1
|
Sashide Y, Toyota R, Takeda M. Local Administration of the Phytochemical, Quercetin, Attenuates the Hyperexcitability of Rat Nociceptive Primary Sensory Neurons Following Inflammation Comparable to lidocaine. THE JOURNAL OF PAIN 2024; 25:755-765. [PMID: 37832900 DOI: 10.1016/j.jpain.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Although in vivo local injection of quercetin into the peripheral receptive field suppresses the excitability of rat nociceptive trigeminal ganglion (TG) neurons, under inflammatory conditions, the acute effects of quercetin in vivo, particularly on nociceptive TG neurons, remain to be determined. The aim of this study was to examine whether acute local administration of quercetin into inflamed tissue attenuates the excitability of nociceptive TG neurons in response to mechanical stimulation. The mechanical escape threshold was significantly lower in complete Freund's adjuvant (CFA)-inflamed rats compared to before CFA injection. Extracellular single-unit recordings were made from TG neurons of CFA-induced inflammation in anesthetized rats in response to orofacial mechanical stimulation. The mean firing frequency of TG neurons in response to both non-noxious and noxious mechanical stimuli was reversibly inhibited by quercetin in a dose-dependent manner (1-10 mM). The mean firing frequency of inflamed TG neurons in response to mechanical stimuli was reversibly inhibited by the local anesthetic, 1% lidocaine (37 mM). The mean magnitude of inhibition on TG neuronal discharge frequency with 1 mM quercetin was significantly greater than that of 1% lidocaine. These results suggest that local injection of quercetin into inflamed tissue suppresses the excitability of nociceptive primary sensory TG neurons. PERSPECTIVE: Local administration of the phytochemical, quercetin, into inflamed tissues is a more potent local analgesic than voltage-gated sodium channel blockers as it inhibits the generation of both generator potentials and action potentials in nociceptive primary nerve terminals. As such, it contributes to the area of complementary and alternative medicines.
Collapse
Affiliation(s)
- Yukito Sashide
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryou Toyota
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
2
|
Soma K, Hitomi S, Hayashi Y, Soma C, Otsuji J, Shibuta I, Furukawa A, Urata K, Kurisu R, Yonemoto M, Hojo Y, Shirakawa T, Iwata K, Shinoda M. Neonatal injury modulates incisional pain sensitivity in adulthood: An animal study. Neuroscience 2023; 519:60-72. [PMID: 36958596 DOI: 10.1016/j.neuroscience.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Neonatal pain experiences including traumatic injury influences negatively on development of nociceptive circuit developments, resulting in persistent pain hypersensitivity in adults. However, the detailed mechanism is not yet well understood. In the present study, to clarify the pathogenesis of orofacial pain hypersensitivity associated with neonatal injury, the involvement of the voltage-gated sodium channel (Nav) 1.8 and the C-C chemokine ligand 2 (CCL2)/C-C chemokine receptor 2 (CCR2) signaling in the trigeminal ganglion (TG) in facial skin incisional pain hypersensitivity was examined in 190 neonatal facial-injured and sham male rats. The whisker pad skin was incised on postnatal day 4 and week 7 (Incision-Incision group). Compared to the group without neonatal incision (Sham-Incision group), mechanical hypersensitivity in the whisker pad skin was enhanced in Incision-Incision group. The number of Nav1.8-immunoreactive TG neurons and the amount of CCL2 expressed in the macrophages and satellite glial cells in the TG were increased on day 14 after re-incision in the Incision-Incision group, compared with Sham-Incision group. Blockages of Nav1.8 in the incised region and CCR2 in the TG suppressed the enhancement of mechanical hypersensitivity in the Incision-Incision group. Administration of CCL2 into the TG enhanced mechanical hypersensitivity in the Sham-Sham, Incision-Sham and Sham-Incision group. Our results suggest that neonatal facial injury accelerates the TG neuronal hyperexcitability following orofacial skin injury in adult in association with Nav1.8 overexpression via CCL2 signaling, resulting in the enhancement of orofacial incisional pain hypersensitivity in the adulthood.
