1
|
Magerusan L, Pogacean F, Rada S, Pruneanu S. Sulphur-doped graphene based sensor for rapid and efficient gallic acid detection from food related samples. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
2
|
Majeed M, Mundkur L, Paulose S, Nagabhushanam K. Novel Emblica officinalis extract containing β-glucogallin vs. metformin: a randomized, open-label, comparative efficacy study in newly diagnosed type 2 diabetes mellitus patients with dyslipidemia. Food Funct 2022; 13:9523-9531. [PMID: 35996967 DOI: 10.1039/d2fo01862d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficacy of Emblica officinalis extract (EOE) containing 10% β-glucogallin was compared against metformin in newly diagnosed subjects with diabetic dyslipidemia which is a significant factor in cardiovascular disease. Daily administration with EOE-1 g, EOE-2 g, or metformin 500 mg for 90 days significantly decreased fasting blood sugar and postprandial blood sugar (FBS and PPBS), hemoglobin A1c (HbA1c) and lipid levels in all three treatment groups. The FBS, PPBS and HbA1c were significantly lower in the EOE-2 g group compared with metformin and EOE-1 g groups. The reductions in LDL and TC in the EOE-2 g group were also significantly higher than in the EOE-1 g group and were comparable to the metformin group. No serious adverse effects were observed in any study participants. EOE-1 g and 2 g day-1 are safe and potent antidiabetic agents, with comparable efficacy to the pharmaceutical drug, metformin. Supplementation with EOE-2 g day-1 showed greater efficacy than metformin in reducing circulating glucose levels.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, 19/1 & 19/2, I Main, II Phase, Peenya Industrial Area, Bangalore- 560 058, Karnataka, India.,Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ 08520, USA.
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, 19/1 & 19/2, I Main, II Phase, Peenya Industrial Area, Bangalore- 560 058, Karnataka, India
| | - Shaji Paulose
- Sami-Sabinsa Group Limited, 19/1 & 19/2, I Main, II Phase, Peenya Industrial Area, Bangalore- 560 058, Karnataka, India
| | | |
Collapse
|
3
|
Xu X, Zhang H, Li CH, Guo XM. Multimode determination of uric acid based on porphyrinic MOFs thin films by electrochemical and photoelectrochemical methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Alipour E, Mirzae Bolali F, Norouzi S, Saadatirad A. Electrochemically activated pencil lead electrode as a sensitive voltammetric sensor to determine gallic acid. Food Chem 2021; 375:131871. [PMID: 34953243 DOI: 10.1016/j.foodchem.2021.131871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023]
Abstract
An electrochemical sensor for the determination of some polyphenolic compounds such as Gallic acid (GA) and Galloyl esters was developed using the activated pencil lead electrode (APLE). At first, a study has been made of the optimum conditions for electrochemical activation of the pencil lead electrode. Potentiodynamic and potentiostatic strategies were investigated for activation of the pencil lead electrode and the results show that the potentiodynamic pretreatment gives better performance toward measurement of the polyphenolic compounds. Electrochemical properties of GA were investigated using chronoamperometry and cyclic voltammetry; and some thermodynamic and kinetic variables such as α, n α, and D were calculated. Sensitive differential pulse voltammetry (DPV) technique was applied for the determination of Gallic acid and Galloyl esters in different samples. Enhanced oxidation peak currents of Gallic acid were observed at APLE when compared with non-activated PLE. The calibration graph has two linear ranges of 0.49-24.3 µM and 0.07-0.83 mM, and the obtained limit of detection for S/N = 3 was 0.25 µM. Adsorptive stripping differential pulse voltammetry (AdSDPV) was also conducted to determine Gallic acid and Galloyl esters in sub-micromolar concentration range. Using the AdSDPV method, the limit of detection was improved and calculated to be 5.2 nM. The proposed method was successfully applied for quantification of the total concentration of Gallic acid and Galloyl esters in a variety of real samples such as black and green tea, and mango juice samples, and desirable recovery values indicated the good accuracy of the developed sensor.
Collapse
Affiliation(s)
- Esmaeel Alipour
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Fatemeh Mirzae Bolali
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sheida Norouzi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Afsaneh Saadatirad
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
FUJITA K, SEKIDO M, KANNO K, HATAE K, ICHIDA K. Development of a Molecular Recognition Electrode and Investigation of a Biomolecular Application in Non-Aqueous Media —Electrochemical Detection of Uremia-Related Substances Excreted via ATP-Binding Cassette Transporter G2—. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kyoko FUJITA
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences
| | - Misaki SEKIDO
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences
| | - Kohei KANNO
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences
| | - Kio HATAE
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences
| | - Kimiyoshi ICHIDA
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
6
|
Al-Ansi N, Salah A, Bawa M, Adlat S, Yasmin I, Abdallah A, Qi B. 3D nitrogen-doped porous graphene aerogel as high-performance electrocatalyst for determination of gallic acid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Majeed M, Majeed S, Mundkur L, Nagabhushanam K, Arumugam S, Beede K, Ali F. Standardized Emblica officinalis fruit extract inhibited the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase-4 and displayed antioxidant potential. