1
|
Magnani RF, Volpe HXL, Luvizotto RAG, Mulinari TA, Agostini TT, Bastos JK, Ribeiro VP, Carmo-Sousa M, Wulff NA, Peña L, Leal WS. α-Copaene is a potent repellent against the Asian Citrus Psyllid Diaphorina citri. Sci Rep 2025; 15:3564. [PMID: 39875401 PMCID: PMC11775201 DOI: 10.1038/s41598-025-86369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
The Asian Citrus Psyllid (ACP), Diaphorina citri, severely threatens citrus production worldwide by transmitting the greening (= Huanglongbing)-causing bacterium Candidatus Liberibacter asiaticus. There is growing evidence that the push-pull strategy is suitable to partially mitigate HLB by repelling ACP with transgenic plants engineered to produce repellents and attracting the vector to plants with a minimal disease transmission rate. Species that pull ACP away from commercial citrus plants have been identified, and transgenic plants that repel ACP have been developed. The concept of a repellent-producing plant was first demonstrated with an Arabidopsis line engineered to overexpress a gene controlling the synthesis of β-caryophyllene and other sesquiterpenes. We have analyzed the volatile organic compounds released by this Arabidopsis line and identified α-humulene, α-copaene, and trace amounts of β-elemene, in addition to β-caryophyllene. Behavioral measurements demonstrated that α-copaene repels ACP at doses ca. 100× lower than those needed for β-caryophyllene repellence. In contrast, α-humulene is innocuous at the level emitted by the transgenic plant. We confirmed that a mixture of the three sesquiterpenes in the ratio 1:100:10 repels ACP. Likewise, a commercial sample of copaiba oil containing the three sesquiterpenes, in a proportion similar to that in the transgenic plant, repelled ACP.
Collapse
Affiliation(s)
- Rodrigo Facchini Magnani
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | | | | | - Tatiana Aparecida Mulinari
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | - Thiago Trevisoli Agostini
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Michele Carmo-Sousa
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | - Nelson Arno Wulff
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | - Leandro Peña
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones, Valencia, Spain
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Pedrinha VF, Santos LM, Gonçalves CP, Garcia MT, Lameira OA, Queiroga CL, Marcucci MC, Shahbazi MA, Sharma PK, Junqueira JC, Sipert CR, de Andrade FB. Effects of natural antimicrobial compounds propolis and copaiba on periodontal ligament fibroblasts, molecular docking, and in vivo study in Galleria mellonella. Biomed Pharmacother 2024; 171:116139. [PMID: 38198959 DOI: 10.1016/j.biopha.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Root canal treatment addresses infectious processes that require control. Occasionally, the radicular pulp is vital and inflamed, presenting a superficial infection. To preserve pulpal remnants, conservative procedures have gained favor, employing anti-inflammatory medications. This study investigated the effects of propolis (PRO), and copaiba oil-resin (COR) associated with hydrocortisone (H) and compared their impact to that of Otosporin® concerning cytotoxic and genotoxic activity, cytokine detection, and toxicity in the Galleria mellonella model. Human periodontal ligament fibroblasts (PDLFs) were exposed to drug concentrations and evaluated by the MTT assay. Associations were tested from concentrations that did not compromise cell density. Genotoxicity was evaluated through micronucleus counting, while cytokines IL-6 and TGF-β1 were detected in the cell supernatant using ELISA. Molecular docking simulations were conducted, considering the major compounds identified in PRO, COR, and H. Increasing concentrations of PRO and COR were assessed for acute toxicity in Galleria mellonella model. Cellular assays were analyzed using one-way ANOVA followed by Tukey tests, while larval survivals were evaluated using the Log-rank (Mantel-Cox) test (α = 0.05). PRO and COR promoted PDLFs proliferation, even in conjunction with H. No changes in cell metabolism were observed concerning cytokine levels. The tested materials induce the release of AT1R, proliferating the PDFLs through interactions. PRO and COR had low toxicity in larvae, suggesting safety at tested levels. These findings endorse the potential of PRO and COR in endodontics and present promising applications across medical domains, such as preventive strategies in inflammation, shedding light on their potential development into commercially available drugs.
Collapse
Affiliation(s)
- Victor Feliz Pedrinha
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil; Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands.
| | - Letícia Martins Santos
- Department of Operative Dentistry, School of Dentistry, University of São Paulo (FO-USP), São Paulo, Brazil
| | | | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | | | - Carmen Lucia Queiroga
- State University of Campinas, CPQBA, Division of Phytochemistry, Campinas, São Paulo, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Prashant Kumar Sharma
- Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Carla Renata Sipert
- Department of Operative Dentistry, School of Dentistry, University of São Paulo (FO-USP), São Paulo, Brazil
| | - Flaviana Bombarda de Andrade
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil
| |
Collapse
|
3
|
Weerapol Y, Manmuan S, Chuenbarn T, Limmatvapirat S, Tubtimsri S. Nanoemulsion-Based Orodispersible Film Formulation of Guava Leaf Oil for Inhibition of Oral Cancer Cells. Pharmaceutics 2023; 15:2631. [PMID: 38004609 PMCID: PMC10675713 DOI: 10.3390/pharmaceutics15112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Among natural sources, guava leaf oil (GLO) has emerged as a potential anticancer agent. However, its limited water solubility poses a significant challenge for its use. Oil-in-water nanoemulsions are used to address the limitation of water solubility of GLO prior to its incorporation into orodipersible films. Nanoemulsions containing GLO:virgin coconut oil (VCO) at a ratio of 50:50 to 70:30 presented a small droplet size of approximately 50 nm and a relatively low zeta potential. GLO:VCO at a ratio of 70:30 was selected for incorporation into sodium alginate film at various concentrations ranging from 1% to 30% w/w. Tensile strength and elongation at break relied on the concentration of nanoemulsions as well as the internal structure of films. Fourier transform infrared spectroscopy revealed that GLO was compatible with sodium alginate. Film containing 2% w/w of nanoemulsions (2G_ODF) exhibited effective in vitro antioral cancer activity, with an IC50 of 62.49 ± 6.22 mg/mL; furthermore, its anticancer activity showed no significant difference after storage at 25 °C for 1 year. Moreover, 2G_ODF at IC60 arrested colony formation and cell invasion. There is also evidence that cell death occurred via apoptosis, as indicated by nuclear fragmentation and positive Annexin-V staining. These findings highlight the potential of orodispersible films containing GLO nanoemulsions as a prospective oral anticancer agent.
