1
|
Du K, Liu T, Ma W, Guo J, Chen S, Wen J, Zhou R, Cui Y, Wang S, Li L, Li J, Chang Y. A global profiling strategy for identification of the total constituents in Chinese herbal medicine based on online comprehensive two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry combined with intelligentized chemical classification guidance. J Chromatogr A 2023; 1710:464387. [PMID: 37757527 DOI: 10.1016/j.chroma.2023.464387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
A comprehensive strategy for effective identification of total constituents in Chinese patent medicine has been advanced applying full scan-preferred parent ions capture-static and active exclusion (FS-PIC-SAE) acquisition coupled with intelligent deep-learning supported mass defect filter (MDF) process, with Naoxintong capsule (NXT) as a case. Online comprehensive two-dimensional liquid chromatography (2DLC) coupled with Q-TOF-MS/MS system was established for obtaining the excellent separation and detection performance of total components, which could exhibit excellent peak capacity with 1052 and orthogonality with 0.69. In addition, a total of 901 unknown compounds could be classified into nine chemical classes rapidly and effectively, based on the intelligent deep-learning algorithm supported MDF model with 96.4% accuracy. Consequently, 276 compounds were successfully identified from NXT, especially including 44 flavonoids, 27 phenolic acids, 25 fatty acids, 17 saponins, 21 phthalocyanines, 20 triterpenes, 10 monoterpenes, 13 diterpenoid ketones, 14 amino acids, and others. It is concluded that the proposed program is an effective and practical strategy enabling the in-depth chemical profiling of complex herbal and biological samples.
Collapse
Affiliation(s)
- Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiading Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiake Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Wang Q, Yang Z, Guo L, Li Z, Liu Y, Feng S, Wang Y. Chemical composition, pharmacology and pharmacokinetic studies of GuHong injection in the treatment of ischemic stroke. Front Pharmacol 2023; 14:1261326. [PMID: 37745083 PMCID: PMC10512552 DOI: 10.3389/fphar.2023.1261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
GuHong injection is composed of safflower and N-acetyl-L-glutamine. It is widely used in clinical for cerebrovascular diseases, such as ischemic stroke and related diseases. The objective of this review is to comprehensively summarize the most recent information related to GuHong in the treatment of stroke, including chemical composition, clinical studies, potential pharmacological mechanisms and pharmacokinetics. Additionally, it examines possible scientific gaps in current study and aims to provide a reliable reference for future GuHong studies. The systematic review reveals that the chemical composition of safflower in GuHong is more than 300 chemical components in five categories. GuHong injection is primarily used in clinical applications for acute ischemic stroke and related diseases. Pharmacological investigations have indicated that GuHong acts in the early and recovery stages of ischemic stroke by anti-inflammatory, anti-oxidative stress, anti-coagulation, neuroprotective and anti-apoptotic mechanisms simultaneously. Pharmacokinetic studies found that the main exposed substances in rat plasma after GuHong administration are hydroxysafflor yellow A and N-acetyl-L-glutamine, and N-acetyl-L-glutamine could exert its pharmacological effect across the blood-brain barrier. As a combination of Chinese herb and chemical drug, GuHong injection has great value in drug research and clinical treatment, especially for ischemic stroke disease. This article represents a comprehensive and systematic review of existing studies on GuHong injection, including chemical composition, pharmacological mechanism, and pharmacokinetics, which provides reference significance for the clinical treatment of ischemic stroke with GuHong, as well as provides guidance for further study.
Collapse
Affiliation(s)
- Qiuyue Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liuli Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoling Feng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxia Wang
- Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, China
| |
Collapse
|
3
|
Abbas EY, Ezzat MI, Ramadan NM, Eladl A, Hamed WHE, Abdel-Aziz MM, Teaima M, El Hefnawy HM, Abdel-Sattar E. Characterization and anti-aging effects of Opuntia ficus-indica (L.) Miller extracts in a D-galactose-induced skin aging model. Food Funct 2023; 14:3107-3125. [PMID: 36942614 DOI: 10.1039/d2fo03834j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Opuntia ficus-indica (L.) Miller (OFI), belonging to the family Cactaceae, is widely cultivated not only for its delicious fruits but also for its health-promoting effects, which enhance the role of OFI as a potential functional food. In this study, the in vitro collagenase and elastase enzyme inhibitory effects of extracts from different parts of OFI were evaluated. The most promising extracts were formulated as creams at two concentrations (3 and 5%) to investigate their effects on a D-galactose (D-gal)-induced skin-aging mouse model. The ethanolic extracts of the peel and cladodes exhibited the highest enzyme inhibitory effects. Cream made from the extract of OFI peel (OP) (5%) and cream from OFI cladodes extract (OC) (5%) significantly decreased the macroscopic aging of skin scores. Only a higher concentration (5%) of OC showed the normalization of superoxide dismutase (SOD) and malondialdehyde (MDA) skin levels and achieved significant improvements as compared to the vitamin E group. Both OC and OP (5%) showed complete restoration of the normal skin structure and nearly normal collagen fibres upon histopathological examination. The Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-ESI-TOF-MS) metabolite profiles revealed the presence of organic acids, phenolic acids, flavonoids, betalains, and fatty acids. Flavonoids were the predominant phytochemical class (23 and 22 compounds), followed by phenolic acids (14 and 17 compounds) in the ethanolic extracts from the peel and cladodes, respectively. The anti-skin-aging effects could be attributed to the synergism of different phytochemicals in both extracts. From these findings, the OFI peel and cladodes as agro-waste products are good candidates for anti-skin-aging phytocosmetics.
Collapse
Affiliation(s)
- Eman Yasser Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Marwa I Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Amira Eladl
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Walaa H E Hamed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, 11651, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hala Mohamed El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
4
|
Preventive effects of a standardized flavonoid extract of safflower in rotenone-induced Parkinson's disease rat model. Neuropharmacology 2022; 217:109209. [DOI: 10.1016/j.neuropharm.2022.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
|
5
|
Ren C, Chen C, Dong S, Wang R, Xian B, Liu T, Xi Z, Pei J, Chen J. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in flowers of safflower ( Carthamus tinctorius L.) during colour-transition. PeerJ 2022; 10:e13591. [PMID: 35762018 PMCID: PMC9233481 DOI: 10.7717/peerj.13591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
Background Safflower (Carthamus tinctorius L.), well known for its flower, is widely used as a dye and traditional Chinese medicine. Flavonoids, especially flavonoid glycosides, are the main pigments and active components. However, their biosynthesis is largely unknown. Interestingly, the colour of flowers in safflower changed from yellow to red during flower development, while much of the gene and chemical bases during colour transition are unclear. Methods In this research, widely targeted metabolomics and transcriptomics were used to elucidate the changes in flavonoid biosynthesis from the gene and chemical points of view in flowers of safflower during colour transition. The screening of differential metabolites depended on fold change and variable importance in project (VIP) value. Differential expressed genes (DEGs) were screened by DESeq2 method. RT-PCR was used to analyse relative expressions of DEGs. Results A total of 212 flavonoid metabolites, including hydroxysafflor yellow A, carthamin and anthocyanins, were detected and showed a large difference. The candidate genes of glycosyltransferases and flavonoid hydroxylase that might participate in flavonoid glycoside biosynthesis were screened. Ten candidate genes were screened. Through integrated metabolomics and transcriptome analysis, a uridine diphosphate glucose glycosyltransferase gene, CtUGT9 showed a significant correlation with flavonoid glycosides in safflower. In addition, expression analysis showed that CtUGT9 was mainly expressed in the middle development of flowers and was significantly upregulated under MeJA treatment. Our results indicated that CtUGT9 might play an important role in flavonoid glycoside biosynthesis during colour-transition in safflower.