Collapse
Affiliation(s)
- Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Chihiro Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Jo Otsuji
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Akihiko Furukawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ryoko Kurisu
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Orofacial Pain Clinic, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mamiko Yonemoto
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Yasushi Hojo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
3
|
de Lima FO, Lauria PSS, do Espírito-Santo RF, Evangelista AF, Nogueira TMO, Araldi D, Soares MBP, Villarreal CF. Unveiling Targets for Treating Postoperative Pain: The Role of the TNF-α/p38 MAPK/NF-κB/Nav1.8 and Nav1.9 Pathways in the Mouse Model of Incisional Pain. Int J Mol Sci 2022; 23:11630. [PMID: 36232927 PMCID: PMC9570460 DOI: 10.3390/ijms231911630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice and the signaling pathway modulating these channels. A surgical incision was made in the plantar hind paw of male Swiss mice. Nociceptive thresholds were assessed by von Frey filaments. Gene expression of Nav1.8, Nav1.9, TNF-α, and COX-2 was evaluated by Real-Time PCR in dorsal root ganglia (DRG). Knockdown mice for Nav1.8 and Nav1.9 were produced by antisense oligodeoxynucleotides intrathecal treatments. Local levels of TNF-α and PGE2 were immunoenzymatically determined. Incised mice exhibited hypernociception and upregulated expression of Nav1.8 and Nav1.9 in DRG. Antisense oligodeoxynucleotides reduced hypernociception and downregulated Nav1.8 and Nav1.9. TNF-α and COX-2/PGE2 were upregulated in DRG and plantar skin. Inhibition of TNF-α and COX-2 reduced hypernociception, but only TNF-α inhibition downregulated Nav1.8 and Nav1.9. Antagonizing NF-κB and p38 mitogen-activated protein kinase (MAPK), but not ERK or JNK, reduced both hypernociception and hyperexpression of Nav1.8 and Nav1.9. This study proposes the contribution of the TNF-α/p38/NF-κB/Nav1.8 and Nav1.9 pathways to the pathophysiology of the mouse model of incisional pain.
Collapse
Affiliation(s)
- Flávia Oliveira de Lima
- Health Department, State University of Feira de Santana, Feira de Santana 44036900, BA, Brazil
| | | | | | - Afrânio Ferreira Evangelista
- SENAI Institute of Innovation in Advanced Health Systems, University Center SENAI/CIMATEC, Salvador 41650010, BA, Brazil
| | | | - Dionéia Araldi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador 40296710, BA, Brazil
- SENAI Institute of Innovation in Advanced Health Systems, University Center SENAI/CIMATEC, Salvador 41650010, BA, Brazil
| | | |
Collapse
|
4
|
McCarson KE, Fehrenbacher JC. Models of Inflammation: Carrageenan- or Complete Freund's Adjuvant (CFA)-Induced Edema and Hypersensitivity in the Rat. Curr Protoc 2021; 1:e202. [PMID: 34314105 DOI: 10.1002/cpz1.202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animal models of inflammation are used to assess the production of inflammatory mediators at sites of inflammation, the processing of pain sensation at CNS sites, the anti-inflammatory properties of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs), and the efficacy of putative analgesic compounds in reversing cutaneous hypersensitivity. Detailed in this article are methods to elicit and measure carrageenan- and complete Freund's adjuvant (CFA)-induced cutaneous inflammation. Due to possible differences between the dorsal root sensory system and the trigeminal sensory system, injections into either the footpad or vibrissal pad are described. In this manner, cutaneous inflammation can be assessed in tissue innervated by the lumbar dorsal root ganglion neurons (footpad) or by the trigeminal ganglion neurons (vibrissal pad). © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center (KIDDRC), Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
5
|
Körtési T, Tuka B, Nyári A, Vécsei L, Tajti J. The effect of orofacial complete Freund's adjuvant treatment on the expression of migraine-related molecules. J Headache Pain 2019; 20:43. [PMID: 31035923 PMCID: PMC6734445 DOI: 10.1186/s10194-019-0999-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Background Migraine is a neurovascular primary headache disorder, which causes significant socioeconomic problems worldwide. The pathomechanism of disease is enigmatic, but activation of the trigeminovascular system (TS) appears to be essential during the attack. Migraine research of recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide 1–38 (PACAP1–38) as potential pathogenic factors and possible therapeutic offensives. The goal of present study was to investigate the simultaneous expression of CGRP and precursor of PACAP1–38 (preproPACAP) in the central region of the TS in a time-dependent manner following TS activation in rats. Methods The right whisker pad of rats was injected with 50 μl Complete Freund’s Adjuvant (CFA) or saline. A mechanical allodynia test was performed with von Frey filaments before and after treatment. Transcardial perfusion of the animals was initiated 24, 48, 72 and 120 h after injection, followed by the dissection of the nucleus trigeminus caudalis (TNC). After preparation, the samples were stored at − 80 °C until further use. The relative optical density of CGRP and preproPACAP was analyzed by Western blot. One-way ANOVA and