Collapse
Affiliation(s)
- Yotsanan Weerapol
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (T.C.)
| | - Suwisit Manmuan
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (T.C.)
| | - Tiraniti Chuenbarn
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (T.C.)
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Sukannika Tubtimsri
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (T.C.)
| |
Collapse
|
4
|
Lee J, Wang M, Zhao J, Ali Z, Hawwal MF, Khan IA. Chemical Characterization and Quality Assessment of Copaiba Oil-Resin Using GC/MS and SFC/MS. PLANTS (BASEL, SWITZERLAND) 2023; 12:1619. [PMID: 37111842 PMCID: PMC10144763 DOI: 10.3390/plants12081619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the popularity of copaiba oil-resin has increased worldwide due to its medicinal value and wide applications in industry. Despite its popularity, the oil has not been standardized by industry or regulatory agencies. Product adulteration in order to maximize profits has become a problem. To address these issues, the current study describes the chemical and chemometric characterization of forty copaiba oil-resin samples by GC/MS. The results demonstrated, with the exception of commercial samples, that all sample groups contained six characteristic compounds (β-caryophyllene, α-copaene, trans-α-bergamotene, α-humulene, γ-muurolene, and β-bisabolene) in varying concentrations. Furthermore, compositional patterns were observed in individual groups which corresponded to sample origin. Within the commercial group, two samples did not contain or contained only one of the characteristic compounds. Principal component analysis (PCA) revealed distinct groups which largely corresponded to sample origin. Moreover, commercial samples were detected by PCA as outliers, and formed a group far removed from the other samples. These samples were further subjected to analysis using a SFC/MS method. Product adulteration with soybean oil was clearly detected, with each individual triglyceride in soybean oil being unambiguously identified. By combining these analytical techniques, the overall quality of copaiba oil-resin can be assessed.
Collapse
Affiliation(s)
- Joseph Lee
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
5
|
Morais LS, Sousa JPB, Aguiar CM, Gomes CM, Demarque DP, Albernaz LC, Espindola LS. Edible Plant Extracts against Aedes aegypti and Validation of a Piper nigrum L. Ethanolic Extract as a Natural Insecticide. Molecules 2023; 28:molecules28031264. [PMID: 36770931 PMCID: PMC9921162 DOI: 10.3390/molecules28031264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The Aedes aegypti mosquito significantly impacts public health, with vector control remaining the most efficient means of reducing the number of arboviral disease cases. This study screened the larvicidal and pupicidal activity of common edible plant extracts. Piper nigrum L. (black pepper) extract production was optimized using accelerated solvent extraction (ASE) and validated following regulatory requirements using HPLC-PDA analytical methodology to quantify its major component-piperine. Larvicidal activity was determined for the standardized P. nigrum fruit ethanol extract (LC50 1.1 µg/mL) and piperine standard (LC50 19.0 µg/mL). Furthermore, 9-day residual activity was determined for the extract (4 µg/mL) and piperine (60 µg/mL), with daily piperine quantification. Semi-field trials of solid extract formulations demonstrated 24-day activity against Ae. aegypti larvae. Thus, the standardized P. nigrum extract emerges as a potential candidate for insecticide development to control the arboviral vector.
Collapse
Affiliation(s)
- Lais Silva Morais
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília CEP 70910-900, DF, Brazil
| | - João Paulo Barreto Sousa
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília CEP 70910-900, DF, Brazil
| | - Carolina Melo Aguiar
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília CEP 70910-900, DF, Brazil
| | - Ciro Martins Gomes
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília CEP 70910-900, DF, Brazil
| | - Daniel Pecoraro Demarque
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília CEP 70910-900, DF, Brazil
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes, 580, São Paulo CEP 05508-900, SP, Brazil
| | - Lorena Carneiro Albernaz
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília CEP 70910-900, DF, Brazil
| | - Laila Salmen Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília CEP 70910-900, DF, Brazil
- Correspondence:
| |
Collapse
|
6
|
Fractionation of sesquiterpenes and diterpenic acids from copaiba (Copaifera officinalis) oleoresin using supercritical adsorption. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9004014. [PMID: 35154574 PMCID: PMC8831077 DOI: 10.1155/2022/9004014] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
The skin is a critical organ for the maintenance of the integrity and protection of the organism. When a wound occurs, a sequence of healing mechanisms is triggered to reconstruct the wounded area. β-caryophyllene is a sesquiterpene in Copaifera langsdorffii oleoresin with antioxidant and anti-inflammatory potential. On the basis of previous studies with C. langsdorffii, β-caryophyllene was selected to evaluate its wound healing potential and pharmacological mechanisms. The excision wound model was used with male Wistar rats and macroscopic, histological, immunohistochemical and biochemical analyses were performed with skin samples, comparing the β-caryophyllene-treated group with reference drugs. The results showed macroscopic retraction of the wounds treated with β-caryophyllene. Biochemical assays revealed the antioxidant and anti-inflammatory mechanisms of the β-caryophyllene-treated group with increasing levels of IL-10 and GPx and decreasing levels of pro-inflammatory molecules, including TNF-α, IFN-γ, IL-1β and IL-6. After β-caryophyllene treatment, immunohistochemical assays showed enhanced re-epithelialization, through the increase in laminin-γ2 and desmoglein-3 immunolabeling. β-caryophyllene also act in the remodeling mechanism, increasing the collagen content in the Masson’s trichrome staining. These findings indicated the wound-healing potential of β-caryophyllene topical formulation in rat skin wounds, mediated by antioxidant, anti-inflammatory and re-epithelialization mechanisms.