Collapse
Affiliation(s)
- Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Dong
- The State Bank of Chinese Drug Germplam Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tianlei Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziqing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,The State Bank of Chinese Drug Germplam Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,The State Bank of Chinese Drug Germplam Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Otify AM, Hammam AMM, Aly Farag M. Phoenix dactylifera L. date tree pollen fertility effects on female rats in relation to its UPLC-MS profile via a biochemometric approach. Steroids 2021; 173:108888. [PMID: 34237316 DOI: 10.1016/j.steroids.2021.108888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
Date palm (Phoenix dactylifera L.) is among the most ancient cultivated crops, of special value owing to its fruits high nutritive and economic benefits. Asides, date palm pollen is a high energy material that has been used traditionally used for fertility enhancement. In this study, effects of date palm pollen crude extract and its fractions viz., petroleum ether, methylene chloride, ethyl acetate and n-butanol on the female reproductive system were evaluated for the first time in relation to its metabolite fingerprint. Fertility activity was evaluated in immature female rats by assessing their FSH-, LH- and estrogen- activities. To pinpoint active hormonal agents in crude pollen extract and fractions, UPLC- MS analysis was employed for metabolites profiling, and in correlation to extract/fraction bioassays using multivariate OPLS analysis. Results revealed that both polar n-butanol and non-polar petroleum ether fractions exhibited the strongest activities; with a significant increase in FSH (25.7 mIU/ml in n-butanol group), estradiol (414.7 pg/ml in petroleum ether group) and progesterone levels (122.4 pg/ml in n-butanol group). Correlation between UPLC-MS and fraction bioassays was attempted using multivariate OPLS analysis to reveal for bioactive hits in these fractions. This study provides the first report on the fertility effect of date palm pollen in female rats and in relation to its metabolite fingerprint.
Collapse
Affiliation(s)
- Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Mohamed Aly Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
7
|
Dai Z, Jiang D, Dai Y, Han R, Fu Q, Jin Y, Liang X. Separation and characterization of phenylamides from Piper kadsura using preparative supercritical fluid chromatography and ultra-high-performance supercritical fluid chromatography-tandem mass spectrometry. J Sep Sci 2021; 44:3530-3539. [PMID: 34342132 DOI: 10.1002/jssc.202100422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023]
Abstract
A preparative supercritical fluid chromatography method for the separation of Piper kadsura obtained five phenylamide compounds, which had the same structural skeleton, but changed in the number and position of methoxyl substituents. To improve the separation selectivity of these structural analogues, silica, phenyl, and chiral stationary phases were screened. Only through the combination of Chiral C and phenyl columns could the separation of the five phenylamides be solved. The two-step strategy using preparative supercritical fluid chromatography presented good orthogonality that ensured the purity of the phenylamides. Then, an ultra-high-performance supercritical fluid chromatography hyphened tandem mass spectrometry method was developed, and the fragmentation pattern of phenylamides was summarized. It mainly cleaved in the amide bond to produce the fragment ion, which could help to judge the substituent positions. Twenty-eight possible molecular weights of hydroxyl and methoxyl substituted phenylamides were calculated and screened. Nine compounds were extracted in three [M + H]+ ions at m/z 284.13, 314.13, and 344.13, including five purified compounds and the other four positional or trans-cis phenylamide isomers in low content. The methods developed in this research were useful in the separation and characterization of phenylamide analogues.
Collapse
Affiliation(s)
- Zhuoshun Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Rongrong Han
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China.,Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China
| |
Collapse
|
8
|
Yu Y, Yao C, Guo DA. Insight into chemical basis of traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-mass spectrometry. Acta Pharm Sin B 2021; 11:1469-1492. [PMID: 34221863 PMCID: PMC8245813 DOI: 10.1016/j.apsb.2021.02.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been an indispensable source of drugs for curing various human diseases. However, the inherent chemical diversity and complexity of TCM restricted the safety and efficacy of its usage. Over the past few decades, the combination of liquid chromatography with mass spectrometry has contributed greatly to the TCM qualitative analysis. And novel approaches have been continuously introduced to improve the analytical performance, including both the data acquisition methods to generate a large and informative dataset, and the data post-processing tools to extract the structure-related MS information. Furthermore, the fast-developing computer techniques and big data analytics have markedly enriched the data processing tools, bringing benefits of high efficiency and accuracy. To provide an up-to-date review of the latest techniques on the TCM qualitative analysis, multiple data-independent acquisition methods and data-dependent acquisition methods (precursor ion list, dynamic exclusion, mass tag, precursor ion scan, neutral loss scan, and multiple reaction monitoring) and post-processing techniques (mass defect filtering, diagnostic ion filtering, neutral loss filtering, mass spectral trees similarity filter, molecular networking, statistical analysis, database matching, etc.) were summarized and categorized. Applications of each technique and integrated analytical strategies were highlighted, discussion and future perspectives were proposed as well.
Collapse
Key Words
- BS, background subtraction
- CCS, collision cross section
- CE, collision energy
- CID, collision-induced dissociation
- DDA, data-dependent acquisition
- DE, dynamic exclusion
- DIA, data-independent acquisition
- DIF, diagnostic ion filtering
- DM, database matching
- Data acquisition
- Data post-processing
- EL, exclusion list
- EMS, enhanced mass spectrum
- EPI, enhanced product ion
- FS, full scan
- HCD, high-energy C-trap dissociation
- IDA, information dependent acquisition
- IM, ion mobility
- IPF, isotope pattern filtering
- ISCID, in-source collision-induced dissociation
- LC, liquid chromatography
- LTQ-Orbitrap, linear ion-trap/orbitrap
- Liquid chromatography−mass spectrometry
- MDF, mass defect filtering
- MIM, multiple ion monitoring
- MN, molecular networking
- MRM, multiple reaction monitoring
- MS, mass spectrometry
- MTSF, mass spectral trees similarity filter
- NL, neutral loss
- NLF, neutral loss filtering
- NLS, neutral loss scan
- NRF, nitrogen rule filtering
- PCA, principal component analysis
- PIL, precursor ion list
- PIS, precursor ion scan
- PLS-DA, partial least square-discriminant analysis
- Q-TRAP, hybrid triple quadrupole-linear ion trap
- QSRR, quantitative structure retention relationship
- QqQ, triple quadrupole
- Qualitative analysis
- RT, retention time
- SA, statistical analysis
- TCM, traditional Chinese medicine
- Traditional Chinese medicine
- UHPLC, ultra-high performance liquid chromatography
- cMRM, conventional multiple reaction monitoring
- sMRM, scheduled multiple reaction monitoring
Collapse
Affiliation(s)
- Yang Yu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Huang X, Sun J, Sun J. Combined Treatment with JFKD and Gefitinib Overcomes Drug Resistance in Non-Small Cell Lung Cancer. Curr Pharm Biotechnol 2021; 22:389-399. [PMID: 32819223 DOI: 10.2174/1389201021999200819105209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/30/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gefitinib is an important drug used to treat Non-Small Cell Lung Cancer (NSCLC) with EGFR activating mutations, but drug resistance restricts its clinical application. In this present study, combined Jin Fu Kang Decoction (JFKD) and gefitinib showed specific cytotoxicity to gefitinib-resistant cancer cells (PC-9/gef). OBJECTIVE This study aimed to decipher the molecular mechanism of the JFKD on drug resistance when used together with Gefitinib and to find the contributing bio-active substance(s) in JFKD based on the putative mechanism. METHODS To investigate the combined effect of gefitinib and JFKD, in vitro experiments were conducted on the established gefitinib-resistant PC-9 subclone, while in vivo experiments were conducted on the BALB/c nude mice with PC-9/gef xenografts. Western blot was used to evaluate the protein expression, and Ultra-Performance Liquid Chromatography (UPLC) coupled with quadrupole time-offlight Mass Spectrometry (MS) was used to detect the bio-active compounds of JFKD. RESULTS The expression of the PTEN-relevant protein p-EGFR, p-Akt in vitro was inhibited more when combined JKFD and gefitinib were used, whereas the activities of PDCD4 and PTEN were increased; remarkably, in vivo experiments showed enhanced tumor growth inhibition when treated with this combination. Due to this combination, the effect on the gefitinib-resistant cell line, one of the JFKD-induced anti-cancer mechanisms, was found. To link the putative mechanism and the anticancer compounds in JFKD, 14 saponins and flavonoids were detected. CONCLUSION The results suggested that a promising TCM-participated therapy can be established by the putative mechanism of the combined treatment in resistant NSCLC and screening the contributing bio-active substance(s) in JFKD is meaningful on new TCM formula discovery.