Kruskal-Wallis followed by Tukey post hoc test were used to evaluate the data. Regression analysis was applied to explore the correlation between neuropeptides expression and hyperalgesia. Results Orofacial CFA injection resulted in significant CGRP and preproPACAP release in the TNC 24, 48, 72 and 120 h after the treatment. The level of neuropeptides reached its maximum at 72 h after CFA injection, corresponding to the peak of facial allodynia. Negative, linear correlation was detected between the expression level of neuropeptides and value of mechanonociceptive threshold. Conclusion This is the first study which suggests that the expression of CGRP and preproPACAP simultaneously increases in the central region of activated TS and it influences the formation of mechanical hyperalgesia. Our results contribute to a better understanding of migraine pathogenesis and thereby to the development of more effective therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Körtési
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H 6725, Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H 6725, Hungary.,Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
| |
Collapse
|
6
|
Kern KU, Schwickert-Nieswandt M, Maihöfner C, Gaul C. Topical Ambroxol 20% for the Treatment of Classical Trigeminal Neuralgia - A New Option? Initial Clinical Case Observations. Headache 2019; 59:418-429. [PMID: 30653673 DOI: 10.1111/head.13475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Trigeminal neuralgia is difficult to treat and shows upregulation of sodium channels. The expectorant ambroxol acts as a strong local anesthetic, about 40 times stronger than lidocaine. It preferentially inhibits the channel subtype Nav 1.8, expressed especially in nociceptive C-fibers. It seemed reasonable to try ambroxol for the treatment with neuropathic facial pain unresponsive to other standard options. MATERIAL AND METHODS Medical records of patients suffering from classical trigeminal neuralgia (n = 5) and successful pain reduction following topical ambroxol 20% cream in addition to standard treatment are reported. RESULTS All patients reported pain attacks with pain intensity between 4 and 10 NRS (numeric pain scale). In all cases they could be triggered, 3 patients reported additional spontaneous pain. Attacks were reduced in all 5 patients. Pain reduction achieved following ambroxol 20% cream was 2-8 points (NRS) earliest within 15-30 minutes and lasted for 4-6 hours mostly. This was reproducible in all cases; in one case pain was eliminated after 1 week. No patient reported side effects or skin changes; oral medication was reduced in 2 patients. CONCLUSION For the first time, a clinically significant pain relief following topical ambroxol 20% cream in patients with trigeminal neuralgia is reported. In view of the positive side effect profile, topical ambroxol for patients with such a highly impaired quality of life should be investigated further as a matter of urgency.
Collapse
Affiliation(s)
- Kai-Uwe Kern
- Institute for Pain Medicine/Pain Practice Wiesbaden, Wiesbaden, Germany
| | | | | | - Charly Gaul
- Migraine and Headache Clinic, Königstein, Germany
| |
Collapse
|
7
|
Araújo-Filho HG, Pereira EWM, Campos AR, Quintans-Júnior LJ, Quintans JSS. Chronic orofacial pain animal models - progress and challenges. Expert Opin Drug Discov 2018; 13:949-964. [PMID: 30220225 DOI: 10.1080/17460441.2018.1524458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic orofacial pain is one of the most common pain conditions experienced by adults. Animal models are often selected as the most useful scientific methodology to explore the pathophysiology of the disorders that cause this disabling pain to facilitate the development of new treatments. The creation of new models or the improvement of existing ones is essential for finding new ways to approach the complex neurobiology of this type of pain. Areas covered: The authors describe and discuss a variety of animal models used in chronic orofacial pain (COFP). Furthermore, they examine in detail the mechanisms of action involved in orofacial neuropathic pain and orofacial inflammatory pain. Expert opinion: The use of animal models has several advantages in chronic orofacial pain drug discovery. Choosing an animal model that most closely represents the human disease helps to increase the chances of finding effective new therapies and is key to the successful translation of preclinical research to clinical practice. Models using genetically modified animals seem promising but have not yet been fully developed for use in chronic orofacial pain research. Although animal models have provided significant advances in the pharmacological treatment of orofacial pain, several barriers still need to be overcome for better treatment options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Erik W M Pereira
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Adriana Rolim Campos
- b Experimental Biology Centre (NUBEX) , University of Fortaleza (UNIFOR) , Fortaleza , Brazil
| | - Lucindo J Quintans-Júnior
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Jullyana S S Quintans
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| |
Collapse
|
8
|