Collapse
|
8
|
Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, Heyden YV. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. PLANTA MEDICA 2021; 87:964-988. [PMID: 34412146 DOI: 10.1055/a-1529-8339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herbal medicines are important options for the treatment of several illnesses. Although their therapeutic applicability has been demonstrated throughout history, several concerns about their safety and efficacy are raised regularly. Quality control of articles of botanical origin, including plant materials, plant extracts, and herbal medicines, remains a challenge. Traditionally, qualitative (e.g., identification and chromatographic profile) and quantitative (e.g., content analyses) markers are applied for this purpose. The compound-oriented approach may stand alone in some cases (e.g., atropine in Atropa belladonna). However, for most plant materials, plant extracts, and herbal medicines, it is not possible to assure quality based only on the content or presence/absence of one (sometimes randomly selected) compound. In this sense, pattern-oriented approaches have been extensively studied, introducing the use of multivariate data analysis on chromatographic/spectroscopic fingerprints. The use of genetic methods for plant material/plant extract authentication has also been proposed. In this study, traditional approaches are reviewed, although the focus is on the applicability of fingerprints for quality control, highlighting the most used approaches, as well as demonstrating their usefulness. The literature review shows that a pattern-oriented approach may be successfully applied to the quality assessment of articles of botanical origin, while also providing directions for a compound-oriented approach and a rational marker selection. These observations indicate that it may be worth considering to include fingerprints and their data analysis in the regulatory framework for herbal medicines concerning quality control since this is the foundation of the holistic view that these complex products demand.
Collapse
Affiliation(s)
- Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - Maira R de Souza
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Tania M B Bresolin
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - André L de Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau - FURB, Blumenau/SC, Brazil
| | - Amélia T Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| |
Collapse
|
9
|
Development and validation of a gas chromatography method for the determination of β-caryophyllene in clove extract and its application. Sci Rep 2021; 11:13853. [PMID: 34226604 PMCID: PMC8257650 DOI: 10.1038/s41598-021-93306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study is to check the effectiveness of the analysis method that separates and quantifies β-caryophyllene among clove extracts and validate according to current ICH guidelines. The β-caryophyllene was active constituent of clove buds. The developed method gave a good detection response. In the specificity test, the standard solution was detected at about 17.32 min, and the test solution was detected at 17.32 min. The linearity of β-caryophyllen was confirmed, and at this time, the correlation coefficient (R2) of the calibration curve showed a high linearity of 0.999 or more in the concentration range. The levels of LOD and LOQ were 1.28 ug/mL and 3.89 ug/mL, respectively. The accuracy was confirmed to be 101.6–102.2% and RSD 0.95 ~ 1.31%. As a result of checking the repeatability and inter-tester reproducibility to confirm the precision, the RSD was found to be 1.34 ~ 2.69%. This validated GC method was successfully applied to a soft capsule containing clove extract and other materials for clinical trials. Therefore, this method can be used as an analytical tool for quality control of various samples, including clove extracts and their products of food and pharmaceutical uses.
Collapse
|
10
|
Godara A, Kao KC. Adaptive laboratory evolution of β-caryophyllene producing Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:106. [PMID: 34044821 PMCID: PMC8157465 DOI: 10.1186/s12934-021-01598-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background β-Caryophyllene is a plant terpenoid with therapeutic and biofuel properties. Production of terpenoids through microbial cells is a potentially sustainable alternative for production. Adaptive laboratory evolution is a complementary technique to metabolic engineering for strain improvement, if the product-of-interest is coupled with growth. Here we use a combination of pathway engineering and adaptive laboratory evolution to improve the production of β-caryophyllene, an extracellular product, by leveraging the antioxidant potential of the compound. Results Using oxidative stress as selective pressure, we developed an adaptive laboratory evolution that worked to evolve an engineered β-caryophyllene producing yeast strain for improved production within a few generations. This strategy resulted in fourfold increase in production in isolated mutants. Further increasing the flux to β-caryophyllene in the best evolved mutant achieved a titer of 104.7 ± 6.2 mg/L product. Genomic analysis revealed a gain-of-function mutation in the a-factor exporter STE6 was identified to be involved in significantly increased production, likely as a result of increased product export. Conclusion An optimized selection strategy based on oxidative stress was developed to improve the production of the extracellular product β-caryophyllene in an engineered yeast strain. Application of the selection strategy in adaptive laboratory evolution resulted in mutants with significantly increased production and identification of novel responsible mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01598-z.
Collapse
Affiliation(s)
- Avinash Godara
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA. .,Department of Chemical and Materials Engineering, San Jose State University, One Washington Sq, San Jose, CA, 95192, USA.
| |
Collapse
|
11
|
de Oliveira Moreira AC, Braga JWB. Authenticity Identification of Copaiba Oil Using a Handheld NIR Spectrometer and DD-SIMCA. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01933-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Gu S, Chen W, Wang Z, Wang J, Huo Y. Rapid detection of Aspergillus spp. infection levels on milled rice by headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) and E-nose. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109758] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Plant Natural Sources of the Endocannabinoid ( E)-β-Caryophyllene: A Systematic Quantitative Analysis of Published Literature. Int J Mol Sci 2020; 21:ijms21186540. [PMID: 32906779 PMCID: PMC7554841 DOI: 10.3390/ijms21186540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
(E)-β-caryophyllene (BCP) is a natural sesquiterpene hydrocarbon present in hundreds of plant species. BCP possesses several important pharmacological activities, ranging from pain treatment to neurological and metabolic disorders. These are mainly due to its ability to interact with the cannabinoid receptor 2 (CB2) and the complete lack of interaction with the brain CB1. A systematic analysis of plant species with essential oils containing a BCP percentage > 10% provided almost 300 entries with species belonging to 51 families. The essential oils were found to be extracted from 13 plant parts and samples originated from 56 countries worldwide. Statistical analyses included the evaluation of variability in BCP% and yield% as well as the statistical linkage between families, plant parts and countries of origin by cluster analysis. Identified species were also grouped according to their presence in the Belfrit list. The survey evidences the importance of essential oil yield evaluation in support of the chemical analysis. The results provide a comprehensive picture of the species with the highest BCP and yield percentages.