Collapse
Affiliation(s)
- Xiaoming Huang
- Department of the 6th of Cancer, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jingchun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Jianli Sun
- Department of the 6th of Cancer, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| |
Collapse
|
10
|
Karaaslan Ayhan N, Rosenberg E. Development of comprehensive liquid chromatography with diode array and mass spectrometric detection for the characterization of (poly-)phenolic and flavonoid compounds and application to asparagus. Food Chem 2021; 354:129518. [PMID: 33756324 DOI: 10.1016/j.foodchem.2021.129518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 01/11/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
The main objective of the present work was to develop a method for the simultaneous and comprehensive analysis of (poly-)phenolic and flavonoid compounds with liquid chromatography with diode array and mass spectrometric detection and its application to green asparagus samples. To this end, a representative set of polyphenols was used to develop the method. A through method validation was carried out with these. The method was applied to asparagus samples known as a healthy vegetable being rich in bioactive compounds. Polyphenol contents of asparagus samples were determined by carrying out quantitative and qualitative analyses by LC-DAD-ESI/MS. In this context asparagus sample extracts were obtained using solvents of different polarity. The results were evaluated statistically and showed that rutin is the major phenolic compound in asparagus. This demonstrates the versatility of this rapid and sensitive method for the simultaneous analysis of (poly-)phenolic and flavonoid compounds which was successfully applied to asparagus samples.
Collapse
Affiliation(s)
- Nagihan Karaaslan Ayhan
- Department of Chemistry and Chemical Processing Technologies, Tunceli Vocational School, Munzur University, TR 62000 Tunceli, Turkey; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164 AC, Vienna, Austria.
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164 AC, Vienna, Austria
| |
Collapse
|
11
|
Li P, Gao W, Shi XY, Miao QY, Liu XG. Screening safflower injection for constituents with activity against stroke using comprehensive chemical profiling coupled with network pharmacology. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_32_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Li P, Gao W, Shi XY, Miao QY, Liu XG. Screening safflower injection for constituents with activity against stroke using comprehensive chemical profiling coupled with network pharmacology. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/2311-8571.317485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Bao H, Yang H, Wang F, Zhou K, Yang Y, Xu Y, Li L. HPLC Fingerprint Combined With Multicomponent Quantification as an Efficient Method for Quality Evaluation of Pharbitidis Semen. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20931642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pharbitidis Semen is a traditional Chinese medicine(TCM) with a long history for treatment of edema and fullness, fecal and urinary retention, phlegm and retained fluid, and abdominal pain due to parasitic infestation. Since Pharbitidis Semen is distributed throughout the country, the quality of the medicine from different origins may be varied. Moreover, the reported method could not control the quality comprehensively. In this article, a fingerprint of Pharbitidis Semen has been established based on a high-performance liquid chromatography (HPLC) method. In addition, the contents of the 2 main effective components were determined simultaneously. The reference HPLC fingerprint was obtained according to the chromatograms of test samples. The similarity values were calculated by the Similarity Evaluation System for Chromatographic Fingerprint of TCM (2004 A edition). Cluster analysis of 10 batches of samples was performed using statistical software (SPSS 20.0). The HPLC fingerprints of 10 batches of Pharbitidis Semen showed 25 well-resolved common peaks in each chromatogram. Two of these peaks were assigned to protocatechuic aldehyde and caffeic acid. As a result, HPLC fingerprint similarities of 10 batches of samples were more than 0.99. Pharbitidis Semen from different habitats could be divided into 3 or 2 groups. The results of cluster analysis showed that samples classified into 1 group were associated with their habitats and breeds. At the same time, quantification results showed that the contents of protocatechuic aldehyde and caffeic acid were in the range of 0.026-0.088 and 0.019-0.053 mg/g−1 respectively. HPLC fingerprint combined with multicomponent quantification and data analysis techniques can be an efficient and useful method for monitoring the quality of Pharbitidis Semen. This study also provides a practical strategy for overall quality evaluation and control of traditional Chinese medicines.
Collapse
Affiliation(s)
- Huiwei Bao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Huailei Yang
- Plant Chemistry Laboratory, Chinese Institute of Jilin Ginseng, Changchun, China
| | - Feng Wang
- College of Pharmacy and Food, Changchun Medical College, Changchun, China
| | - Kaixuan Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yanan Yang
- Pharmacy Department, Changchun Hospital of Traditional Chinese Medicine, Changchun, China
| | - Yang Xu
- College of Pharmacy, Baicheng Medical College, Baicheng, China
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lijing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Ren C, Wang J, Xian B, Tang X, Liu X, Hu X, Hu Z, Wu Y, Chen C, Wu Q, Chen J, Pei J. Transcriptome analysis of flavonoid biosynthesis in safflower flowers grown under different light intensities. PeerJ 2020; 8:e8671. [PMID: 32117646 PMCID: PMC7039124 DOI: 10.7717/peerj.8671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Safflower (Carthamus tinctorius L.) is a domesticated species with a long history of cultivation and widespread distribution across the globe, and light plays an important role in controlling its distribution boundary. Flowers from safflower have been widely used in traditional Chinese medicine because of their ability to improve cerebral blood flow. Flavonoids are the main active compounds in safflower and have many pharmacological effects. In this study, we aimed to explore the relationship between different light intensities and flavonoid biosynthesis in safflower flowers cultivated in greenhouse. Methods The transcriptome of safflower flowers grown under different light intensities were sequenced through BGISEQ-500 platform. After assembled and filtered, Unigenes were annotated by aligning with seven functional databases. Differential expression analysis of two samples was performed with the DEseq2 package. Differentially expressed genes (DEGs) related with flavonoids biosynthesis were analyzed by Real-time PCR (RT-PCR). Flavonoids accumulation in flowers were determined by high performance liquid chromatography and spectrophotometer. Results Transcriptome analysis of safflower flowers cultivated under different light intensities was performed. A total of 99.16 Gb data were obtained, and 78,179 Unigenes were annotated. Among the DEGs, 13 genes were related to flavonoid biosynthesis. The differential expressions of seven key genes were confirmed by RT-PCR. In addition, the levels of some flavonoids were measured in safflower flowers grown under different light intensities. CtHCT3 gene expression showed a significantly negative correlation with kaempferol content in safflower grown under different light intensities. Conclusion Our results strongly suggested that the reduction in light intensity in a suitable range promoted flavonoid biosynthesis in safflower flowers. We suggest that the expressions of HCT genes played an important role in flavonoid accumulation in safflower flowers. Our study lays a foundation for further research on the effects of light on flavonoid biosynthesis in safflower.