Kim YS, Kim SK, Lee JS, Ko SJ, Bae YC. Expression of vesicular glutamate transporters in transient receptor potential ankyrin 1 (TRPA1)-positive neurons in the rat trigeminal ganglion. Brain Res 2018; 1690:31-39. [DOI: 10.1016/j.brainres.2018.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 01/31/2023]
|
9
|
Nencini S, Ringuet M, Kim DH, Chen YJ, Greenhill C, Ivanusic JJ. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol Pain 2017; 13:1744806917697011. [PMID: 28326938 PMCID: PMC5407668 DOI: 10.1177/1744806917697011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sequestration of nerve growth factor has been used successfully in the management of pain in animal models of bone disease and in human osteoarthritis. However, the mechanisms of nerve growth factor-induced bone pain and its role in modulating inflammatory bone pain remain to be determined. In this study, we show that nerve growth factor receptors (TrkA and p75) and some other nerve growth factor-signaling molecules (TRPV1 and Nav1.8, but not Nav1.9) are expressed in substantial proportions of rat bone nociceptors. We demonstrate that nerve growth factor injected directly into rat tibia rapidly activates and sensitizes bone nociceptors and produces acute behavioral responses with a similar time course. The nerve growth factor-induced changes in the activity and sensitivity of bone nociceptors we report are dependent on signaling through the TrkA receptor, but are not affected by mast cell stabilization. We failed to show evidence for longer term changes in expression of TrkA, TRPV1, Nav1.8 or Nav1.9 in the soma of bone nociceptors in a rat model of inflammatory bone pain. Thus, retrograde transport of NGF/TrkA and increased expression of some of the common nerve growth factor signaling molecules do not appear to be important for the maintenance of inflammatory bone pain. The findings are relevant to understand the basis of nerve growth factor sequestration and other therapies directed at nerve growth factor signaling, in managing pain in bone disease.
Collapse
Affiliation(s)
- Sara Nencini
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Mitchell Ringuet
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Dong-Hyun Kim
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Yu-Jen Chen
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Claire Greenhill
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
McCarson KE. Models of Inflammation: Carrageenan‐ or Complete Freund's Adjuvant (CFA)–Induced Edema and Hypersensitivity in the Rat. ACTA ACUST UNITED AC 2015; 70:5.4.1-5.4.9. [DOI: 10.1002/0471141755.ph0504s70] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kenneth E. McCarson
- Kansas Intellectual and Developmental Disabilities Research Center (KIDDRC), Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center Kansas City Kansas
| |
Collapse
|
11
|
Zhang Y, Chen Y, Liedtke W, Wang F. Lack of evidence for ectopic sprouting of genetically labeled Aβ touch afferents in inflammatory and neuropathic trigeminal pain. Mol Pain 2015; 11:18. [PMID: 25880319 PMCID: PMC4393589 DOI: 10.1186/s12990-015-0017-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023] Open
Abstract
Background Mechanical and in particular tactile allodynia is a hallmark of chronic pain in which innocuous touch becomes painful. Previous cholera toxin B (CTB)-based neural tracing experiments and electrophysiology studies had suggested that aberrant axon sprouting from touch sensory afferents into pain-processing laminae after injury is a possible anatomical substrate underlying mechanical allodynia. This hypothesis was later challenged by experiments using intra-axonal labeling of A-fiber neurons, as well as single-neuron labeling of electrophysiologically identified sensory neurons. However, no studies have used genetically labeled neurons to examine this issue, and most studies were performed on spinal but not trigeminal sensory neurons which are the relevant neurons for orofacial pain, where allodynia oftentimes plays a dominant clinical role. Findings We recently discovered that parvalbumin::Cre (Pv::Cre) labels two types of Aβ touch neurons in trigeminal ganglion. Using a Pv::CreER driver and a Cre-dependent reporter mouse, we specifically labeled these Aβ trigeminal touch afferents by timed taxomifen injection prior to inflammation or infraorbital nerve injury (ION transection). We then examined the peripheral and central projections of labeled axons into the brainstem caudalis nucleus after injuries vs controls. We found no evidence for ectopic sprouting of Pv::CreER labeled trigeminal Aβ axons into the superficial trigeminal noci-receptive laminae. Furthermore, there was also no evidence for peripheral sprouting. Conclusions CreER-based labeling prior to injury precluded the issue of phenotypic changes of neurons after injury. Our results suggest that touch allodynia in chronic orofacial pain is unlikely caused by ectopic sprouting of Aβ trigeminal afferents.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Yong Chen
- Department of Neurology, Center for Translational Neuroscience, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wolfgang Liedtke
- Department of Neurology, Center for Translational Neuroscience, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Persistent pain after spinal cord injury is maintained by primary afferent activity. J Neurosci 2014; 34:10765-9. [PMID: 25100607 DOI: 10.1523/jneurosci.5316-13.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain.