Collapse
|
14
|
Becker G, Brusco I, Casoti R, Marchiori MCL, Cruz L, Trevisan G, Oliveira SM. Copaiba oleoresin has topical antinociceptive activity in a UVB radiation-induced skin-burn model in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112476. [PMID: 31838179 DOI: 10.1016/j.jep.2019.112476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaiba oleoresin, extracted from Copaifera L., is used as a wound healing, analgesic, antimicrobial and, mainly, anti-inflammatory agent. Thus, in this study we investigated the antinociceptive and anti-inflammatory effects of a topical formulation containing Copaiba oleoresin (3%) in a UVB radiation-induced skin burn model (0.75 J/cm2) in mice and performed a cream-formulation stability study. MATERIALS AND METHODS The chemical composition of Copaiba oleoresin was analyzed using gas chromatography (GC-MS). The topical antinociceptive (evaluated through mechanical allodynia and thermal hyperalgesia) and the anti-inflammatory (dermal thickness and inflammatory cell infiltration) effects of treatments were assessed. The cream-formulation stability study was performed after two months, and organoleptic characteristics, pH, spreadability and rheological characteristics were analyzed. RESULTS Copaiba oleoresin cream was able to prevent UVB radiation-induced mechanical allodynia on the 2nd, 3rd and 4th day after UVB radiation exposure with a maximum inhibition (Imax) of 64.6 ± 7% observed on the 2nd day; it also reduced the thermal hyperalgesia on the 1st and 2nd days post UVB radiation, with a Imax of 100% observed on the 2nd day. Moreover, topical treatment with Copaiba oleoresin cream inhibited the inflammatory cell infiltration, but did not reduce the dermal thickness. Such effects can be attributed, at least in part, to the presence of biological components, such as β-caryophyllene and other sesquiterpenes identified by GC-MS. CONCLUSION Our results demonstrate that the topical formulation containing Copaiba oleoresin presented antinociceptive and anti-inflammatory effects in mice subjected to a UVB radiation and that the cream-formulation was stable for two months. Thus, use of Copaiba oleoresin is a promising strategy for the treatment of inflammatory pain associated with sunburn.
Collapse
Affiliation(s)
- Gabriela Becker
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Indiara Brusco
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rosana Casoti
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Marila Crivellaro Lay Marchiori
- Laboratory of Pharmaceutical Technology, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Laboratory of Pharmaceutical Technology, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Caputo LS, Campos MIC, Dias HJ, Crotti AEM, Fajardo JB, Vanelli CP, Presto ÁCD, Alves MS, Aarestrup FM, Paula ACC, Da Silva Filho AA, Aarestrup BJV, Pereira OS, Corrêa JODA. Copaiba oil suppresses inflammation in asthmatic lungs of BALB/c mice induced with ovalbumin. Int Immunopharmacol 2020; 80:106177. [PMID: 32007706 DOI: 10.1016/j.intimp.2019.106177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/05/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory disease that represents high hospitalizations and deaths in world. Copaiba oil (CO) is popularly used for relieving asthma symptoms and has already been shown to be effective in many inflammation models. This study aimed to investigate the immunomodulatory relationship of CO in ovalbumin (OVA)-induced allergic asthma. The composition of CO sample analyzed by GC and GC-MS and the toxicity test was performed in mice at doses of 50 or 100 mg/kg (by gavage). After, the experimental model of allergic asthma was induced with OVA and mice were orally treated with CO in two pre-established doses. The inflammatory infiltrate was evaluated in bronchoalveolar lavage fluid (BALF), while cytokines (IL-4, IL-5, IL-17, IFN-γ, TNF-α), IgE antibody and nitric oxide (NO) production was evaluated in BALF and lung homogenate (LH) of mice, together with the histology and histomorphometry of the lung tissue. CO significantly attenuated the number of inflammatory cells in BALF, suppressing NO production and reducing the response mediated by TH2 and TH17 (T helper) cells in both BALF and LH. Histopathological and histomorphometric analysis confirmed that CO significantly reduced the numbers of inflammatory infiltrate in the lung tissue, including in the parenchyma area. Our results indicate that CO has an effective in vivo antiasthmatic effect.