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:509-516. [PMID: 31487036 PMCID: PMC6973029 DOI: 10.1002/jsfa.10020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Emblica officinalis, known as amla in Ayurveda, has been used as a folk medicine to treat numerous pathological conditions, including diabetes. However, the novel extract of E. officinalis fruit extract (amla fruit extract, AFE, Saberry®) containing 100 g kg-1 β-glucogallin along with hydrolyzable tannins has not yet been extensively studied for its antidiabetic potential. OBJECTIVE The aim of this study was to investigate the antidiabetic and antioxidant activities of AFE and its stability during gastric stress as well as its thermostability. METHODS The effect of AFE on the inhibition of pancreatic α-amylase and salivary α-amylase enzymes was studied using starch and yeast α-glucosidase enzyme using 4-nitrophenyl α-d-glucopyranoside as substrate. Further, 2,2-diphenyl-1-picrylhydrazyl radical scavenging and reactive oxygen species inhibition assay was performed against AFE. RESULTS AFE potently inhibited the activities of α-amylase and α-glucosidase in a concentration-dependent manner with half maximal inhibitory concentration (IC50 ) values of 135.70 μg mL-1 and 106.70 μg mL-1 respectively. Furthermore, it also showed inhibition of α-glucosidase (IC50 562.9 μg mL-1 ) and dipeptidyl peptidase-4 (DPP-4; IC50 3770 μg mL-1 ) enzyme activities. AFE is a potent antioxidant showing a free radical scavenging activity (IC50 2.37 μg mL-1 ) and protecting against cellular reactive oxygen species (IC50 1.77 μg mL-1 ), and the effects elicited could be attributed to its phytoconstituents. CONCLUSION AFE showed significant gastric acid resistance and was also found to be thermostable against wet heat. Excellent α-amylase, α-glucosidase, and DPP-4 inhibitory activities of AFE, as well as antioxidant activities, strongly recommend its use for the management of type 2 diabetes mellitus. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami Labs LimitedBangaloreIndia
- Sabinsa CorporationEast WindsorNJUSA
- Sabinsa CorporationPaysonUTUSA
| | - Shaheen Majeed
- Sami Labs LimitedBangaloreIndia
- Sabinsa CorporationEast WindsorNJUSA
- Sabinsa CorporationPaysonUTUSA
| | | | | | | | | | | |
Collapse
|
8
|
Shahamirifard SA, Ghaedi M, Razmi Z, Hajati S. A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode. Biosens Bioelectron 2018; 114:30-36. [PMID: 29775856 DOI: 10.1016/j.bios.2018.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022]
Abstract
The determination of gallic acid (GA) and uric acid (UA) is essential due to their biological properties. Numerous methods have been reported for the analysis of GA and UA in various real samples. However, the development of a simple, rapid and practical sensor still remains a great challenge. Here, a carbon paste electrode (CPE) was modified by nanocomposite containing zirconia nanoparticles (ZrO2NPs), Choline chloride (ChCl) and gold nanoparticles (AuNPs) to construct ZrO2-ChCl-AuNPs/CPE as electrochemical sensor for the simultaneous electro-oxidation of GA and UA. Characterization was performed by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The modified electrode was investigated by different methods including electrochemical impedance spectroscopy and cyclic voltammetry. Kinetic parameters such as charge transfer coefficient, standard heterogeneous electron transfer rate constant and other parameters were calculated via voltammetry techniques. Differential pulse voltammetry was used for simultaneous determination of GA and UA applying the ZrO2-ChCl-AuNPs/CPE electrode. At the optimum conditions, this sensor showed a linear response in the ranges 0.22- 55 and 0.12-55 µM for GA and UA, respectively. In addition, low detection limits of 25 and 15 nM were obtained for GA and UA, respectively. Furthermore, ZrO2-ChCl-AuNPs/CPE was successfully applied for the independent determination of GA in green tea and fruit juice as well as the simultaneous determination of GA and UA in human urine samples.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Zahra Razmi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Shaaker Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran.
| |
Collapse
|
9
|
CHEKIN FERESHTEH, BAGHERI SAMIRA, ABD HAMID SHARIFAHBEE. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. BULLETIN OF MATERIALS SCIENCE 2015; 38:1711-1716. [DOI: 10.1007/s12034-015-0989-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
De Bruyn F, De Paepe B, Maertens J, Beauprez J, De Cocker P, Mincke S, Stevens C, De Mey M. Development of an in vivo glucosylation platform by coupling production to growth: Production of phenolic glucosides by a glycosyltransferase of Vitis vinifera. Biotechnol Bioeng 2015; 112:1594-603. [PMID: 25728421 DOI: 10.1002/bit.25570] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/08/2015] [Accepted: 02/11/2015] [Indexed: 01/02/2023]
Abstract
Glycosylation of small molecules can significantly alter their properties such as solubility, stability, and/or bioactivity, making glycosides attractive and highly demanded compounds. Consequently, many biotechnological glycosylation approaches have been developed, with enzymatic synthesis and whole-cell biocatalysis as the most prominent techniques. However, most processes still suffer from low yields, production rates and inefficient UDP-sugar formation. To this end, a novel metabolic engineering strategy is presented for the in vivo glucosylation of small molecules in Escherichia coli W. This strategy focuses on the introduction of an alternative sucrose metabolism using sucrose phosphorylase for the direct and efficient generation of glucose 1-phosphate as precursor for UDP-glucose formation and fructose, which serves as a carbon source for growth. By targeted gene deletions, a split metabolism is created whereby glucose 1-phosphate is rerouted from the glycolysis to product formation (i.e., glucosylation). Further, the production pathway was enhanced by increasing and preserving the intracellular UDP-glucose pool. Expression of a versatile glucosyltransferase from Vitis vinifera (VvGT2) enabled the strain to efficiently produce 14 glucose esters of various hydroxycinnamates and hydroxybenzoates with conversion yields up to 100%. To our knowledge, this fast growing (and simultaneously producing) E. coli mutant is the first versatile host described for the glucosylation of phenolic acids in a fermentative way using only sucrose as a cheap and sustainable carbon source.
Collapse
Affiliation(s)
- Frederik De Bruyn
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Brecht De Paepe
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Joeri Beauprez
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Pieter De Cocker
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Stein Mincke
- Research Group SynBioC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Christian Stevens
- Research Group SynBioC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|