Collapse
Affiliation(s)
- Chaoxiang Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Jie Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Bin Xian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Xiaohui Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Xuyun Liu
- Industrial Crop Institute of Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Xueli Hu
- Industrial Crop Institute of Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Zunhong Hu
- Industrial Crop Institute of Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Yiyun Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Cuiping Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Qinghua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Jiang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Development and Utilization of Chinese Medicine Resources, State Key Laboratory Breeding Base of Systematic Research, Chengdu, China
| |
Collapse
|
15
|
Fan J, Qin X, Li Z. Molecular docking and multivariate analysis studies of active compounds in the safflower injection. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1665540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jianxin Fan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
16
|
Otify AM, El-Sayed AM, Michel CG, Farag MA. Metabolites profiling of date palm (Phoenix dactylifera L.) commercial by-products (pits and pollen) in relation to its antioxidant effect: a multiplex approach of MS and NMR metabolomics. Metabolomics 2019; 15:119. [PMID: 31456052 DOI: 10.1007/s11306-019-1581-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Phoenix dactylifera L. (date palm) is one of the most valued crops worldwide for its economical and nutraceutical applications of its date fruit (pericarp). Currently date pits, considered as a waste product, is employed as coffee substitute post roasting. Whereas, pollen represents another valuable by-product used as a dietary supplement. OBJECTIVES In this study, a large-scale comparative metabolomics approach was performed for the first characterization and standardization of date palm by-products viz., date pits and pollen. Moreover, roasting impact on date pit metabolite composition was also assessed. METHODS Metabolites profiling of pits and pollen was determined via a multiplex approach of UPLC-MS and NMR, coupled to multivariate analysis, in relation to its antioxidant activities. RESULTS Chemical analyses led to the identification of 67 metabolites viz., phenolic acids, flavonols, fatty acids, sphingolipids, steroids and saponins of which 10 are first time to be reported. The enrichment of steroids in date pollen accounts for its fertility promoting properties, whereas date pit was found a rich source for antioxidant polyphenols using metabolomics.
Collapse
Affiliation(s)
- Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aly M El-Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Camilia G Michel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
17
|
Limwachiranon J, Huang H, Li L, Duan Z, Luo Z. Recovery of lotus (Nelumbo nucifera Gaertn.) seedpod flavonoids using polar macroporous resins: The updated understanding on adsorption/desorption mechanisms and the involved intermolecular attractions and bonding. Food Chem 2019; 299:125108. [PMID: 31310914 DOI: 10.1016/j.foodchem.2019.125108] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022]
Abstract
Macroporous resins have been employed in the effective recovery of flavonoids from plants. In this study, S8 polar resins were used to recover flavonoids and procyanidins from lotus seedpods. Adsorption kinetics, isotherms, and thermodynamics studies revealed that the adsorption process involved physico-chemical interactions, including flavonoid-resin and flavonoid-flavonoid electrostatic interactions, π-π aromatic stacking, moderate and strong hydrogen bonding, and repulsive forces. These forces worked complementarily in adsorption, except for the repulsive force, which opposed the adsorption. Further, adsorption temperature determined the adsorption behavior, with multilayer adsorption enhancing adsorption capacity. In dynamic desorption tests, an acetone/water/acetic acid mixture (58.77: 39.34: 1.89) designed by the D-optimal design method was able to desorb 95.57% and 89.85% of total flavonoids and procyanidins, respectively, using less than two bed volumes of solvent. Ultra-performance liquid chromatography triple-time of flight/mass spectrometry (UPLC-TOF/MS) analysis showed that 26 flavonoids, including 5 procyanidins, were detected after the recovery.
Collapse
Affiliation(s)
- Jarukitt Limwachiranon
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agricultural and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China.
| | - Hao Huang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agricultural and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China.
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agricultural and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China.
| | - Zhenhua Duan
- Institute of Food Science and Engineering, Hezhou University, Hezhou, People's Republic of China.
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agricultural and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China.
| |
Collapse
|
18
|
Farag MA, Shakour ZTA. Metabolomics driven analysis of 11 Portulaca leaf taxa as analysed via UPLC-ESI-MS/MS and chemometrics. PHYTOCHEMISTRY 2019; 161:117-129. [PMID: 30825706 DOI: 10.1016/j.phytochem.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 05/23/2023]
Abstract
Portulaca oleracea, commonly known as purslane, is a popular plant of considerable value for its nutritive composition as well as traditional medicinal uses. P. oleracea is reported to possess neuroprotective, antimicrobial, antidiabetic, antioxidant, anti-inflammatory, antiulcerogenic, and anticancer activities. Three taxa of P. oleracea L. (P. oleracea, P. rausii and P. granulatostellulata) are grown as mixed populations in several locations in Egypt. The close morphological similarities among these taxa warrants development of methods for their correct identification or classification. We aimed in this study to assess metabolome differences among three P. oleracea taxa via ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) in the context of their genetic diversity and/or geographical origin. A total of 85 metabolites were identified including 6 amino acids, 22 phenolic compounds, 16 alkaloids, and 11 fatty acids characterized based on their MSn and UV spectra. Methoxylated flavone glycosides, O-flavonoids, C-flavonoids and four previously undescribed cyclodopa alkaloids are reported in P. oleracea for the first time. Multivariate data analyses were used for samples classification and revealing that cyclodopa alkaloids (oleracein A, C, K and N) contributed the most for accessions classification. To the best of our knowledge, this study presents the first metabolite profile of Portulaca and its compositional differences that provide chemical based evidence for its nutritive and/or health benefits.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo, 11835, Egypt.
| | - Zeinab T Abdel Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
19
|
Quantification of major phenolic and flavonoid markers in forage crop Lolium multiflorum using HPLC-DAD. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Wang H, Jiang Y, Ding M, Li J, Hao J, He J, Wang H, Gao XM, Chang YX. Simultaneous determination and qualitative analysis of six types of components in Naoxintong capsule by miniaturized matrix solid-phase dispersion extraction coupled with ultra high-performance liquid chromatography with photodiode array detection and quadrupole time-of-flight mass spectrometry. J Sep Sci 2018; 41:2064-2084. [PMID: 29396922 DOI: 10.1002/jssc.201701411] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 01/31/2023]
Abstract
A simple and effective sample preparation process based on miniaturized matrix solid-phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5-dicaffeoylqunic acid, 1,5-dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol-3-O-rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5-hydroxymethylfurfural) in Naoxintong capsule by ultra high-performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products.
Collapse
Affiliation(s)
- Huilin Wang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Jiang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingya Ding
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Hao
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Wang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Xu Chang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Chemical profiling and quantification of XueBiJing injection, a systematic quality control strategy using UHPLC-Q Exactive hybrid quadrupole-orbitrap high-resolution mass spectrometry. Sci Rep 2017; 7:16921. [PMID: 29208914 PMCID: PMC5717239 DOI: 10.1038/s41598-017-17170-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
To clarify and quantify the chemical profiling of XueBiJing injection (XBJ) rapidly, a feasible and accurate strategy was developed by applying ultra high performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high resolution accurate mass spectrometry (UHPLC-Q-Orbitrap HRMS). A total of 162 components were characterized, including 19 phenanthrenequinones, 33 lactones, 28 flavonoids and 12 phenolic acids and 51 other compounds. Among them, 38 major compounds were unambiguously quantified by comparing with reference standards. Meanwhile, 38 representative compounds were simultaneously detected in XBJ samples by Q-Orbitrap HRMS. Satisfactory linearity and correlation coefficient were achieved with wide linear range. The precisions, repeatability, stability and recovery were meeting requirements. The validated method was successfully applied for simultaneous determination of 38 bioactive compounds in 10 batches XBJ samples. In addition, the similarity evaluation of fingerprintings was applied to assess the quality of XBJ. And the results were evaluated by multiple statistical strategies and five compounds might be the most important chemical markers for chemical quality control of XBJ. Finally, a rapid and simple UPLC-MS/MS method was developed for determination of five markers in XBJ sample. This research established a high sensitive and efficient strategy for integrating quality control, including identification and quantification of XBJ.