Collapse
Affiliation(s)
- Ludmila S Caputo
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria Inês C Campos
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Herbert J Dias
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantesn° 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Antônio E M Crotti
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantesn° 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Júlia B Fajardo
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Chislene P Vanelli
- Health Department, Faculty of Medical Sciences and Health of Juiz de Fora (SUPREMA), Alameda Salvaterra n° 200, Salvaterra, 36.033-003 Juiz de Fora, MG, Brazil
| | - Álvaro C D Presto
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria S Alves
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Fernando M Aarestrup
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ana Claudia C Paula
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ademar A Da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Beatriz J V Aarestrup
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Olavo S Pereira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - José Otávio do A Corrêa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
17
|
Mangabeira da Silva JJ, Pena Ribeiro V, Lemos M, Miller Crotti AE, Rogez H, Kenupp Bastos J. Reliable Methods for Analyses of Volatile Compounds of
Copaifera
Oleoresins Combining Headspace and Gas Chromatography. Chem Biodivers 2019; 17:e1900440. [DOI: 10.1002/cbdv.201900440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
| | - Victor Pena Ribeiro
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Marivane Lemos
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Antônio Eduardo Miller Crotti
- Chemistry DepartmentSchool of PhilosophySciences and LanguagesUniversity of São Paulo Av. Bandeirantes No. 3900, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| | - Hervé Rogez
- Center for Valorization of Amazonian Bioactive Compounds (CVACBA)Federal University of Pará Av. Perimetral No. 01, Guamá CEP 66.075-110 Belém-PA Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical SciencesUniversity of São Paulo Av. do Café s/n, Monte Alegre CEP 14.040-903 Ribeirão Preto-SP Brazil
| |
Collapse
|
18
|
Tkachev AV. Problems of the Qualitative and Quantitative Analysis of Plant Volatiles. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018070142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Silva-Flores PG, Pérez-López LA, Rivas-Galindo VM, Paniagua-Vega D, Galindo-Rodríguez SA, Álvarez-Román R. Simultaneous GC-FID Quantification of Main Components of Rosmarinus officinalis L. and Lavandula dentata Essential Oils in Polymeric Nanocapsules for Antioxidant Application. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:2837406. [PMID: 30881726 PMCID: PMC6387723 DOI: 10.1155/2019/2837406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 05/05/2023]
Abstract
The essential oils (EO) of R. officinalis and L. dentata have been widely used due to their antioxidant activity. However, due to their high volatility, the loading of EO into polymeric nanocapsules (NC) represents an efficient way of retaining their effect in future topical administration. In this way, the quantitative determination of EO incorporated into NC is necessary for simultaneous monitoring of the main components of the EO during the nanoencapsulation process as well as for precise and exact dosing of the components used during the performance of in vitro and in vivo biological tests. In this study, EO were isolated by hydrodistillation in a Clevenger-type apparatus and characterized by GC-MS and GC-FID analyses. The major constituents of EO-R. officinalis were camphor (39.46%) and 1,8-cineole (14.63%), and for EO-L. dentata were 1,8-cineole (68.59%) and β-pinene (11.53%). A new analytical method based on GC-FID for quantification of free and encapsulated EO was developed and validated according to ICH. Linearity, limit of detection and quantification, and intra- and interday precision parameters were determined. The methods were linear and precise for the quantification of the main components of EO. The EO were encapsulated by nanoprecipitation and were analyzed by the GC-FID method validated for their direct quantification. The NC size was 200 nm with homogeneous size distribution. The quantification of the incorporated EO within a NC is an important step in NC characterization. In this way, an encapsulation efficiency of at least 59.03% and 41.15% of total EO-R. officinalis and EO-L. dentata, respectively, was obtained. Simple, repeatable, and reproducible methods were developed as an analytical tool for the simultaneous quantification of the main components of EO loaded in polymeric nanocapsules as well as their monitoring in biological assays.
Collapse
Affiliation(s)
- Perla Giovanna Silva-Flores
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| | - Luis Alejandro Pérez-López
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| | - Verónica Mayela Rivas-Galindo
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| | - David Paniagua-Vega
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
- Cátedras CONACYT-UANL, Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| | - Sergio Arturo Galindo-Rodríguez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Rocío Álvarez-Román
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| |
Collapse
|
20
|
Arruda C, Aldana Mejía JA, Ribeiro VP, Gambeta Borges CH, Martins CHG, Sola Veneziani RC, Ambrósio SR, Bastos JK. Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus-A review. Biomed Pharmacother 2018; 109:1-20. [PMID: 30396065 DOI: 10.1016/j.biopha.2018.10.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Copaifera is a genus of large trees found in Brazil, mainly in Amazon forest, but also in Atlantic forest and cerrado biomes. It has also been found in other countries in South America. In Africa, it is found mainly in Congo, Cameroon, Guinea and Angola. Its oleoresin has been used in folk medicine in the treatment of numerous healthy disorders, such as urinary, respiratory, skin and inflammatory diseases, for which there are several studies corroborating its ethnopharmacological uses. It is also extensively employed in the pharmaceutical and cosmetic industries in the development of ointments, pills, soaps, perfumes, among others. Copaifera oleoresin contains mainly diterpenes, such as: kaurenoic acid, kaurenol, copalic acid, agathic acid, hardwiickic acid, polyalthic acid, and sesquiterpenes, comprising β-caryophyllene, caryophyllene oxide, α-copaene, α-humulene, γ-muurolene and β-bisabolol, among other compounds. On the other hand, Copaifera leaves contain mainly phenolic compounds, such as flavonoids and methylated galloylquinic acid derivatives. Therefore, considering the economic importance of Copaifera oleoresin, its ethnopharmacological uses, the need to develop new pharmaceuticals for the treatment of many diseases, as well as the pharmacological potential of the compounds found in Copaifera spp., it was undertaken a review covering mostly the last two decades on the distribution, chemistry, pharmacology, quality control and safety of Copaifera species.