Collapse
|
13
|
Belkouch M, Dansereau MA, Tétreault P, Biet M, Beaudet N, Dumaine R, Chraibi A, Mélik-Parsadaniantz S, Sarret P. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation. J Neuroinflammation 2014; 11:45. [PMID: 24606981 PMCID: PMC4007624 DOI: 10.1186/1742-2094-11-45] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain. Conclusions Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
14
|
Time-dependent analysis of nociception and anxiety-like behavior in rats submitted to persistent inflammation of the temporomandibular joint. Physiol Behav 2013; 125:1-7. [PMID: 24291383 DOI: 10.1016/j.physbeh.2013.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/05/2013] [Accepted: 11/18/2013] [Indexed: 11/23/2022]
Abstract
Temporomandibular disorder (TMD) is prevalent in dental clinics and can involve problems with the masticatory muscles or the temporomandibular joints (TMJ). The pain of TMD is frequently associated with inflammation in the TMJs, but it's etiology is considered to be multifactorial and includes biologic, behavioral, environmental, social, emotional and cognitive factors. The purpose of this investigation was to evaluate the anxiety-like behavior in rats exposed to temporomandibular inflammation via injection of Freund's Adjuvant (CFA) with the elevated plus maze (EPM) and light/dark box (LDB) tests and to evaluate nociceptive behavior with the von Frey test at different periods. Moreover, this study measured TMJ inflammation using plasma extravasation (Evans blue test) and the intraarticular infiltration of polymorphonuclear neutrophils (myeloperoxidase quantification). The results showed that rats that were submitted to TMJ inflammation exhibited a decreased number of entries into the open arms of the EPM and a decrease in the time spent in the light compartment and in the number of transitions in the LDB. Additionally, the number of entries in closed arms in the EPM, used as indicator of locomotor activity, did not alter between treatments. Furthermore, increases in mechanical sensitivity and increases in plasma extravasation in the joint tissue occurred throughout the inflammation process, along with an increase in myeloperoxidase in the synovial fluid of TMJ. Our results suggest that the temporomandibular inflammation induced by CFA produced anxiety-like behaviors in rats and induced nociceptive behavior across different periods of inflammation.
Collapse
|
15
|
Bi RY, Kou XX, Meng Z, Wang XD, Ding Y, Gan YH. Involvement of trigeminal ganglionic Nav1.7 in hyperalgesia of inflamed temporomandibular joint is dependent on ERK1/2 phosphorylation of glial cells in rats. Eur J Pain 2012; 17:983-94. [PMID: 23242737 DOI: 10.1002/j.1532-2149.2012.00262.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 12/31/2022]
Affiliation(s)
- R-Y. Bi
- The Third Dental Center; Peking University School and Hospital of Stomatology; Beijing; China
| | - X-X. Kou
- The Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing; China
| | - Z. Meng
- Central Laboratory and Center for Temporomandibular Disorders & Orofacial Pain; Peking University School and Hospital of Stomatology; Beijing; China
| | - X-D. Wang
- The Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing; China
| | - Y. Ding
- The Third Dental Center; Peking University School and Hospital of Stomatology; Beijing; China
| | - Y-H. Gan
- Central Laboratory and Center for Temporomandibular Disorders & Orofacial Pain; Peking University School and Hospital of Stomatology; Beijing; China
| |
Collapse
|
16
|
Metabotropic glutamate receptor 5 contributes to inflammatory tongue pain via extracellular signal-regulated kinase signaling in the trigeminal spinal subnucleus caudalis and upper cervical spinal cord. J Neuroinflammation 2012. [PMID: 23181395 PMCID: PMC3543209 DOI: 10.1186/1742-2094-9-258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background In the orofacial region, limited information is available concerning pathological tongue pain, such as inflammatory pain or neuropathic pain occurring in the tongue. Here, we tried for the first time to establish a novel animal model of inflammatory tongue pain in rats and to investigate the roles of metabotropic glutamate receptor 5 (mGluR5)-extracellular signal-regulated kinase (ERK) signaling in this process. Methods Complete Freund’s adjuvant (CFA) was submucosally injected into the tongue to induce the inflammatory pain phenotype that was confirmed by behavioral testing. Expression of phosphorylated ERK (pERK) and mGluR5 in the trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) were detected with immunohistochemical staining and Western blotting. pERK inhibitor, a selective mGluR5 antagonist or agonist was continuously administered for 7 days via an intrathecal (i.t.) route. Local inflammatory responses were verified by tongue histology. Results Submucosal injection of CFA into the tongue produced a long-lasting mechanical allodynia and heat hyperalgesia at the inflamed site, concomitant with an increase in the pERK immunoreactivity in the Vc and C1-C2. The distribution of pERK-IR cells was laminar specific, ipsilaterally dominant, somatotopically relevant, and rostrocaudally restricted. Western blot analysis also showed an enhanced activation of ERK in the Vc and C1-C2 following CFA injection. Continuous i.t. administration of the pERK inhibitor and a selective mGluR5 antagonist significantly depressed the mechanical allodynia and heat hyperalgesia in the CFA-injected tongue. In addition, the number of pERK-IR cells in ipsilateral Vc and C1-C2 was also decreased by both drugs. Moreover, continuous i.t. administration of a selective mGluR5 agonist induced mechanical allodynia in naive rats. Conclusions The present study constructed a new animal model of inflammatory tongue pain in rodents, and demonstrated pivotal roles of the mGluR5-pERK signaling in the development of mechanical and heat hypersensitivity that evolved in the inflamed tongue. This tongue-inflamed model might be useful for future studies to further elucidate molecular and cellular mechanisms of pathological tongue pain such as burning mouth syndrome.