Collapse
|
22
|
An enhanced targeted identification strategy for the selective identification of flavonoid O-glycosides from Carthamus tinctorius by integrating offline two-dimensional liquid chromatography/linear ion-trap-Orbitrap mass spectrometry, high-resolution diagnostic product ions/neutral loss filtering and liquid chromatography-solid phase extraction-nuclear magnetic resonance. J Chromatogr A 2017; 1491:87-97. [PMID: 28256254 DOI: 10.1016/j.chroma.2017.02.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/23/2017] [Accepted: 02/19/2017] [Indexed: 11/21/2022]
Abstract
Targeted identification of potentially bioactive molecules from herbal medicines is often stymied by the insufficient chromatographic separation, ubiquitous matrix interference, and pervasive isomerism. An enhanced targeted identification strategy is presented and validated by the selective identification of flavonoid O-glycosides (FOGs) from Carthamus tinctorius. It consists of four steps: (i) enhanced separation and detection by offline two-dimensional liquid chromatography/LTQ-Orbitrap MS (offline 2D-LC/LTQ-Orbitrap MS) using collision-induced dissociation (CID) and high-energy C-trap dissociation (HCD); (ii) improved identification of the major aglycones by acid hydrolysis and LC-SPE-NMR; (iii) simplified spectral elucidation by high-resolution diagnostic product ions/neutral loss filtering; and (iv) more convincing structural identification by matching an in-house library. An offline 2D-LC system configuring an Acchrom XAmide column and a BEH Shield RP-18 UPLC® column enabled much better separation of the easily co-eluting components. Combined use of CID and HCD could produce complementary fragmentation information. The intensity ratios of the aglycone ion species ([Y0-H]-/Y0- and [Y0-2H]-/Y0-) in the HCD-MS2 spectra were found diagnostic for discriminating the aglycone subtypes and characterizing the glycosylation patterns. Five aglycone structures (kaempferol, 6-hydroxykaempferol, 6-methoxykaempferol, carthamidin, and isocarthamidin) were identified based on the 1H-NMR data recorded by LC-SPE-NMR. Of the 107 characterized flavonoids, 80 FOGs were first reported from C. tinctorius. Unknown aglycones, pentose, and novel acyl substituents were discovered. A new compound thereof was isolated and fully identified, which could partially validate the MS-oriented identification. This integral strategy can improve the potency, efficiency, and accuracy in the detection of new compounds from medicinal herbs and other natural sources.
Collapse
|
23
|
Zhang QQ, Dong X, Liu XG, Gao W, Li P, Yang H. Rapid separation and identification of multiple constituents in Danhong Injection by ultra-high performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Chin J Nat Med 2016; 14:147-160. [PMID: 26968681 DOI: 10.1016/s1875-5364(16)60008-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/31/2022]
Abstract
To characterize and identify multiple constituents in Danhong injection (DHI), a fast ultra-high performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-QTOF/MS) method was established and validated in the present study. A total of 63 compounds, including 33 phenolic acids, 2 C-glycosyl quinochalcones, 6 flavonoid O-glycosides, 4 iridoid glycosides, 6 organic acids, 5 amino acids, and 3 nucleosides, were identified or tentatively characterized. In conclusion, the UHPLC-ESI-QTOF/MS method is useful and efficient for in-depth structural elucidation of chemical compounds in complex matrices of herbal medicines such as DHI.
Collapse
Affiliation(s)
- Qun-Qun Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Guang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Ablat N, Lv D, Ren R, Xiaokaiti Y, Ma X, Zhao X, Sun Y, Lei H, Xu J, Ma Y, Qi X, Ye M, Xu F, Han H, Pu X. Neuroprotective Effects of a Standardized Flavonoid Extract from Safflower against a Rotenone-Induced Rat Model of Parkinson's Disease. Molecules 2016; 21:molecules21091107. [PMID: 27563865 PMCID: PMC6274364 DOI: 10.3390/molecules21091107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/16/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a major age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra par compacta (SNpc). Rotenone is a neurotoxin that is routinely used to model PD to aid in understanding the mechanisms of neuronal death. Safflower (Carthamus tinctorius. L.) has long been used to treat cerebrovascular diseases in China. This plant contains flavonoids, which have been reported to be effective in models of neurodegenerative disease. We previously reported that kaempferol derivatives from safflower could bind DJ-1, a protein associated with PD, and that a flavonoid extract from safflower exhibited neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and found to primarily contain flavonoids. The aim of the current study was to confirm the neuroprotective effects of SAFE in rotenone-induced Parkinson rats. The results showed that SAFE treatment increased body weight and improved rearing behavior and grip strength. SAFE (35 or 70 mg/kg/day) treatment reversed the decreased protein expression of tyrosine hydroxylase, dopamine transporter and DJ-1 and increased the levels of dopamine and its metabolite. In contrast, acetylcholine levels were decreased. SAFE treatment also led to partial inhibition of PD-associated changes in extracellular space diffusion parameters. These changes were detected using a magnetic resonance imaging (MRI) tracer-based method, which provides novel information regarding neuronal loss and astrocyte activation. Thus, our results indicate that SAFE represents a potential therapeutic herbal treatment for PD.
Collapse
Affiliation(s)
- Nuramatjan Ablat
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Deyong Lv
- Department of Radiology, Peking University Third Hospital, Beijing100191, China.
- Department of Radiology, Dongying People's Hospital of Shandong, Dongying 257091, China.
| | - Rutong Ren
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Yilixiati Xiaokaiti
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
- Department of Molecular and Cellular Pharmacology, School of Basic Medical Sciences, Peking University, Beijing100191, China.
| | - Xiang Ma
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Xin Zhao
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Yi Sun
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Hui Lei
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Jiamin Xu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Yingcong Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Xianrong Qi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Feng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing100191, China.
- Beijing Key Lab of MRI Device and Technique, Peking University Third Hospital, Beijing 100191, China.
| | - Xiaoping Pu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
25
|
Yu S, Zhu L, Xiao Z, Shen J, Li J, Lai H, Li J, Chen H, Zhao Z, Yi T. Rapid Fingerprint Analysis of Flos Carthami by Ultra-Performance Liquid Chromatography and Similarity Evaluation. J Chromatogr Sci 2016; 54:1619-1624. [DOI: 10.1093/chromsci/bmw115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2016] [Indexed: 11/12/2022]
|
26
|
Alberti Á, Riethmüller E, Béni S, Kéry Á. Evaluation of Radical Scavenging Activity of Sempervivum tectorum and Corylus avellana Extracts with Different Phenolic Composition. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sempervivum tectorum L. and Corylus avellana L. are traditional herbal remedies exhibiting antioxidant activity and representing diverse phenolic composition. The aim of this study was to reveal the contribution of certain compounds to total radical scavenging activity by studying S. tectorum and C. avellana extracts prepared with solvents of different selectivity for diverse classes of phenolics. Antioxidant activity of S. tectorum and C. avellana samples was determined in the ABTS and DPPH radical scavenging assays, and phenolic composition was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Correlations between antioxidant activity and phenolic content of houseleek extracts have been revealed. Significant differences regarding antioxidant activity have been shown between S. tectorum 80% (v/v) methanol extract and its fractions. Additionally, synergism among the constituents present together in the whole extract was assumed. Significantly higher radical scavenging activity of hazel extracts has been attributed to the differences in phenolic composition compared with houseleek extracts.
Collapse
Affiliation(s)
- Ágnes Alberti
- Department of Pharmacognosy, Semmelweis University, 26. Üllõi Str., Budapest H-1085, Hungary
| | - Eszter Riethmüller
- Department of Pharmacognosy, Semmelweis University, 26. Üllõi Str., Budapest H-1085, Hungary
- Compound Profiling Laboratory, Gedeon Richter Plc., 30–32. Gyömrõi Str., Budapest H-1103, Hungary
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, 26. Üllõi Str., Budapest H-1085, Hungary
| | - Ágnes Kéry
- Department of Pharmacognosy, Semmelweis University, 26. Üllõi Str., Budapest H-1085, Hungary
| |
Collapse
|
27
|
Yang W, Si W, Zhang J, Yang M, Pan H, Wu J, Qiu S, Yao C, Hou J, Wu W, Guo D. Selective and comprehensive characterization of the quinochalcone C-glycoside homologs in Carthamus tinctorius L. by offline comprehensive two-dimensional liquid chromatography/LTQ-Orbitrap MS coupled with versatile data mining strategies. RSC Adv 2016. [DOI: 10.1039/c5ra23744k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
An offline 2D LC/LTQ-Orbitrap MS approach and versatile data mining techniques were developed to characterize new QCGs from C. tinctorius.