Collapse
Affiliation(s)
- Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Jennyfer Andrea Aldana Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | | | | | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
21
|
Machado KDC, Islam MT, Ali ES, Rouf R, Uddin SJ, Dev S, Shilpi JA, Shill MC, Reza HM, Das AK, Shaw S, Mubarak MS, Mishra SK, Melo-Cavalcante AADC. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother Res 2018; 32:2376-2388. [DOI: 10.1002/ptr.6199] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Keylla da Conceição Machado
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Brazil
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City Vietnam
| | - Eunüs S. Ali
- Department of Product Development; Gaco Pharmaceuticals Limited; Dhaka Bangladesh
- Flinders University College of Medicine and Public Health; Bedford Park 5042 Adelaide Australia
| | - Razina Rouf
- Department of Pharmacy, Life Science Faculty; Bangabandhu Sheikh Mujibur Rahman Science and Technology University; Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Subrata Shaw
- Broad Institute of MIT and Harvard; 415 Main Street Cambridge MA 02142 USA
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology); Dr. Harisingh Gour Central University; Sagar India
| | | |
Collapse
|
22
|
Pasquel Reátegui JL, Fernandes FP, dos Santos P, Rezende CA, Sartoratto A, Queiroga CL, Martínez J. Production of copaiba (Copaifera officinalis) oleoresin particles by supercritical fluid extraction of emulsions. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Xavier-Junior FH, Maciuk A, Rochelle do Vale Morais A, Alencar EDN, Garcia VL, Tabosa do Egito ES, Vauthier C. Development of a Gas Chromatography Method for the Analysis of Copaiba Oil. J Chromatogr Sci 2018; 55:969-978. [PMID: 28977501 DOI: 10.1093/chromsci/bmx065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/19/2017] [Indexed: 01/15/2023]
Abstract
A rapid, simple, precise and economic method for the quantification of main compounds of copaiba resin and essential oils (Copaifera langsdorffii Desf.) by gas chromatography (GC) has been developed and validated. Copaiba essential oil was extracted by hydrodistillation from the copaiba resin. Resin derivatization allowed the identification of diterpenes compounds. A gas chromatography-mass spectroscopy (GC/MS) method was developed to identify compounds composing the copaiba resin and essential oil. Then the GC/MS method was transposed to be used with a flame ionization detector (FID) and validated as a quantitative method. A good correlation between GC/MS and GC/FID was obtained favoring method transposition. The method showed satisfactory sensitivity, specificity, linearity, precision, accuracy, limit of detection and limit of quantitation for β-caryophyllene, α-humulene and caryophyllene oxide analyses in copaiba resin and essential oils. The main compounds identified in copaiba essential oil were β-bisabolene (23.6%), β-caryophyllene (21.7%) and α-bergamotene (20.5%). Copalic acid methyl ester (15.6%), β-bisabolene (12.3%), β-caryophyllene (7.9%), α-bergamotene (7.1%) and labd-8(20)-ene-15,18-dioic acid methyl ester (6.7%) were diterpenes identified from the derivatized copaiba resin. The proposed method is suitable for a reliable separation, identification and quantification of compounds present in copaiba resin and essential oil. It could be proposed as an analytical method for the analysis of copaiba oil fraction in raw and essential oil parent extracts and after they have been incorporate in pharmaceutical formulations.
Collapse
Affiliation(s)
- Francisco Humberto Xavier-Junior
- Institut Galien Paris Sud, CNRS UMR 8612, Faculté de Pharmacie, University Paris-Sud, Université Paris-Saclay, Five Rue J.B. Clément, 92296 Chatenay-Malabry Cedex, France.,Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Universidade Federal do Rio Grande do Norte, Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis 59010-180, Natal, RN, Brazil
| | - Alexandre Maciuk
- Laboratoire de Pharmacognosie - UMR CNRS 8076 BioCIS - Faculté de Pharmacie, Université Paris-Sud, 92296 Chatenay-Malabry Cedex, France
| | - Andreza Rochelle do Vale Morais
- Institut Galien Paris Sud, CNRS UMR 8612, Faculté de Pharmacie, University Paris-Sud, Université Paris-Saclay, Five Rue J.B. Clément, 92296 Chatenay-Malabry Cedex, France.,Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Universidade Federal do Rio Grande do Norte, Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis 59010-180, Natal, RN, Brazil
| | - Everton do Nascimento Alencar
- Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Universidade Federal do Rio Grande do Norte, Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis 59010-180, Natal, RN, Brazil
| | - Vera Lucia Garcia
- Universidade Estadual de Campinas (UNICAMP) - Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Rua Alexandre Cazelatto, 999, Vila Betel, Paulínia, SP, Brazil
| | - Eryvaldo Sócrates Tabosa do Egito
- Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD), Universidade Federal do Rio Grande do Norte, Av. Gal. Gustavo Cordeiro de Farias, S/N, Petrópolis 59010-180, Natal, RN, Brazil
| | - Christine Vauthier
- Institut Galien Paris Sud, CNRS UMR 8612, Faculté de Pharmacie,University Paris-Sud, Université Paris-Saclay, Five Rue J.B. Clément, 92296 Chatenay-Malabry Cedex, France
| |
Collapse
|
24
|
Xavier-Junior FH, Egito ESTD, Morais ARDV, Alencar EDN, Maciuk A, Vauthier C. Experimental design approach applied to the development of chitosan coated poly(isobutylcyanoacrylate) nanocapsules encapsulating copaiba oil. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.02.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
da Silva JJM, Crevelin EJ, Carneiro LJ, Rogez H, Veneziani RCS, Ambrósio SR, Beraldo Moraes LA, Bastos JK. Development of a validated ultra-high-performance liquid chromatography tandem mass spectrometry method for determination of acid diterpenes in Copaifera oleoresins. J Chromatogr A 2017; 1515:81-90. [DOI: 10.1016/j.chroma.2017.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
26
|
Skin Wound Healing Potential and Mechanisms of the Hydroalcoholic Extract of Leaves and Oleoresin of Copaifera langsdorffii Desf. Kuntze in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6589270. [PMID: 28928790 PMCID: PMC5592006 DOI: 10.1155/2017/6589270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
Abstract
The wound healing is a complex process which, sometimes, can be a problem in public health because of the possibility of physical disability or even death. Due to the lack of a gold standard drug in skin wound treatment and aiming at the discovery of new treatments in skin repair and the mechanisms involved in the process, we used oleoresin (OR) from Copaifera langsdorffii and hydroalcoholic extract of the leaves (EH) to treat rat skin wounds. For that, male Wistar rats were divided into groups (n = 8): Lanette, Collagenase, 10% EH, or 10% OR and, after anesthesia, one wound of 2 cm was made in the back of animals. The wounds were treated once a day for 3, 7, or 14 days and the wound areas were measured. The rats were euthanized and skin samples destined to biochemical, molecular, and immunohistochemical analysis. The results showed a macroscopic retraction of the wounds of 10% EH and 10% OR creams and both treatments showed anti-inflammatory activity. Molecular and immunohistochemical results demonstrated the activity of Copaifera langsdorffii creams in angiogenesis, reepithelialization, wound retraction, and remodeling mechanisms.
