-based injectable hydrogel exhibiting sustained Mg2+ delivery for peripheral nerve regeneration is developed. It is observed that Mg2+ promoted neurite outgrowth in a concentration-dependent manner by activating the PI3K/Akt signaling pathway and Sema5b. Moreover, implantation of polycaprolactone (PCL) conduits filled with Mg2+ -releasing hydrogel in 10 mm nerve defects in rats significantly enhanced axon regeneration and remyelination at 12 weeks post-operation compared to the controls (blank conduits or conduits filled with Mg2+ -absent hydrogel). Functional recovery analysis reveals enhanced reinnervation in the animals treated with the Mg2+ -releasing hydrogel compared to that in the control groups. In summary, the Mg2+ -releasing hydrogel combined with the 3D-engineered PCL conduit promotes peripheral nerve regeneration and functional recovery. Thus, a new strategy to facilitate the repair of challenging peripheral nerve injuries is proposed.
Collapse
Affiliation(s)
- Zhi Yao
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Weihao Yuan
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jie Mi
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Pak‐Cheong Ho
- Department of Orthopaedics & TraumatologyPrince of Wales HospitalChinese University of Hong KongHong KongSAR999077China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Hao Yao
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Xu Li
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Qingtang Zhu
- Department of Microsurgery and Orthopedic TraumaFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong Province510080China
| | - Liming Bian
- School of Biomedical Sciences and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhouGuangdong Province510006China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopedics & TraumatologyInnovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| |
Collapse
|
14
|
Cao H, Qiao S, Qin H, Jandt KD. Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. J Funct Biomater 2022; 13:jfb13030086. [PMID: 35893454 PMCID: PMC9326756 DOI: 10.3390/jfb13030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
The uses of implantable medical devices are safer and more common since sterilization methods and techniques were established a century ago; however, device-associated infections (DAIs) are still frequent and becoming a leading complication as the number of medical device implantations keeps increasing. This urges the world to develop instructive prevention and treatment strategies for DAIs, boosting the studies on the design of antibacterial surfaces. Every year, studies associated with DAIs yield thousands of publications, which here are categorized into four groups, i.e., antibacterial surfaces with long-term efficacy, cell-selective capability, tailored responsiveness, and immune-instructive actions. These innovations are promising in advancing the solution to DAIs; whereas most of these are normally quite preliminary “proof of concept” studies lacking exact clinical scopes. To help identify the flaws of our current antibacterial designs, clinical features of DAIs are highlighted. These include unpredictable onset, site-specific incidence, and possibly involving multiple and resistant pathogenic strains. The key point we delivered is antibacterial designs should meet the specific requirements of the primary functions defined by the “intended use” of an implantable medical device. This review intends to help comprehend the complex relationship between the device, pathogens, and the host, and figure out future directions for improving the quality of antibacterial designs and promoting clinical translations.
Collapse
Affiliation(s)
- Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, China
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| |
Collapse
|
15
|
Li Y, Li Y, Li L, Wang H, Wang B, Feng L, Lin S, Li G. The emerging translational potential of GDF11 in chronic wound healing. J Orthop Translat 2022; 34:113-120. [PMID: 35891714 PMCID: PMC9283991 DOI: 10.1016/j.jot.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11 (GDF11) has profound effects on several important physiological processes related to chronic wound healing, such as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-based therapy for chronic wound care are also discussed. The Translational Potential of this Article: This review summarized the significance of GDF11 in the modulation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11 for chronic wound healing.
Collapse
|
16
|
Niculescu AG, Grumezescu AM. An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers (Basel) 2022; 14:421. [PMID: 35160411 PMCID: PMC8839538 DOI: 10.3390/polym14030421] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Whether they are caused by trauma, illness, or surgery, wounds may occur throughout anyone's life. Some injuries' complexity and healing difficulty pose important challenges in the medical field, demanding novel approaches in wound management. A highly researched possibility is applying biomaterials in various forms, ranging from thin protective films, foams, and hydrogels to scaffolds and textiles enriched with drugs and nanoparticles. The synergy of biocompatibility and cell proliferative effects of these materials is reflected in a more rapid wound healing rate and improved structural and functional properties of the newly grown tissue. This paper aims to present the biomaterial dressings and scaffolds suitable for wound management application, reviewing the most recent studies in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
17
|
Hopkins C, Qin L. The importance of microstructure in R&D and applications of biomaterials and biological modulation in orthopaedics. J Orthop Translat 2021; 30:A1-A2. [PMID: 34804797 PMCID: PMC8569221 DOI: 10.1016/j.jot.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Chelsea Hopkins
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong, China
| | - Ling Qin
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong, China
| |
Collapse
|