Collapse
|
28
|
Zhang L, Jiang Z, Yang J, Li Y, Wang Y, Chai X. Chemical material basis study of Xuefu Zhuyu decoction by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Food Drug Anal 2015; 23:811-820. [PMID: 28911499 PMCID: PMC9345449 DOI: 10.1016/j.jfda.2015.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/13/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022] Open
Abstract
Xuefu Zhuyu decoction, a classic prescription in traditional Chinese medicine, has been widely used in the clinical treatment of cardiovascular and cerebrovascular diseases. In order to profile the chemical material basis of this formula, an ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q/TOF MS) method has been established for rapid separation and structural characterization of compounds in the decoction. As a result, 103 compounds including phenolic acids, spermidines, C-glycosyl quinochalcones, terpenoids, flavonoids, saponins, and others were detected; 35 of them were unambiguously identified, and 68 were tentatively characterized by comparing the retention time, MS data, characteristic MS fragmentation pattern and retrieving the literature. In conclusion, the UPLC coupled with quadrupole time-of-flight mass spectrometry method developed in this work is an efficient approach to perform chemical material basis studies of traditional Chinese medicine formulae.
Collapse
|
29
|
Si W, Yang W, Guo D, Wu J, Zhang J, Qiu S, Yao C, Cui Y, Wu W. Selective ion monitoring of quinochalcone C-glycoside markers for the simultaneous identification of Carthamus tinctorius L. in eleven Chinese patent medicines by UHPLC/QTOF MS. J Pharm Biomed Anal 2015; 117:510-21. [PMID: 26476296 DOI: 10.1016/j.jpba.2015.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
Current China Pharmacopoeia standards for the Chinese patent medicines (CPMs) that contain one or several the same drug(s) employ case-dependent TLC or HPLC approaches to achieve qualitative identification. A qualitative "monomethod-heterotrait matrix" (MHM) strategy is thus proposed, by selective monitoring of multi-biomarkers, to achieve the identification of different CPMs. Carthamus tinctorius L. (safflower) is a reputable gynecological herbal medicine containing characteristic quinochalcone C-glycosides (QCGs) as the major bioactive components. Qualitative identification of safflower in diverse CPMs by selective monitoring of QCG markers was performed by use of the MHM strategy. Initially, 27 QCG analogs (involving 16 potentially new ones) were selectively characterized by product ion filtering (m/z 119.05) and integrated analysis of the negative mode MS(E) and Fast DDA data obtained on a UHPLC/QTOF mass spectrometer. Subsequently, by fingerprint analysis of 20 batches of safflower samples followed by a thermostable test, six QCGs (hydroxysafflor yellow A and its two isomers, anhydrosafflor yellow B, safflomin C, and isosafflomin C) were selected as the biomarkers for safflower. Then, a highly specific selective ion monitoring (SIM) method by recording centroided data was developed and applied to selectively profile six QCG biomarkers from 28 batches of CPM samples collected from versatile vendors. By reference to a standard SIM spectrum established using a home-made safflower reference extract, simultaneous identification of safflower in eleven different CPMs was accomplished with the unified sample preparation and a single UHPLC/QTOF-SIM method. The qualitative MHM strategy represents the novel methodology that facilitates the quality control of CPMs more efficiently.
Collapse
Affiliation(s)
- Wei Si
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China
| | - Wenzhi Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Jia Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Jingxian Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Shi Qiu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China
| | - Yajun Cui
- Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China.
| |
Collapse
|
30
|
Mirzajani F, Bernard F, Zeinali SM, Goodarzi R. Identification of hydroxy-safflor yellow A, safflor yellow B, and precarthaminin safflower using LC/ESI–MSMS. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2015. [DOI: 10.1007/s11694-015-9240-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Yao S, Zhang J, Wang D, Hou J, Yang W, Da J, Cai L, Yang M, Jiang B, Liu X, Guo DA, Wu W. Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines by fingerprint and chemometric analysis. PLoS One 2015; 10:e0121366. [PMID: 25768096 PMCID: PMC4359105 DOI: 10.1371/journal.pone.0121366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/31/2015] [Indexed: 11/19/2022] Open
Abstract
Chinese patent medicines (CPM), generally prepared from several traditional Chinese medicines (TCMs) in accordance with specific process, are the typical delivery form of TCMs in Asia. To date, quality control of CPMs has typically focused on the evaluation of the final products using fingerprint technique and multi-components quantification, but rarely on monitoring the whole preparation process, which was considered to be more important to ensure the quality of CPMs. In this study, a novel and effective strategy labeling "retracing" way based on HPLC fingerprint and chemometric analysis was proposed with Shenkang injection (SKI) serving as an example to achieve the quality control of the whole preparation process. The chemical fingerprints were established initially and then analyzed by similarity, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to evaluate the quality and to explore discriminatory components. As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy. Through analysis of the targets variation in the corresponding semi-products (ninety-three batches), intermediates (thirty-three batches), and the raw materials, successively, the origins of the discriminatory components were determined and some crucial influencing factors were proposed including the raw materials, the coextraction temperature, the sterilizing conditions, and so on. Meanwhile, a reference fingerprint was established and subsequently applied to the guidance of manufacturing. It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products. It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.
Collapse
Affiliation(s)
- Shuai Yao
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jingxian Zhang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Dandan Wang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jinjun Hou
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Wenzhi Yang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Juan Da
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Luying Cai
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Min Yang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Baohong Jiang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xuan Liu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - De-an Guo
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Wanying Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- * E-mail:
| |
Collapse
|
32
|
Abstract
Gas chromatography-mass spectrometry (GC-MS) has been widely used in metabonomics analyses of biofluid samples. Biofluids provide a wealth of information about the metabolism of the whole body and from multiple regions of the body that can be used to study general health status and organ function. Blood serum and blood plasma, for example, can provide a comprehensive picture of the whole body, while urine can be used to monitor the function of the kidneys, and cerebrospinal fluid (CSF) will provide information about the status of the brain and central nervous system (CNS). Different methods have been developed for the extraction of metabolites from biofluids, these ranging from solvent extracts, acids, heat denaturation, and filtration. These methods vary widely in terms of efficiency of protein removal and in the number of metabolites extracted. Consequently, for all biofluid-based metabonomics studies, it is vital to optimize and standardize all steps of sample preparation, including initial extraction of metabolites. In this chapter, recommendations are made of the optimum experimental conditions for biofluid samples for GC-MS, with a particular focus on blood serum and plasma samples.
Collapse
|
33
|
Abrankó L, Szilvássy B. Mass spectrometric profiling of flavonoid glycoconjugates possessing isomeric aglycones. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:71-80. [PMID: 25601677 DOI: 10.1002/jms.3474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 05/17/2023]
Abstract
In fields such as food and nutrition science or plant physiology, interest in untargeted profiling of flavonoids continues to expand. The group of flavonoids encompasses several thousands of chemically distinguishable compounds, among which are a number of isobaric compounds with the same elemental composition. Thus, the mass spectrometric identification of these compounds is challenging, especially when reference standards are not available to support their identification. Many different types of isomers of flavonoid glycoconjugates are known, i.e. compounds that differ in their glycosylation position, glycan sequence or type of interglycosidic linkage. This work focuses on the mass spectrometric identification of flavonoid glycoconjugate isomers possessing the same glycan mass and differing only in their aglycone core. A non-targeted HPLC-ESI-MS/MS profiling method using a triple quadrupole MS is presented herein, which utilizes in-source fragmentation and a pseudo-MS(3) approach for the selective analysis of flavonoid glycoconjugates with isomeric/isobaric aglycones. A selective MRM-based identification of the in-source formed isobaric aglycone fragments was established. Additionally, utilizing the precursor scanning capability of the employed triple quadrupole instrument, the developed method enabled the determination of the molecular weight of the studied intact flavonoid glycoconjugate. The versatility of the method was proven with various types of flavonoid aglycones, i.e. anthocyanins, flavonols, flavones, flavanones and isoflavones, along with their representative glycoconjugates. The developed method was also successfully applied to a commercially available sour cherry sample, in which 16 different glycoconjugates of pelargonidin, genistein, cyanidin, kaempferol and quercetin could be tentatively identified, including a number of compounds containing isomeric/isobaric aglycones.