Collapse
|
27
|
Gaspar AS, Wagner FE, Amaral VS, Costa Lima SA, Khomchenko VA, Santos JG, Costa BFO, Durães L. Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 172:135-146. [PMID: 27106814 DOI: 10.1016/j.saa.2016.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/01/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees. SPIONs were obtained by two thermal decomposition procedures and different amounts of precursors (iron acetylacetonates). Their characterization was accomplished by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetization. The obtained nanoparticles composition and magnetic properties were not affected by the relative proportion of iron(II) and iron(III) in the precursor system. However, when changing the reducing and stabilizing agents the coating layer shows different compositions/relative weight - the more promising SPIONs have a coating mainly composed by oleylamine and an iron oxide:coating wt% ratio of 55:45. Nanoparticles size distributions were very narrow and centred in the average size of 6-7nm. Cellular assays confirmed the biocompatibility of SPIONs and their effective internalization in human colon cancer cells. Mössbauer/XRD results indicated maghemite as their main iron oxide phase, but traces of magnetite proved to be present. Magnetization saturations of 57emu/g at 5K and 42emu/g at 300K were achieved. With incorporation of SPIONs into Copaiba and Andiroba essential oils, these values show a 4-fold decrease, but the supermagnetic behaviour is preserved providing the effective formation of a nanofluid.
Collapse
Affiliation(s)
- André S Gaspar
- CFisUC, Physics Department, University of Coimbra, 3004-516 Coimbra, Portugal; CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Friedrich E Wagner
- Physics Department, Technical University of Munich, 85747 Garching, Germany
| | - Vítor S Amaral
- Physics Department and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sofia A Costa Lima
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - Judes G Santos
- Federal University of Rondônia-UNIR, Faculty of Medicine, Laboratory of Nanomaterials and Nanobiomagnetism, CEP 76900-000, Amazonia, Brazil
| | - Benilde F O Costa
- CFisUC, Physics Department, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Luísa Durães
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal.
| |
Collapse
|
28
|
HPLC Method for the Dosage of Paclitaxel in Copaiba Oil: Development, Validation, Application to the Determination of the Solubility and Partition Coefficients. Chromatographia 2016. [DOI: 10.1007/s10337-016-3058-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Sousa JPB, Nogueira EF, Ferreira LS, Lopes NP, Lopes JLC. Validation of analytical procedures using HPLC-ELSD to determine six sesquiterpene lactones inEremanthusspecies. Biomed Chromatogr 2015; 30:484-93. [DOI: 10.1002/bmc.3576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 07/13/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Affiliation(s)
- João Paulo B. Sousa
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - Elídia F. Nogueira
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - Leandro S. Ferreira
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - Norberto P. Lopes
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - João Luis C. Lopes
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
30
|
Volpato A, Grosskopf R, Santos R, Vaucher R, Raffin R, Boligon A, Athayde M, Stefani L, Da Silva A. Influence of rosemary, andiroba and copaiba essential oils on different stages of the biological cycle of the tickRhipicephalus microplus in vitro. JOURNAL OF ESSENTIAL OIL RESEARCH 2015. [DOI: 10.1080/10412905.2015.1010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Santiago KB, Conti BJ, Murbach Teles Andrade BF, Mangabeira da Silva JJ, Rogez HLG, Crevelin EJ, Beraldo de Moraes LA, Veneziani R, Ambrósio SR, Bastos JK, Sforcin JM. Immunomodulatory action of Copaifera spp oleoresins on cytokine production by human monocytes. Biomed Pharmacother 2015; 70:12-8. [PMID: 25776472 DOI: 10.1016/j.biopha.2014.12.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/30/2014] [Indexed: 12/15/2022] Open
Abstract
Copaifera spp oleoresins have been used in folk medicine for centuries; nevertheless, its immunomodulatory action has not been investigated. Thus, the goal of this study was to characterize different oleoresins and to verify their action on human monocytes regarding pro- and anti-inflammatory cytokine production (TNF-α and IL-10, respectively). The chemical composition of Brazilian Copaifera reticulata, Copaifera duckey and Copaifera multijuga oleoresins was analyzed by HPLC-MS. Cell viability was assessed by MTT method after incubation of cells with Copaifera spp. Noncytotoxic concentrations of oleoresins were incubated with human monocytes from healthy donors, and cytokine production was determined by ELISA. HPLC-MS analysis for terpenes allowed the identification of six diterpene acids and one sesquiterpene acid. Oleoresins exerted no cytotoxic effects on human monocytes. All oleoresins had a similar profile: LPS-induced TNF-α production was maintained by oleoresins, while a significant inhibitory action on IL-10 production was seen. Copaifera oleoresins seemed to exert an activator profile on human monocytes without affecting cell viability. Such effect may be due to the presence of either diterpene or sesquiterpene acids; however, further studies are necessary to determine the involvement of such compounds in Copaifera immunomodulatory effects.
Collapse
Affiliation(s)
- Karina Basso Santiago
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, 18618-970, Botucatu, SP, Brazil
| | - Bruno José Conti
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, 18618-970, Botucatu, SP, Brazil
| | | | - Jonas Joaquim Mangabeira da Silva
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - Hervé Louis Ghislain Rogez
- School of Food Engeneering, Institute of Technology, Federal University of Pará, 66095-780, Belém, PA, Brazil
| | - Eduardo José Crevelin
- Chemistry Department, School of Phylosophy, Sciences and Languages, University of São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Luiz Alberto Beraldo de Moraes
- Chemistry Department, School of Phylosophy, Sciences and Languages, University of São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Veneziani
- University of Franca, Av. Dr. Armando Salles Oliveira, 201-Parque Universitário, 14404-600, Franca, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- University of Franca, Av. Dr. Armando Salles Oliveira, 201-Parque Universitário, 14404-600, Franca, SP, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - José Maurício Sforcin
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, 18618-970, Botucatu, SP, Brazil.