Collapse
|
17
|
Krzyzanowska A, Avendaño C. Behavioral testing in rodent models of orofacial neuropathic and inflammatory pain. Brain Behav 2012; 2:678-97. [PMID: 23139912 PMCID: PMC3489819 DOI: 10.1002/brb3.85] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 11/12/2022] Open
Abstract
Orofacial pain conditions are often very debilitating to the patient and difficult to treat. While clinical interest is high, the proportion of studies performed in the orofacial region in laboratory animals is relatively low, compared with other body regions. This is partly due to difficulties in testing freely moving animals and therefore lack of reliable testing methods. Here we present a comprehensive review of the currently used rodent models of inflammatory and neuropathic pain adapted to the orofacial areas, taking into account the difficulties and drawbacks of the existing approaches. We examine the available testing methods and procedures used for assessing the behavioral responses in the face in both mice and rats and provide a summary of some pharmacological agents used in these paradigms to date. The use of these agents in animal models is also compared with outcomes observed in the clinic.
Collapse
Affiliation(s)
- Agnieszka Krzyzanowska
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Medical School Madrid, Spain
| | | |
Collapse
|
18
|
Jennings EA, Williams MC, Staikopoulos V, Ivanusic JJ. Neurobiology of Temporomandibular Joint Pain: Therapeutic Implications. Semin Orthod 2012. [DOI: 10.1053/j.sodo.2011.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Abstract
Orofacial pain remains an understudied area in pain research given that most attention has been focused on the spinal system. In this chapter, animal models of neuropathic and inflammatory orofacial pain are presented. Four different types of pain behavior tests are then described for assessing evoked and spontaneous pain behavior in addition to conditional reward behavior. The use of a combination of different pain models and behavior assessments is needed to aid in understanding the mechanisms contributing to orofacial pain in humans for developing effective therapy.
Collapse
Affiliation(s)
- Timothy K Y Kaan
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
20
|
The pulpal anesthetic efficacy of articaine versus lidocaine in dentistry: a meta-analysis. J Am Dent Assoc 2011; 142:493-504. [PMID: 21531931 DOI: 10.14219/jada.archive.2011.0219] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The authors evaluated published evidence from controlled clinical trials regarding the efficacy of two local anesthetic solutions in providing successful pulpal anesthesia. METHODS The authors searched MEDLINE and Embase databases to identify peer-reviewed randomized controlled trials in which researchers directly compared articaine and lidocaine local anesthetic solutions in adult participants. They extracted study characteristics and outcomes data as a basis for meta-analysis. They completed subgroup analyses for both infiltration and mandibular inferior alveolar block anesthetic techniques. RESULTS Articaine solutions had a probability of achieving anesthetic success superior to that of lidocaine, with an odds ratio of 2.44 (95 percent confidence interval [CI], 1.59-3.76; P < .0001). The greater odds ratio for articaine increased to 3.81 (95 percent CI, 2.71-5.36; P < .00001) when the authors analyzed only infiltration data. There was weaker, but still significant, evidence of articaine's being superior to lidocaine for mandibular block anesthesia, with an odds ratio of 1.57 (95 percent CI, 1.12-2.21; P = .009), and no difference when the authors considered only symptomatic teeth. CLINICAL IMPLICATIONS Research evidence supports using articaine versus lidocaine for achieving pulpal anesthesia when the infiltration mode of administration is used. It is premature to recommend articaine for mandibular block anesthesia in cases involving irreversible pulpitis.