Collapse
Affiliation(s)
- László Abrankó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok krt., Budapest, 1117, Hungary; Department of Applied Chemistry, Faculty of Food Science, Corvinus University of Budapest, 29-33 Villányi, Budapest, 1118, Hungary
| | | |
Collapse
|
34
|
Emwas AHM, Al-Talla ZA, Kharbatia NM. Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry. Methods Mol Biol 2015; 1277:75-90. [PMID: 25677148 DOI: 10.1007/978-1-4939-2377-9_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To maximize the utility of gas chromatography-mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography-mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Room 0149, 23955-6900, Thuwal, Kingdom of Saudi Arabia,
| | | | | |
Collapse
|
35
|
Protective effect of Pelargonium graveolens against carbon tetrachloride-induced hepatotoxicity in mice and characterization of its bioactive constituents by HPLC–PDA–ESI–MS/MS analysis. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1218-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Yan Z, Lin G, Ye Y, Wang Y, Yan R. A generic multiple reaction monitoring based approach for plant flavonoids profiling using a triple quadrupole linear ion trap mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:955-965. [PMID: 24692044 DOI: 10.1007/s13361-014-0863-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix (Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.
Collapse
Affiliation(s)
- Zhixiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | | | | | | | | |
Collapse
|
37
|
Madej A, Popłoński J, Huszcza E. Improved oxidation of naringenin to carthamidin and isocarthamidin by Rhodotorula marina. Appl Biochem Biotechnol 2014; 173:67-73. [PMID: 24615525 PMCID: PMC4007024 DOI: 10.1007/s12010-014-0787-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 02/10/2014] [Indexed: 01/08/2023]
Abstract
A novel single-step microbial transformation process for the efficient production of carthamidin and isocarthamidin from naringenin by yeast Rhodotorula marina in an aerated bioreactor was described. The biotransformation led to the total product concentration of 233 mg/l. The highest conversion efficiency observed for carthamidin was 0.31 mg/mg of naringenin and for isocarthamidin 0.47 mg/mg of naringenin.
Collapse
Affiliation(s)
- Anna Madej
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | | | | |
Collapse
|
38
|
Lorantfy B, Renkecz T, Koch C, Horvai G, Lendl B, Herwig C. Identification of lipophilic bioproduct portfolio from bioreactor samples of extreme halophilic archaea with HPLC-MS/MS. Anal Bioanal Chem 2014; 406:2421-32. [PMID: 24510212 DOI: 10.1007/s00216-014-7626-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Extreme halophilic archaea are a yet unexploited source of natural carotenoids. At elevated salinities, however, material corrosivity issues occur and the performance of analytical methods is strongly affected. The goal of this study was to develop a method for identification and downstream processing of potentially valuable bioproducts produced by archaea. To circumvent extreme salinities during analysis, a direct sample preparation method was established to selectively extract both the polar and the nonpolar lipid contents of extreme halophiles with hexane, acetone and the mixture of MeOH/MTBE/water, respectively. Halogenated solvents, as used in conventional extraction methods, were omitted because of environmental considerations and potential process scale-up. The HPLC-MS/MS method using atmospheric pressure chemical ionization was developed and tuned with three commercially available C40 carotenoid standards, covering the wide polarity range of natural carotenoids, containing different number of OH-groups. The chromatographic separation was achieved on a C30 RP-HPLC column with a MeOH/MTBE/water gradient. Polar lipids, the geometric isomers of the C50 carotenoid bacterioruberin, and vitamin MK-8 were the most valuable products found in bioreactor samples. In contrast to literature on shake flask cultivations, no anhydrous analogues of bacterioruberin, as by-products of the carotenoid biosynthesis, were detected in bioreactor samples. This study demonstrates the importance of sample preparation and the applicability of HPLC-MS/MS methods on real samples from extreme halophilic strains. Furthermore, from a biotechnological point-of-view, this study would like to reveal the relevance of using controlled and defined bioreactor cultivations instead of shake flask cultures in the early stage of potential bioproduct profiling.
Collapse
Affiliation(s)
- Bettina Lorantfy
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1A 166/4, 1060, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Chen JF, Song YL, Guo XY, Tu PF, Jiang Y. Characterization of the herb-derived components in rats following oral administration of Carthamus tinctorius extract by extracting diagnostic fragment ions (DFIs) in the MSn chromatograms. Analyst 2014; 139:6474-85. [DOI: 10.1039/c4an01707b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An E(DFI)MSnCs-based strategy was proposed to rapidly detect and identify the in vivo components derived from the extract of Carthamus tinctorius using LC-IT-TOF-MSn.
Collapse
Affiliation(s)
- Jin-Feng Chen
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029, China
| | - Xiao-Yu Guo
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
- Modern Research Center for Traditional Chinese Medicine
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191, China
| |
Collapse
|
40
|
Oliveira AL, Destandau E, Fougère L, Lafosse M. Isolation by pressurised fluid extraction (PFE) and identification using CPC and HPLC/ESI/MS of phenolic compounds from Brazilian cherry seeds (Eugenia uniflora L.). Food Chem 2013; 145:522-9. [PMID: 24128509 DOI: 10.1016/j.foodchem.2013.08.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/06/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
Brazilian cherry seeds are a waste product from juice and frozen pulp production and, the seeds composition was investigated to valorize this by-product. Compounds separation was performed with ethanol by pressurised fluid extraction (PFE). Here we determine the effect of temperature (T), static time (ST), number of cycles (C), and flush volume (VF) on the yield, composition and total phenolic content (TPC) of the seed extracts. T, ST and their interaction positively influenced yield and TPC. Extracts were fractionated by high performance liquid chromatography (HPLC) and centrifugal partition chromatography (CPC). The collected fractions characterizations were made by electrospray ionisation mass spectrometry (ESI/MS) and high resolution mass spectrometry (HRMS) indicated the presence of ellagic acid pentoside and deoxyhexose, quercitrin and kaempferol pentoside. All of these compounds have antioxidant properties and normally are found in plant extracts. These results confirm that Brazilian cherry seed extract is a potentially valuable source of antioxidants.
Collapse
Affiliation(s)
- Alessandra L Oliveira
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635 900 Pirassununga, SP, Brazil.
| | | | | | | |
Collapse
|
41
|
Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin J Integr Med 2013; 19:153-9. [PMID: 23371463 DOI: 10.1007/s11655-013-1354-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Indexed: 01/11/2023]
Abstract
Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed, which is used as edible oil. For a long time C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum hemorrhage and osteoporosis. C. tinctorius has recently been shown to have antioxidant, analgesic, anti-inflammatory and antidiabetic activities. Carthamin, safflower yellow are the main constituents in the flower of C. tinctorius. Carthamidin, isocarthamidin, hydroxysafflor yellow A, safflor yellow A, safflamin C and luteolin are the main constituents which are reported from this plant. Caryophyllene, p-allyltoluene, 1-acetoxytetralin and heneicosane were identified as the major components for C. tinctorius flowers essential oil. Due to the easy collection of the plant and being widespread and also remarkable biological activities, this plant has become both food and medicine in many parts of the world. This review presents comprehensive analyzed information on the botanical, chemical and pharmacological aspects of C. tinctorius.