| |
Collapse
|
32
|
Rodrigues EDC, Ferreira AM, Vilhena JC, Almeida FB, Cruz RA, Florentino AC, Souto RN, Carvalho JC, Fernandes CP. Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Wang LH, Chen JX, Wang CC. Rapid quantitative analysis of suspected fragrance allergens in between commercial essential oils and using attenuated total reflectance–infrared (ATR–IR) spectroscopy. JOURNAL OF ESSENTIAL OIL RESEARCH 2014. [DOI: 10.1080/10412905.2014.882275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Development of a high performance liquid chromatography method for quantification of isomers β-caryophyllene and α-humulene in copaiba oleoresin using the Box-Behnken design. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 940:35-41. [DOI: 10.1016/j.jchromb.2013.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022]
|
35
|
Chemical variability of the volatiles of Copaifera langsdorffii growing wild in the Southeastern part of Brazil. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Souza AB, Moreira MR, Borges CHG, Simão MR, Bastos JK, Sousa JPB, Ambrosio SR, Veneziani RCS. Development and validation of a rapid RP-HPLC method for analysis of (−)-copalic acid in copaíba oleoresin. Biomed Chromatogr 2012; 27:280-3. [DOI: 10.1002/bmc.2788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/14/2012] [Accepted: 06/25/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Ariana Borges Souza
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas; Universidade de Franca; Av. Dr Armando Salles de Oliveira 201; Franca; 14404-600; SP; Brazil
| | - Monique Rodrigues Moreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas; Universidade de Franca; Av. Dr Armando Salles de Oliveira 201; Franca; 14404-600; SP; Brazil
| | - Carly Henrique Gambeta Borges
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas; Universidade de Franca; Av. Dr Armando Salles de Oliveira 201; Franca; 14404-600; SP; Brazil
| | - Marília Rodrigues Simão
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas; Universidade de Franca; Av. Dr Armando Salles de Oliveira 201; Franca; 14404-600; SP; Brazil
| | - Jairo Kenupp Bastos
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Avenida do Café, s/n.; Ribeirão Preto; 14040-903; SP; Brazil
| | - João Paulo Barreto Sousa
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Avenida do Café, s/n.; Ribeirão Preto; 14040-903; SP; Brazil
| | - Sérgio Ricardo Ambrosio
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas; Universidade de Franca; Av. Dr Armando Salles de Oliveira 201; Franca; 14404-600; SP; Brazil
| | - Rodrigo Cassio Sola Veneziani
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas; Universidade de Franca; Av. Dr Armando Salles de Oliveira 201; Franca; 14404-600; SP; Brazil
| |
Collapse
|
37
|
Optimization of headspace solid-phase microextraction for analysis of β-caryophyllene in a nanoemulsion dosage form prepared with copaiba (Copaifera multijuga Hayne) oil. Anal Chim Acta 2012; 721:79-84. [DOI: 10.1016/j.aca.2012.01.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
|
38
|
Tiossi RFJ, Miranda MA, de Sousa JPB, Praça FSG, Bentley MVLB, McChesney JD, Bastos JK. A Validated Reverse Phase HPLC Analytical Method for Quantitation of Glycoalkaloids in Solanum lycocarpum and Its Extracts. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2012; 2012:947836. [PMID: 22567576 PMCID: PMC3335309 DOI: 10.1155/2012/947836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
Solanum lycocarpum (Solanaceae) is native to the Brazilian Cerrado. Fruits of this species contain the glycoalkaloids solasonine (SN) and solamargine (SM), which display antiparasitic and anticancer properties. A method has been developed for the extraction and HPLC-UV analysis of the SN and SM in different parts of S. lycocarpum, mainly comprising ripe and unripe fruits, leaf, and stem. This analytical method was validated and gave good detection response with linearity over a dynamic range of 0.77-1000.00 μg mL(-1) and recovery in the range of 80.92-91.71%, allowing a reliable quantitation of the target compounds. Unripe fruits displayed higher concentrations of glycoalkaloids (1.04% ± 0.01 of SN and 0.69% ± 0.00 of SM) than the ripe fruits (0.83% ± 0.02 of SN and 0.60% ± 0.01 of SM). Quantitation of glycoalkaloids in the alkaloidic extract gave 45.09% ± 1.14 of SN and 44.37% ± 0.60 of SM, respectively.
Collapse
Affiliation(s)
- Renata Fabiane Jorge Tiossi
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Mariza Abreu Miranda
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - João Paulo Barreto de Sousa
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Silva Garcia Praça
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | | - Jairo Kenupp Bastos
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
39
|
Copaiba oil-resin treatment is neuroprotective and reduces neutrophil recruitment and microglia activation after motor cortex excitotoxic injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:918174. [PMID: 22461843 PMCID: PMC3291111 DOI: 10.1155/2012/918174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/05/2011] [Accepted: 11/16/2011] [Indexed: 11/21/2022]
Abstract
The oil-resin of Copaifera reticulata Ducke is used in the Brazilian folk medicine as an anti-inflammatory and healing agent. However, there are no investigations on the possible anti-inflammatory and neuroprotective roles of copaiba oil-resin (COR) after neural disorders. We have investigated the anti-inflammatory and neuroprotective effects of COR following an acute damage to the motor cortex of adult rats. Animals were injected with the neurotoxin N-Methyl-D-Aspartate (NMDA) (n = 10) and treated with a single dose of COR (400 mg/kg, i.p.) soon after surgery (Group 1) or with two daily doses (200 mg/kg, i.p.) during 3 days (Group 2) alter injury. Control animals were treated with vehicle only. COR treatment induced tissue preservation and decreased the recruitment of neutrophils and microglial activation in the injury site compared to vehicle animals. The results suggest that COR treatment induces neuroprotection by modulating inflammatory response following an acute damage to the central nervous system.
Collapse
|