Collapse
|
21
|
An JX, He Y, Qian XY, Wu JP, Xie YK, Guo QL, Williams JP, Cope DK. A new animal model of trigeminal neuralgia produced by administration of cobra venom to the infraorbital nerve in the rat. Anesth Analg 2011; 113:652-6. [PMID: 21778333 DOI: 10.1213/ane.0b013e3182245add] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Understanding the mechanism of trigeminal neuralgia may be elucidated by developing laboratory animal models that closely mimic the features of this specific type of neuropathic pain. We have developed an experimental animal model for trigeminal neuralgia using a technique of injecting cobra venom into the infraorbital nerve (ION) trunk. METHODS Male Sprague-Dawley rats were subjected to the administration of cobra venom or saline into the ION trunk. Mechanical stimuli were applied to the ION territory in consecutive days after surgery. Mechanical thresholds were measured over a 90-day period on the bilateral facial region. Vascular permeability in the ION territory was measured using Evans blue dye. RESULTS The cobra venom-treated rats developed mechanical allodynia 3 days after surgery that lasted for 60 days postoperatively at the ipsilateral side. The mechanical thresholds of the contralateral ION territory also showed a profound decrease but were sustained for only approximately 30 days. There was no change of mechanical thresholds in the control groups. The extravasation of Evans blue increased significantly in the skin after administration of cobra venom to the ION compared with control rats (P < 0.05). CONCLUSION The cobra venom model may provide a reasonable model for investigating the mechanism of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Jian-Xiong An
- Department of Anesthesiology, Central South University Xiangya Hospital, Changsha, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Individuals with fibromyalgia generally experience chronic widespread pain, which can be accompanied by further symptoms including fatigue, sleep disturbances, cognitive dysfunction, anxiety and depressive episodes. As the recognition and diagnosis of fibromyalgia has improved, the availability of therapeutic options for patients has increased. Furthermore, research into the neurobiological mechanisms that contribute to the chronic pain and concomitant symptoms experienced by patients with fibromyalgia has advanced our understanding of this debilitating disorder. In this Review, we aim to provide an overview of existing pathophysiological concepts. The roles of biological and psychological stress, genetic factors, and pain and sensory processing in the pathophysiology of fibromyalgia and related conditions are discussed. In addition, pharmacological treatments, including monoamine modulators, calcium channel modulators and γ-aminobutyric acid modulators, as well as nonpharmacological treatment options are considered.
Collapse
Affiliation(s)
- Tobias Schmidt-Wilcke
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, 48106, USA. tobiass@ med.umich.edu
| | | |
Collapse
|
23
|
Sessle BJ. Peripheral and central mechanisms of orofacial inflammatory pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:179-206. [DOI: 10.1016/b978-0-12-385198-7.00007-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Takeda M, Matsumoto S, Sessle BJ, Shinoda M, Iwata K. Peripheral and Central Mechanisms of Trigeminal Neuropathic and Inflammatory Pain. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80025-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Ivanusic JJ, Beaini D, Hatch RJ, Staikopoulos V, Sessle BJ, Jennings EA. Peripheral N-methyl-d-aspartate receptors contribute to mechanical hypersensitivity in a rat model of inflammatory temporomandibular joint pain. Eur J Pain 2010; 15:179-85. [PMID: 20675160 DOI: 10.1016/j.ejpain.2010.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine whether peripheral N-methyl-d-aspartate (NMDA) receptors are involved in inflammation-induced mechanical hypersensitivity of the temporomandibular joint (TMJ) region. We developed a rat model of mechanical sensitivity to Complete Freund's Adjuvant (CFA; 2μl containing 1μg Mycobacterium tuberculosis)-induced inflammation of the TMJ and examined changes in sensitivity following injection of NMDA receptor antagonists (dl-2-amino-5-phosphonovaleric acid (AP5) or Ifenprodil) with CFA. CFA injected into the TMJ resulted in an increase in mechanical sensitivity relative to pre-injection that peaked at day 1 and lasted for up to 3days (n=8, P<0.05). There was no change in mechanical sensitivity in vehicle-injected rats at any time-point (n=9). At day 1, there was a significant increase in mechanical sensitivity in animals injected with CFA+vehicle (n=7) relative to those injected with vehicle alone (n=7, P<0.05), and co-injection of AP5 (n=6) or Ifenprodil (n=7) with CFA blocked this hypersensitivity. Subcutaneous injection of AP5 (n=7) and Ifenprodil (n=5) instead of into the TMJ had no significant effect on CFA-induced hypersensitivity of the TMJ region. Western blot analysis revealed constitutive expression of the NR1 and NR2B subunits in trigeminal ganglion lysates. Immunohistochemical studies showed that 99% and 28% of trigeminal ganglion neurons that innervated the TMJ contained the NR1 and NR2B subunits respectively. Our findings suggest a role for peripheral NMDA receptors in inflammation-induced pain of the TMJ region. Targeting peripheral NMDA receptors with peripheral application of NMDA receptor antagonists could provide therapeutic benefit and avoid side effects associated with blockade of NMDA receptors in the central nervous system.