Collapse
|
42
|
Phenolic composition and antioxidant capacity of cultivated artichoke, Madeira cardoon and artichoke‐based dietary supplements. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.05.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Structural characterization and identification of major constituents in Jitai tablets by high-performance liquid chromatography/diode-array detection coupled with electrospray ionization tandem mass spectrometry. Molecules 2012; 17:10470-93. [PMID: 22945027 PMCID: PMC6268525 DOI: 10.3390/molecules170910470] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 11/17/2022] Open
Abstract
In the present study a universally applicable HPLC-DAD/ESI-MS/MS method was developed for carrying out the comprehensive characterization of Jitai tablets (JTT). Based on the ESI-MS(n) fragmentation patterns of the reference standards, a total of 101 components were identified or tentatively characterized by comparing their retention times, UV and MS spectra with those of reference standards or through the matching of empirical information with those of published components in the in-house library. The characteristic fragmentation pattern of alkaloids, phenolic acids, tanshinones, flavonoid glycosides, cyanogenic glycosides, ginsenosides, 2-(2-phenylethyl) chromones, phthalides and gingerol-related compounds were tentatively elucidated using structurally-relevant product ions. It was observed that neutral losses of C(9)H(10)O(3) and C(9)H(8)O(2) were the characteristic product ions of scopola alkaloids. Neutral fragment mandelonitrile was the characteristic ion of cyanogenic glycosides. To our knowledge, tropylium ion and C(4)H(2)O unit were the characteristic ions of 2-(2-phenylethyl) chromone, which resulted from the Retro-Diels-Alder (RDA) cleavage of the C ring. The results indicated that the developed analysis method could be employed as a rapid, effective technique for structural characterization of chemical constituents in TCM. This work is expected to provide comprehensive information for the quality evaluation and pharmacokinetic studies of JTT.
Collapse
|
44
|
Alberti Á, Béni S, Lackó E, Riba P, Al-Khrasani M, Kéry Á. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice. J Pharm Biomed Anal 2012; 70:143-50. [PMID: 22785376 DOI: 10.1016/j.jpba.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 11/29/2022]
Abstract
Sempervivum tectorum L. (houseleek) leaf juice has been known as a traditional herbal remedy. The aim of the present study was the chemical characterization of its phenolic compounds and to develop quantitation methods for its main flavonol glycoside, as well as to evaluate its antinociceptive activity. Lyophilized houseleek leaf juice was studied by HPLC-DAD coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to identify flavonol glycosides, hydroxy-benzoic and hydroxy-cinnamic acids. Ten flavonol glycosides and sixteen phenolic acid compounds were identified or tentatively characterized. Structure of the main flavonol compound was identified by nuclear magnetic resonance spectroscopy. Three characteristic kaempferol glycosides were isolated and determined by LC-ESI-MS/MS with external calibration method, using the isolated compounds as standard. The main flavonol glycoside was also determined by HPLC-DAD. Validated HPLC-DAD and LC-ESI-MS/MS methods were developed to quantify kaempferol-3-O-rhamnosyl-glucoside-7-O-rhamnoside and two other kaempferol glycosides. Antinociceptive activity of houseleek leaf juice was investigated by writhing test of mice. Sempervivum extract significantly reduced pain in the mouse writhing test.
Collapse
Affiliation(s)
- Ágnes Alberti
- Semmelweis University, Department of Pharmacognosy, Ülloi u. 26., H1085 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
45
|
Zhang S, Zheng L, Xu L, Sun H, Li H, Yao J, Liu K, Peng J. Subchronic toxicity study of the total flavonoids from Rosa laevigata Michx fruit in rats. Regul Toxicol Pharmacol 2012; 62:221-30. [DOI: 10.1016/j.yrtph.2011.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 11/28/2022]
|
46
|
Xu J, Yang L, Zhao SJ, Wang ZT, Hu ZB. An efficient way from naringenin to carthamidine and isocarthamidine by Aspergillus niger. World J Microbiol Biotechnol 2011; 28:1803-6. [DOI: 10.1007/s11274-011-0934-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/27/2011] [Indexed: 11/30/2022]
|
47
|
Ruksiriwanich W, Manosroi J, Abe M, Manosroi W, Manosroi A. 5α-Reductase type 1 inhibition of Oryza sativa bran extract prepared by supercritical carbon dioxide fluid. J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2011.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Cheng TC, Lu JF, Wang JS, Lin LJ, Kuo HI, Chen BH. Antiproliferation effect and apoptosis mechanism of prostate cancer cell PC-3 by flavonoids and saponins prepared from Gynostemma pentaphyllum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11319-11329. [PMID: 21905716 DOI: 10.1021/jf2018758] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The objectives of this study were to investigate the antiproliferation and apoptosis mechanism of saponin and flavonoid fractions from Gynostemma pentaphyllum (Thunb.) Makino on prostate cancer cell PC-3. Both flavonoid and saponin fractions were isolated by a column chromatographic method with Cosmosil 75C(18)-OPN as adsorbent and elution solvents of ethanol-water (30:70, v/v) for the former and 100% ethanol for the latter, followed by high-performance liquid chromatography-tandem mass spectrometry analysis. On the basis of the MTT assay, the saponin and flavonoid fraction were comparably effective in inhibiting the growth of PC-3 cells, with the IC(50) being 39.3 and 33.3 μg/mL, respectively. Additionally, both fractions induced an arrest of PC-3 cell cycle at both S and G2/M phases, with both early and late apoptotic cell populations showing a dose-dependent rise. The Western blot assay indicated that the incorporation of flavonoid or saponin fraction could modulate the expression of G2 and M checkpoint regulators, cyclins A and B, and the antiapoptotic proteins Bcl-2 and Bcl-xl and pro-apoptotic proteins Bad and Bax. The expression of the caspase-3 and its activated downstream substrate effectors, DFF45 and poly (ADP-ribose) polymerase-1 (PARP-1), was also increased and followed a dose-dependent manner. All of these findings suggest that the apoptosis of PC-3 cells may proceed through the intrinsic mitochondria pathway.
Collapse
Affiliation(s)
- Tse-Chou Cheng
- Department of Urology, Chi Mei Medical Center, Tainan 710, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Gouveia S, Castilho PC. Antioxidant potential of Artemisia argentea L'Hér alcoholic extract and its relation with the phenolic composition. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.04.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Tsai YC, Lin CL, Chen BH. Preparative chromatography of flavonoids and saponins in Gynostemma pentaphyllum and their antiproliferation effect on hepatoma cell. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 18:2-10. [PMID: 21036575 DOI: 10.1016/j.phymed.2010.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 08/16/2010] [Accepted: 09/17/2010] [Indexed: 05/04/2023]
Abstract
A preparative column chromatographic method was developed to isolate flavonoids and saponins from Gynostemma pentaphyllum, a Chinese Medicinal herb, and evaluate their antiproliferation effect on hepatoma cell Hep3B, with the standards rutin and ginsenoside Rb(3) being used for comparison. Initially the powdered G. pentaphyllum was extracted with ethanol, followed by eluting flavonoids and saponins with ethanol-water (30:70, v/v) and 100% ethanol, respectively, in an open-column containing 5 g of Cosmosil 75C(18)-OPN, and then subjected to HPLC-MS analysis. The flavonoid fraction was mainly composed of quercetin- and kaempferol-glycosides, while in saponin fraction, both ginsenoside Rb(3) and ginsenoside Rd dominated. Both fractions were more effective against Hep3B cells than the standards rutin and ginsenoside Rb(3), with the cell cycle being arrested at G0/G1 phase for all the treatments. Additionally, the inhibition effect followed a dose-dependent increase for all the sample treatments. The result of this study may be used as a basis for possible phytopreparations in the future with G. pentaphyllum as raw material.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/analysis
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Flavonoids/analysis
- Flavonoids/pharmacology
- Flavonoids/therapeutic use
- Gynostemma/chemistry
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Phytotherapy
- Plant Leaves
- Reference Values
- Saponins/analysis
- Saponins/pharmacology
- Saponins/therapeutic use
Collapse
Affiliation(s)
- Y C Tsai
- Department of Food Science, Fu Jen University, Taipei, Taiwan
| | | | | |
Collapse
|