Collapse
Affiliation(s)
- J J Ivanusic
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Dolan JC, Lam DK, Achdjian SH, Schmidt BL. The dolognawmeter: a novel instrument and assay to quantify nociception in rodent models of orofacial pain. J Neurosci Methods 2010; 187:207-15. [PMID: 20096303 DOI: 10.1016/j.jneumeth.2010.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/10/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Rodent pain models play an important role in understanding the mechanisms of nociception and have accelerated the search for new treatment approaches for pain. Creating an objective metric for orofacial nociception in these models presents significant technical obstacles. No animal assay accurately measures pain-induced orofacial dysfunction that is directly comparable to human orofacial dysfunction. We developed and validated a high throughput, objective, operant, nociceptive animal assay, and an instrument to perform the assay termed the dolognawmeter, for evaluation of conditions known to elicit orofacial pain in humans. Using the device our assay quantifies gnawing function in the mouse. We quantified a behavioral index of nociception and demonstrated blockade of nociception in three models of orofacial pain: (1) TMJ inflammation, (2) masticatory myositis, and (3) head and neck cancer. This assay will be useful in the study of nociceptive mediators involved in the development and progression of orofacial pain conditions and it will also provide a unique tool for development and assessment of new therapeutic approaches.
Collapse
Affiliation(s)
- John C Dolan
- Department of Orofacial Sciences, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Pain is one of the most common reasons for which patients seek dental and medical care. Orofacial pain conditions consist of a wide range of disorders including odontalgia (toothache), temporomandibular disorders, trigeminal neuralgia and others. Most of these conditions are either inflammatory or neuropathic in nature. This chapter provides an overview of the commonly used models to study inflammatory and neuropathic orofacial pain.
Collapse
Affiliation(s)
- Asma Khan
- Department of Endodontics, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
28
|
Cho HJ, Staikopoulos V, Furness JB, Jennings EA. Inflammation-induced increase in hyperpolarization-activated, cyclic nucleotide-gated channel protein in trigeminal ganglion neurons and the effect of buprenorphine. Neuroscience 2009; 162:453-61. [PMID: 19409968 DOI: 10.1016/j.neuroscience.2009.04.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/17/2009] [Accepted: 04/26/2009] [Indexed: 12/20/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are active at resting membrane potential and thus contribute to neuronal excitability. Their increased activity has recently been demonstrated in models of nerve injury-induced pain. The major aim of the current study was to investigate altered HCN channel protein expression in trigeminal sensory neurons following inflammation of the dura. HCN1 and HCN2 channel immunoreactivity was observed on the membranes of medium- to large-sized trigeminal ganglion neurons with 76% and 85% of HCN1 and HCN2 expressing neurons also containing the 200 kDa neurofilament protein (associated with myelinated fibers). Western immunoblots of lysates from rat trigeminal ganglia also showed bands with appropriate molecular weights for HCN1 and HCN2. Three days after application of complete Freund's adjuvant (CFA) to the dura mater, Western blot band densities were significantly increased; compared to control, to 166% for HCN1 and 284% for HCN2 channel protein. The band densities were normalized against alpha-actin. In addition, the number of retrogradely labeled neurons from the dura expressing HCN1 and HCN2 was significantly increased to 247% (HCN1) and 171% (HCN2), three days after inflammation. When the opioid receptor partial agonist, buprenorphine, was given systemically, immediately after CFA, the inflammation-induced increase in HCN protein expression in both Western blot and immunohistochemical experiments was not observed. These results suggest that HCN1 and HCN2 are involved in inflammation-induced sensory neuron hyperexcitability, and indicate that an opioid receptor agonist can reverse the protein upregulation.
Collapse
Affiliation(s)
- H-J Cho
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|